ON GENERALIZATION OF FROSTMAN'S LEMMA AND ITS APPLICATIONS

By Yasuo Nozaki

1. Introduction.

The generalized Riemann-Liouvill's integral has been given by M. Riesz. By the use of a lemma which is a consequence of Riemann-Liouville's integral, Frostman [1] has proved his fundamental theorem on the energy integral. In 1938, M. Riesz [4] has given the relations between the RiemannLiouville's integrals and potentials.

In the present paper, we shall give a generalization of Frostman's lemma in a higher dimensional space and some analogous lemmas in two dimensional space. Also we shall give some examples which show us how to apply them. The author is much indebted to Professor Y. Komatu who gives him many useful advices.

2. On generalized Riemann-Liouville's integrals.

Let $r_{\mathrm{PQ}}=r_{\mathrm{QP}}$ be the distance between P and Q in the m-dimensional euclidean space $\Omega_{m}(m \geqq 1)$, and α, β be positive numbers. Then we define the integral by M. Riesz:

$$
\begin{equation*}
I^{\alpha} f(\mathrm{P})=\frac{1}{C_{m}(\alpha)} \int_{\Omega_{m}} f(\mathrm{Q}) r_{1 \cdot Q}^{\alpha-m} d \mathrm{Q}, \tag{A}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{m}(\alpha)=\pi^{m}{ }^{2}{ }^{2} \Gamma\binom{\alpha}{2} \tag{B}
\end{equation*}
$$

and $d Q$ denotes the volume element. Here $f(Q)$ is continuous and satisfies the condition that the above integral (A) should converge absolutely.

For example, in order that (A) converges near the point $P=Q$, it is necessary that $\alpha>0$ while the convergence near the point at infinity depends on the behavior of $f(\mathrm{Q})$. If $f(\mathrm{Q})$ is a continuous function which behaves like $e^{-c r}$ at infinity, $I^{\alpha} f(Q)$ exists when $\alpha>0$ and it represents a continuous function of α. If, however, $f(Q)$ is a continous function which behaves like $1 / r^{\kappa}(\kappa>0)$ at infinity, $I^{\alpha} f(\mathrm{Q})$ exists when $0<\alpha<\kappa$ and it represents a continuous function of α in the interval $0<\alpha<\kappa$.

Concerning Riesz's operator I^{a}, the fundamental results are mentioned as follows:

Received August 30, 1958.

Theorem. If f be a continuous function such that $I^{\alpha} f$ exists absolutely in the interval $0<\alpha<\kappa$, then
(C) $\quad I^{\alpha}\left\{I^{\beta} f(\mathrm{P})\right\}=I^{\alpha+\beta} f(\mathrm{P})$ for $\alpha>0, \beta>0$, and $\alpha+\beta<m$,
(D) $\quad \Delta I^{\alpha+2} f(\mathrm{P})=-I^{\alpha} f(\mathrm{P})$,
(E) $\quad \lim _{\alpha \rightarrow 0} I^{\alpha} f(\mathrm{P})=I^{0} f(\mathrm{P})=f(\mathrm{P})$,
where Δ indicates the Laplace's operator.

3. Generalization of Frostman's lemma.

Lemma I (Frostman [1]). Let $0<k<3,0<l<3$ and $k+l>3$, then

$$
\begin{equation*}
\int_{\Omega_{3}} \frac{1}{r_{\mathrm{PM}}^{k}} \cdot \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=H_{3}(k, l) \frac{1}{r_{\mathrm{PQ}}^{k+l-3}} \tag{I}
\end{equation*}
$$

where

$$
H_{3}(k, l)=\pi^{\frac{3}{2}} \frac{\Gamma\left(\frac{3-k}{2}\right) \Gamma\left(\frac{3-l}{2}\right) \Gamma\left(\frac{k+l-3}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{l}{2}\right) \Gamma\left(\frac{6-k-l}{2}\right)}
$$

Here, we shall give a generalization of this lemma, which is the main result of this paper.

Lemma II. If k and l are positive numbers and satisfy the conditions $m>k, m>l$ and $m<k+l<2 m$, then

$$
\begin{equation*}
\int_{\Omega_{m}} \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=H_{m}(k, l) \frac{1}{r_{\mathrm{PQ}}^{k}+l-m}, \tag{II}
\end{equation*}
$$

where

$$
H_{m}(k, l)=\pi^{\frac{m}{2}} \Gamma\left(\frac{m-k}{2}\right) \Gamma\left(-\frac{m-l}{2}\right) \Gamma\left(\frac{k+l-m}{2}\right),
$$

In fact, if we take the function $f(Q)$ with the above mentioned properties, we can apply Riesz's formulas which imply

$$
\begin{align*}
I^{\alpha}\left\{I^{\beta} f(\mathrm{P})\right\} & =\frac{1}{C_{m}(\alpha) C_{m}(\beta)} \int_{\Omega_{m}}\left\{\int_{\Omega_{m}} f(\mathrm{Q}) r_{Q_{\mathrm{M}}^{\beta}-m} d \mathrm{Q}\right\} r_{\mathrm{MP}}^{\alpha-m} d \mathrm{M} \tag{1}\\
& =\frac{1}{C_{m}(\alpha) C_{m}(\beta)} \int_{\Omega_{m}}\left\{\int_{\Omega_{m}} r_{\mathrm{QM}}^{\beta-m} r_{\mathrm{MP}}^{\alpha-m} d \mathrm{M}\right\} f(\mathrm{Q}) d \mathrm{Q} .
\end{align*}
$$

In order that the integrals here converge and the inversion of the order of integration is legitimate, it is sufficient to suppose that $f(Q)=O\left(1 / r^{\kappa}\right)$ as $r \rightarrow \infty$ and, $\kappa>\alpha+\beta$ and $m>\alpha+\beta$ ($\kappa=m$, for example). But on the other hand, there holds

$$
\begin{equation*}
I^{\alpha+\beta} f(\mathrm{P})=\frac{1}{C_{m}(\alpha+\beta)} \int_{\Omega_{m}} f(\mathrm{Q}) r_{P Q}^{\alpha+\beta-m} d \mathrm{Q} . \tag{2}
\end{equation*}
$$

As the continuous function $f(Q)$ is arbitrary and

$$
I^{\alpha}\left\{I^{\beta} f(\mathrm{P})\right\}=I^{\alpha+\beta} f(\mathrm{P})
$$

so that we get

$$
\begin{equation*}
\int_{\Omega_{m}} r_{\mathrm{QM}}^{\beta} \bar{m}_{\mathrm{MP}}^{\alpha-m} d \mathrm{M}=\frac{C_{m}(\alpha) C_{m}(\beta)}{C_{m}(\alpha+\beta)} r_{\mathrm{PQ}}^{\alpha+\beta-m} . \tag{3}
\end{equation*}
$$

If we determine two positive numbers k and l by

$$
m-\alpha=k \quad \text { and } \quad m-\beta=l,
$$

then they satisfy

$$
0<k<m, \quad 0<l<m \quad \text { and } \quad m<k+l<2 m,
$$

and (3) become

$$
\int_{\Omega_{m}} \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=H_{m}(k, l) \frac{1}{r_{\mathrm{PQ}}^{k+l-m}}
$$

where

$$
H_{m}(k, l)=\pi^{\frac{m}{2}} \frac{\Gamma\left(\frac{m-k}{2}\right) \Gamma\left(\frac{m-l}{2}\right) \Gamma\left(\frac{k+l-m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{l}{2}\right) \Gamma\left(\frac{2 m-k-l}{2}\right)} .
$$

4. Consequences of lemma II.

In (II) and (II') of the Lemma II, if put $m=3$, then we obtain the Frostman's lemma I. Next, we shall show that it is possible to give a direct proof of the formula

$$
\begin{equation*}
\int_{\Omega_{3}} \frac{1}{r_{\mathrm{PM}}^{\mathrm{a}}} \frac{1}{r_{\mathrm{MQ}}^{2}} d \mathrm{M}=\frac{\pi^{3}}{r_{\mathrm{PQ}}}, \tag{III}
\end{equation*}
$$

which is a special case of (I).
In fact, if we put $\mathrm{P}(0,0,0), \mathrm{Q}(0,0, a), \mathrm{M}(x, y, z)$ and $x=r \cos \varphi \sin \theta$, $y=r \sin \varphi \sin \theta, z=r \cos \theta$ then the left-hand member of (III) becomes

$$
\int_{\Omega_{3}}-\frac{1}{r_{\mathrm{PM}}^{2}} \frac{1}{r_{\mathrm{MQ}}^{2}} d \mathrm{M}=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{r^{2} \sin \theta d \varphi d \theta d r}{r^{2}\left(r^{2}+a^{2}-2 a r \cos \theta\right)}=\frac{2 \pi}{a} \int_{0}^{\infty} \frac{1}{r} \log \left|\begin{array}{l}
a+r \\
a-r
\end{array}\right| d r .
$$

Putting $r=a t$ in the last integral, we get

$$
\begin{align*}
\int_{\Omega_{3}} \frac{1}{r_{\mathrm{PM}}^{2}} \frac{1}{r_{\mathrm{MQ}}^{2}} d \mathrm{M} & =-\frac{\pi}{a}\left[\int_{0}^{a} \frac{1}{r} \log \frac{a+r}{a-r} d r+\int_{a}^{\infty} \frac{1}{r} \log \frac{r-a}{r+a} d r\right] \tag{1}\\
& =\frac{8 \pi}{a} \int_{0}^{1} \frac{1}{1+t^{2}} \log \frac{1}{t} d t .
\end{align*}
$$

Putting $t=e^{-y}$ in (1), then

$$
\begin{align*}
\int_{0}^{1} \frac{1}{1-t^{2}} \log \frac{1}{t} d t & =\int_{0}^{\infty} \frac{y e^{-y}}{1-e^{-2 y}} d y=\sum_{n=0}^{\infty} \int_{0}^{\infty} y e^{-(2 n-1) y} d y \\
& =\sum_{n=0}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8} \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
\int_{\Omega_{3}} \frac{1}{r_{\mathrm{PM}}^{2}} \frac{1}{r_{\mathrm{MQ}}^{2}} d \mathrm{M}=\frac{\pi^{3}}{a}=\frac{\pi^{3}}{r_{\mathrm{PQ}}}
$$

5. In (II), we put $m=2$ and obtain the lemma:

Lemma III. If $0<k<2,0<l<2$ and $2<k+l<4$, then

$$
\begin{equation*}
\int_{\Omega_{2}} \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=H_{2}(k, l) \frac{1}{r_{\mathrm{PQ}}^{k+l-2}}, \tag{IV}
\end{equation*}
$$

where

$$
H_{2}(k, l)=\pi \cdot \frac{\Gamma\left(\frac{2-k}{2}\right) \Gamma\left(\frac{2-l}{2}\right) \Gamma\left(\frac{k+l-2}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{l}{2}\right) \Gamma\left(\frac{4-l-k}{2}\right)}
$$

Now, in two dimensional case, we shall give lemmas supplementary to (IV). We describe about P a circle Σ with a sufficiently large radius R.

Lemma IV. Let k and l be positive numbers such that $k+l=2$, then

$$
\begin{equation*}
\int_{\Sigma} \frac{1}{r_{P \mathrm{M}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=A(k, l) \log \frac{1}{r_{\mathrm{PQ}}}+B(k, l)+O(\log R), \tag{V}
\end{equation*}
$$

where $A(k, l), B(k, l)$ are symmetric functions of k and l.
To prove this lemma, it is sufficient to consider the case when $r_{P Q}$ is less than $\delta / 2, \delta$ being any fixed positive constant. We describe about P the concentric circles σ_{1} and σ_{2} with radii $2 a$ and 2δ as such $r_{\mathrm{PQ}}=a<\delta / 2$ respectively. We put
(1) $\quad I=\int_{\Sigma} \frac{1}{r_{P \mathrm{M}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{2}} d \mathrm{M}=\left(\int_{\Sigma-\sigma_{2}}+\int_{\sigma_{2}-\sigma_{1}}+\int_{\sigma_{1}}\right) \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=I_{1}+I_{2}+I_{3}$.

When M belongs to $\Sigma-\sigma_{2}$, then $r_{\mathrm{PM}} \leqq 2 \hat{\delta}, r_{\mathrm{MQ}} \geqq \delta$. Hence I_{1} is of the form:

$$
\begin{equation*}
I_{1}=O(\log R) . \tag{2}
\end{equation*}
$$

When M belongs to $\sigma_{2}-\sigma_{1}$, we have

$$
r_{\mathrm{MQ}}^{2}=r_{\mathrm{PM}}^{2}+a^{2}-2 a r_{\mathrm{PM}} \cos \theta \quad \text { and } \quad r_{\mathrm{PM}}>2 a,
$$

where θ is the angle between the radius-vectors r_{PQ} and r_{PM}. In this case, we have easily

$$
\begin{equation*}
\frac{1}{2}<\frac{r_{\mathrm{MQ}}}{r_{\mathrm{PM}}}<\frac{3}{2} \tag{3}
\end{equation*}
$$

Hence, putting $r_{\mathrm{PM}}=r$ and as we can suppose δ sufficiently small,

$$
\begin{align*}
I_{2} & <\int_{0}^{2 \pi} \int_{2 a}^{2 \delta} \frac{1}{r^{2-k}} \frac{1}{(r / 2)^{k}} r d r d \theta=2^{k+1} \pi\left(\log \frac{1}{2 a}+\log 2 \delta\right) \tag{4}\\
& <2^{k+1} \pi \log \frac{1}{a}=2^{k+1} \pi \log \frac{1}{r_{\mathrm{PQ}}} .
\end{align*}
$$

Now about I_{3}, we divide the circle σ_{1} in two parts by the bisector of the segment PQ. We denote by $\sigma_{1}{ }^{\prime}$ the part of σ_{1} which contains P and by $\sigma_{1}{ }^{\prime \prime}$ the other part. Then we put

$$
\begin{equation*}
I_{3}=\left(\int_{\sigma_{1}{ }^{\prime}}+\int_{\sigma_{1^{\prime \prime}}}\right) \frac{1}{r_{\mathrm{PM}}^{2}{ }^{k}} \frac{1}{r_{\mathrm{MQ}}^{k}} d \mathrm{M} \tag{5}
\end{equation*}
$$

If M belongs to $\sigma_{1}{ }^{\prime}$, then $r_{\mathrm{MQ}} \geqq a / 2$ so that

$$
\begin{equation*}
\int_{\sigma_{1}} \frac{1}{r_{\mathrm{PM}}^{2}-k} \frac{1}{r_{\mathrm{MQ}}^{k}} d \mathrm{M}<\frac{1}{(a / 2)^{k}} \int_{0}^{2 \pi} \int_{0}^{2 a} r d r d \theta r^{2-k}=\frac{2^{2 k+1} \pi}{k} . \tag{6}
\end{equation*}
$$

When M belongs to $\sigma_{1}{ }^{\prime \prime}$, then $r_{\mathrm{PM}} \geqq a / 2$. We describe about Q the circle τ with radius $3 a$, which is contained in σ_{2}. Introducing the polar coordinates with pole at Q we get

$$
\begin{align*}
\int_{\mathrm{\sigma}_{1}^{\prime \prime}} \frac{1}{r_{\mathrm{PM}}^{2-k^{-}}} \frac{1}{r_{\mathrm{MQ}}^{k}} d \mathrm{M} & <\frac{1}{(a / 2)^{2-k}} \int_{\tau} \frac{1}{r_{\mathrm{MQ}}^{k}-} d \mathrm{M} \tag{7}\\
& <\frac{2^{2-k}}{a^{2-k}} 2 \pi \int_{0}^{3 a} r d r \\
r^{k} & =\frac{6^{2-k} \pi}{2-k} .
\end{align*}
$$

From (6) and (7), there follows

$$
\begin{equation*}
I_{3}<\left(\frac{2^{2 k+1}}{k}+\frac{6^{2-k}}{2-k}\right) \pi \tag{8}
\end{equation*}
$$

Choosing suitable constants $A(k, l)$ and $B(k, l)$, from (2), (4) and (8) we obtain

$$
I=A(k, l) \log \frac{1}{r_{\mathrm{PQ}}}+B(k, l)+O(\log R)
$$

Lemma V. Let $k>0, l>0$ and $k+l<2$, then the integral

$$
\int_{\Sigma} \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}
$$

is a continuous function of r_{PQ}.
In fact, using the same notations as before, we put
(1)

$$
\int_{\Sigma} \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=\left(\int_{\Sigma-\sigma_{2}}+\int_{\sigma_{2}-\sigma_{1}}+\int_{\sigma_{1}}\right)_{r_{\mathrm{PM}}^{k}}^{1} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}=I_{1}+I_{2}+I_{3} .
$$

Evidently, I_{1} is continuous with respect to r_{PQ}. For I_{2}, since M belongs to $\sigma_{2}-\sigma_{1}$, and $r_{\mathrm{QM}} \geqq r_{\mathrm{PM}} / 2$ holds, then introducing the polar coordinates with pole at P, we get

$$
\begin{align*}
I_{2}<\int_{\sigma_{2}-\sigma_{1}} r_{\mathrm{PM}}^{1} \frac{1}{\left(r_{\mathrm{PM}}^{k} / 2\right)^{l}} d \mathrm{M} & <2^{l+1} \pi \int_{2 a}^{2 \delta} r d r \\
& <\frac{2^{3-k} \pi}{2-(k+l)} \delta^{2-(k+l)} \tag{2}
\end{align*}
$$

Hence I_{2} vanishes with δ. Finally, we put

$$
I_{3}=\left(\int_{\sigma_{1} \prime^{\prime}}+\int_{\sigma_{1^{\prime}}}\right) \frac{1}{r_{\mathrm{PM}}^{k}} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}
$$

By the same method as in the former lemma, we have

$$
\int_{\sigma_{1^{\prime}}} \frac{1}{r_{P M}^{k}} \frac{1}{r_{M Q}^{l}} d \mathrm{M}<\frac{2^{2+l-k} \pi}{2-k} a^{2-(k+l)}
$$

and

$$
\int_{\sigma_{1^{\prime}}} r_{\mathrm{I}^{\prime} \mathrm{M}}^{1} \frac{1}{r_{\mathrm{MQ}}^{l}} d \mathrm{M}<\frac{2^{k+1} \cdot 3^{2-l}}{2-l} \pi^{2-(k+l)}
$$

Therefore it becomes

$$
I_{3}<\left(\begin{array}{c}
2^{2+l-k} \tag{3}\\
2-k
\end{array}+\frac{2^{k+1} \cdot 3^{2-l}}{2-l}\right) \pi \cdot r_{\mathrm{PQ}}^{2-(k+l)}, \quad a=r_{\mathrm{PQ}}
$$

Thus the integral I_{3} vanishes also with δ. From (1), (2) and (3) the integral is a continuous function of $r_{P Q}$.

6. Applications.

Next we shall illustrate some examples of the above mentioned results in this and following sections.

Let V be a closed region bounded by regular surfaces S and let V_{2} and V_{e} be the regions consisting of inner and outer points of V, respectively. A function φ which is defined and continuous in V is called regular when it satisfies the conditions:

1) it has the continuous first partial derivatives in V, and
2) it has the continuous second partial derivatives in V_{2}.

If φ, ψ are regular in V we have the Green's formula:

$$
\begin{equation*}
\int_{V} \varphi \Delta \psi d V+\int_{V}(\nabla \varphi, \nabla \psi) d V=\int_{S} \varphi \frac{d \psi}{d n} d S \tag{1}
\end{equation*}
$$

where n indicates the outer normal to S and $d V, d S$ denote the volume and surface elements, respectively. For a regular surfaces of m-dimensional space Ω_{m}, we consider the potentials

$$
\begin{equation*}
U(\mathrm{P})=\int_{S} \mu(\mathrm{Q}) \frac{d \mathrm{Q}}{r_{\mathrm{PQ}}}, \quad W(\mathrm{P})=\int_{S} \nu(\mathrm{Q}) \frac{d \mathrm{Q}}{r_{\mathrm{PQ}}} \tag{2}
\end{equation*}
$$

where μ and ν are the continuous functions on S.
Remark. In Ω_{2} we replace U and W by the logarithmic potentials. For the proof of the problem in Ω_{2}, the following proof remains valid by slight modifications.

Now we can prove that the potentials $U(\mathrm{P})$ and $W(\mathrm{P})$ also satisfy (1):

$$
\begin{equation*}
\int_{V} U \Delta W d V+\int_{V}(\nabla U, \nabla W) d V=\int_{S} U \frac{d W}{d n} d S . \tag{3}
\end{equation*}
$$

Since $U(\mathrm{P})$ and $W(\mathrm{P})$ are harmonic in V, (3) becomes

$$
\int_{V}(\nabla U, \nabla W) d V=\int_{S} U \frac{d W}{d n} d S
$$

If the density function is merely continuous on S, the first derivatives of the potential of a single layer is not necessarily bounded on S. Therefore, we must prove the validity of (3). In this proof we shall use the abbreviation:

$$
\mathrm{M}_{i}\left(x_{i}, y_{i}, z_{2}\right)=\mathrm{M}_{i}, \quad \mathrm{M}(x, y, z)=\mathrm{M}_{0}=\mathrm{M}
$$

and

$$
\begin{gathered}
r_{0 i}^{2}=\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}, \quad r_{i k}^{3}=\left(x_{i}-x_{k}\right)^{2}+\left(y_{i}-y_{k}\right)^{2}+\left(z_{i}-z_{k}\right)^{2}, \\
\sigma(0)=\sigma(x, y, z), \quad \sigma(i)=\sigma\left(x_{i}, y_{i}, z_{i}\right), \quad d S(i)=d S\left(x_{i}, y_{i}, z_{2}\right),
\end{gathered}
$$

etc.
Proof. i) If M_{1} and M_{2} are inner points of V_{e}, then $1 / r_{10}$ and $1 / r_{20}$ have continuous partial derivative of any order. Hence U and W are regular in V and the identity (3^{\prime}) holds.
ii) Let M_{3} be a fixed inner point of V_{e} and M_{1} be an arbitrary point on S. Now consider

$$
\begin{align*}
\int_{V}\left(\frac{\partial \frac{1}{r_{10}}}{\partial x}\right. & \left.\frac{\partial \frac{1}{r_{30}}}{\partial x}+\frac{\partial \frac{1}{r_{10}}}{\partial y} \frac{\partial \frac{1}{r_{30}}}{\partial y}+\frac{\partial \frac{1}{r_{10}}}{\partial z}-\frac{\partial \frac{1}{r_{30}}}{\partial z}\right) d V(0) \tag{4}\\
& =\int_{S} \frac{1}{r_{10}} \frac{d \frac{1}{r_{30}}}{d n} d S(0)=-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{03}, N_{0}\right)}{r_{03}^{2}} d S(0) .
\end{align*}
$$

Here, since

$$
\int_{V} \frac{\partial \frac{1}{r_{10}}}{\partial x} \frac{\partial \frac{1}{r_{30}}}{\partial x} d V(0) \text { etc. }
$$

are the first partial derivatives of potentials with continuous densities of a single layer, and the last integral represents a potential of a double layer with a continuous density, they are both continuous, and the equality (3^{\prime}) holds.
iii) In case where the point M_{3} coincides with M_{2} of S which is different from M_{1}, we investigate the relation (3^{\prime}). When $\mathrm{M}_{3} \rightarrow \mathrm{M}_{2}$ from V_{e}, (4) becomes

$$
\begin{align*}
\int_{V}\left(\frac{\partial \frac{1}{r_{10}}}{\partial x} \frac{\partial \frac{1}{r_{20}}}{\partial x}\right. & \left.+\frac{\partial \frac{1}{r_{10}}}{\partial y} \frac{\partial \frac{1}{r_{20}}}{\partial y}+\frac{\partial \frac{1}{r_{10}}}{\partial z} \frac{\partial \frac{1}{r_{20}}}{\partial z}\right) d V(0) \tag{5}\\
& =\frac{2 \pi}{r_{12}}-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{2}} d S(0)
\end{align*}
$$

In fact, the right-hand member of (4) becomes, when $\mathrm{M}_{3} \rightarrow \mathrm{M}_{2}$ from V_{e},

$$
\begin{aligned}
\lim _{M_{3} \rightarrow M_{2}}\left(-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{03}, N_{0}\right)}{r_{03}} d S(0)\right) & =-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{2}} d S(0)-\left(-2 \pi \frac{1}{r_{12}}\right) \\
& =\frac{2 \pi}{r_{12}}-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{2}} d S(0) .
\end{aligned}
$$

Multiplying μ and ν and integrating, we get

$$
\begin{align*}
& \int_{S} \mu(2)\left\{\int _ { S } \nu (1) \left[\int _ { V } \left(\frac{\partial \frac{1}{r_{10}}}{\partial x} \frac{\partial \frac{1}{r_{20}}}{\partial x}\right.\right.\right.+\frac{\partial \frac{1}{r_{10}}}{\partial y} \frac{\partial \frac{1}{r_{20}}}{\partial y} \\
&\left.\left.\left.+\frac{\partial \frac{1}{r_{10}}}{\partial z} \frac{\partial \frac{1}{r_{20}}}{\partial z}\right) d V(0)\right] d S(1)\right\} d S(2) \tag{6}\\
&=\int_{S} \mu(2)\left\{\int_{S} \nu(1)\left[\frac{2 \pi}{r_{12}}-\int_{S} \frac{1}{r_{10}} \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{2}} d S(0)\right] d S(1)\right\} d S(2) .
\end{align*}
$$

If the inversion of order of integration on the left side is possible, we have

$$
\begin{align*}
\int_{S} \mu(2)\left\{\int_{S} \nu(1)\right. & {\left.\left[\int_{V} \frac{\partial \frac{1}{r_{10}}}{\partial x} \frac{\partial \frac{1}{r_{20}}}{\partial x} d V(0)\right] d S(1)\right\} d S(2) } \\
& =\int_{V}\left\{\left[\int_{S} \nu(1) \frac{\partial \frac{1}{r_{10}}}{\partial x} d S(1)\right]\left[\int_{S} \mu(2) \frac{\partial \frac{1}{r_{20}}}{\partial x} d S(2)\right]\right\} d V(0) \tag{7}\\
& =\int_{V} \frac{\partial U}{\partial x} \frac{\partial W}{\partial x} d V(0)
\end{align*}
$$

and there hold analoguous formulas with respect to y and z. If the inversion of the order of integral of the right-hand member of (6) is legitimate, then

$$
\begin{align*}
& 2 \pi \int_{S} \mu(2)\left\{\int_{S} \nu(1) \frac{1}{r_{12}} d S(1)\right\} d S(2) \\
& \quad-\int_{S}\left[\int_{S} \nu(1) \frac{1}{r_{10}} d S(1)\right]\left[\int_{S} \mu(2) \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{3}} d S(2)\right] d S(0) \\
& =2 \pi \int_{S} \mu(0) U(0) d S(0)-\int_{S} U(0)\left[\int_{S} \mu(2) \frac{\cos \left(r_{02}, N_{0}\right)}{r_{02}^{3}} d S(2)\right] d S(0) \tag{8}\\
& =\int_{S} U(0)\left\{2 \pi \mu(0)-\int_{S} \mu(2) \frac{\cos \left(r_{02}, N_{0}\right)}{r_{03}^{2}} d S(2)\right\} d S(0) \\
& =\int_{S} U(0) \frac{d W_{2}}{d n_{0}} d S(0)
\end{align*}
$$

where $d W_{\imath} / d n_{0}$ denotes the limiting value of $d W / d n$ at M_{0} from V_{\imath}. From (7) and (8), there follows
(9) $\quad \int_{V}\left(\frac{\partial U}{\partial x} \frac{\partial W}{\partial x}+\frac{\partial U}{\partial y} \frac{\partial W}{\partial y}+\frac{\partial U}{\partial z} \frac{\partial W}{\partial z}\right) d V(0)=\int_{S} U(0) \frac{d W_{\imath}}{d n_{0}} d S(0)$.

Now it is sufficient, in order to invert the order of the integration in the left-hand member of (6), to show the existence of the integral

$$
\begin{equation*}
\int_{S}|\mu(2)|\left\{\int_{S}|\nu(1)|\left[\int_{V} \frac{\partial \frac{1}{r_{10}}}{\partial x}: \frac{\partial \frac{1}{r_{20}}}{\partial x}, d V(0)\right] d S(1)\right\} d S(2) \tag{10}
\end{equation*}
$$

We have evidently

$$
\begin{align*}
\int_{V} \frac{{ }^{\frac{\partial}{r_{10}}}}{\partial x} \cdot \frac{{ }^{\frac{\partial}{r}}{ }_{r}^{1}}{\partial x}
\end{align*} \quad d V(0) \leqq \int_{V} \begin{array}{cc}
1 & 1 \tag{11}\\
r_{10}^{2} & r_{20}^{2}
\end{array} d V(0) .
$$

By the use of (III), i.e.

$$
\int_{\Omega_{3}}{ }_{10}^{1} \frac{1}{r_{10}^{3}} r_{20}^{3} d V(0)=\frac{\pi^{3}}{r_{12}},
$$

if we take a positive constant A such that $A \geqq \operatorname{Max}|\nu(1)|$, (10) becomes

$$
\begin{align*}
& \int_{S}|\nu(1)|\left[\int_{V}\left|\frac{\partial \frac{1}{r_{10}}}{\partial x} \cdot \frac{\partial \frac{1}{r_{20}}}{\partial x}\right| d V(0)\right] d S(1) \tag{12}\\
& \\
& \quad \leqq A \int_{S} \pi_{r_{12}}^{3} d S(1)=A \pi^{3} \int_{S} \frac{1}{r_{12}} d S(1)
\end{align*}
$$

The last term is bounded with respect to M_{2} in Ω_{3}, and the same is true for
similar terms. Therefore (10) converges uniformly.
Next, in order to invert the order of the integration in the right-hand member of (6), it is sufficient to show that the inequality

$$
\begin{equation*}
\int_{S} \frac{1}{r_{10}}-\frac{\left|\cos \left(r_{20}, N_{0}\right)\right|}{r_{20}^{2}} d S(0)<\frac{C}{r_{12}^{1-\lambda}} \tag{13}
\end{equation*}
$$

holds, where C is a positive constant. Since S is a regular surface, we can choose a constant a and λ such that

$$
\left|\cos \left(r_{20}, N_{0}\right)\right|<a r_{20}^{\lambda} \quad(0<\lambda<1)
$$

hold. Now let σ be the part of S which lies in the sphere with center M_{0} and radius δ. We put

$$
\begin{equation*}
\int_{S} \frac{1}{r_{10}} \frac{\left|\cos \left(r_{20}, N_{0}\right)\right|}{r_{20}^{2}} d S(0)=\left(\int_{S-\sigma}+\int_{\sigma}\right) \frac{1}{r_{10}} \frac{\left|\cos \left(r_{20}, N_{0}\right)\right|}{r_{20}^{2}} d S(0) . \tag{14}
\end{equation*}
$$

The first integral on the right-hand member is bounded at M_{0}. Let σ^{\prime} be the projection of σ onto the tangential plane at M_{0} and r_{10}^{\prime} and r_{20}^{\prime} denote the projection of r_{10} and r_{20}, respectively. Since S is regular, it is possible to take a positive constant δ such that between any vector $r \in \sigma$ and its projection $r^{\prime} \in \sigma^{\prime}$ we have $r<2 r^{\prime}$ and in particular $d S(0)<4 d S^{\prime}(0)$ where $d S^{\prime}(0)$ denotes the projection of $d S(0)$. Then
and hence

$$
\int_{s} \frac{1}{r_{10}} \frac{\left|\cos \left(r_{20}, N_{0}\right)\right|}{r_{20}^{2}} d S(0)<\frac{C^{\prime}}{r_{12}^{\prime-\lambda}}
$$

where C^{\prime} is a constant. Therefore the inequality (13) holds, and consequently

$$
\int_{S}|\mu(2)|\left\{\int_{S}|\nu(1)|\left[\int_{S} \frac{1}{r_{10}} \frac{\left|\cos \left(r_{20}, N_{0}\right)\right|}{r_{20}^{2}} d S(0)\right] d S(1)\right\} d S(2)
$$

exists.

7. Iterated nuclei of integral equations.

We consider an integral equation in space Ω_{m} which is of the form

$$
\begin{equation*}
\mu(0)=\zeta \int_{S} K(1,0) \mu(1) d S(1)+f(0) \tag{1}
\end{equation*}
$$

where

$$
K(1,0)=-\begin{array}{cc}
1 & \cos \left(r_{10}, N_{n}\right) \tag{2}\\
2 \pi & r_{01}^{m_{0}-1}
\end{array} .
$$

We investigate the properties of the iterated nuclei of the equation (1). We put
(3) $\quad K_{1}(1,0)=K(1,0), \quad K_{n}(1,0)=\int_{S} K_{1}(1,2) K_{n-1}(2,0) d S(2) \quad(n \geqq 2)$.

Since S is regular, we have

$$
\begin{equation*}
\left|\cos \left(r_{10}, N_{0}\right)\right|<a r_{10}^{\lambda}, \quad 0<\lambda<1 \tag{4}
\end{equation*}
$$

a being a positive constant. Then we have

$$
\frac{1}{2 \pi} \frac{\left|\cos \left(r_{10}, N_{0}\right)\right|}{r_{10}^{m-1}-1} r_{10}^{m-1-\lambda}<\frac{a}{2 \pi}
$$

Therefore we can write

$$
\begin{equation*}
K(1,0)=\frac{C_{1}(1,0)}{r_{10}^{m-1-\lambda}}, \tag{5}
\end{equation*}
$$

where $C_{1}(1,0)$ is a continuous function of M_{0} and M_{1}.
In order to investigate $K_{2}(1,0)$, we describe a sphere about M_{1} with a fixed radius δ, and denote by τ the part of S in the sphere. τ_{1} indicates the part of S within the sphere about M_{1} with radius $2 r_{10}\left(r_{10}<\delta / 2\right)$. Besides we denote by τ^{\prime}, the projection of τ onto the tangential (hyper-)plane at M_{1}. We put

$$
\begin{equation*}
K_{2}(1,0)=\left(\int_{S-\tau}+\int_{\tau}\right) K_{1}(1,2) K_{1}(2,0) d S(2)=I_{1}+I_{2} \tag{6}
\end{equation*}
$$

Let $\mathrm{M}_{1}, \mathrm{M}_{2} \in \tau_{1}$ and $\mathrm{M}_{2} \in S-\tau$, then I_{1} is a continuous function of M_{0} and M_{1}. By similar reasoning as in $\S 6$,

$$
\begin{aligned}
\left|I_{2}\right| & =\int_{\tau} \frac{1}{2 \pi}\left|\frac{\cos \left(r_{12}, N_{2}\right)}{r_{12}^{m-1}} \frac{1}{2 \pi}\right| \frac{\cos \left(r_{20}, N_{0}\right)}{r_{20}} d S(2) \\
& <\frac{4}{4 \pi^{2}} \int_{\tau} \frac{1}{r_{12}^{\prime m-1-\lambda}} \frac{1}{r_{20}^{m n-1-\lambda}} d S^{\prime}(2)
\end{aligned}
$$

By the lemma II, we obtain

$$
\begin{align*}
\left|I_{2}\right| & <\frac{1}{\pi^{2}} \int_{\tau^{\prime}} \frac{1}{r_{12}^{m-1-\lambda}} \frac{1}{r_{20}^{m m-1-\lambda}} d S(2)<\frac{1}{\pi^{2}} \int_{\Omega_{m-1}} \frac{1}{r_{12}^{m-1-\lambda}} \frac{1}{r_{20}^{m-1-\lambda}} d S^{\prime}(2) \tag{7}\\
& =\frac{1}{\pi^{2}} H_{m-1}(m-1-\lambda, m-1-\lambda) \frac{1}{r_{10}^{m m-1-2 \lambda}} .
\end{align*}
$$

Therefore, by suitably choosing $C_{2}(1,0)$, we have

$$
\begin{equation*}
K_{2}(1,0)=C_{2}(1,0) \frac{1}{r_{10}^{m}-1-2 \lambda^{2}} . \tag{8}
\end{equation*}
$$

The repetition of the above process implies

$$
\begin{equation*}
K_{n}(1,0)=C_{n}(1,0) \frac{1}{r_{10}^{m-1-n \lambda}} \tag{9}
\end{equation*}
$$

Hence if we choose a positive integer n such that

$$
m-1-n \lambda<0 \quad \text { i.e. } \quad n>\frac{n-1}{\lambda}
$$

then $K_{n}(1,0)$ is a continuous function of r_{10}. Hence we can write the equation (1) in the form:

$$
\begin{equation*}
\mu(0)=\zeta \int_{S} K_{n}(1,0) \mu(1) d S(1)+\Sigma_{n}(0) \tag{10}
\end{equation*}
$$

and
(11) $\quad \Sigma_{n}(0)=f(0)+\zeta \int_{S} K(1,0) \mu(1) d S(1)+\cdots+\zeta^{n-1} \int_{S} K_{n-1}(1,0) \mu(1) d S(1)$,
where $K_{n}(1,0)$ is a continuous function of r_{10}.

8. Integral equation of the Abel's type.

In space Ω_{m}, we consider the integral equation

$$
\begin{equation*}
\int_{\Omega_{m}} \frac{1}{r_{\mathrm{PQ}}^{\lambda}} d \mathrm{Q}=\varphi(\mathrm{P}) \tag{1}
\end{equation*}
$$

where $\varphi(\mathrm{P})$ is a continuous given function.
To solve (1), we multiply (1) by $1 / r_{\text {PM }}^{\mu}(0<\mu<m)$ and integrate, then

$$
\int_{\Omega_{m}}\left\{\int_{\Omega_{m}} \frac{f(\mathrm{Q})}{r_{\mathrm{PQ}}^{\mathrm{Q}}} d \mathrm{Q}\right\} \frac{1}{r_{\mathrm{PM}}^{\mu}} d \mathrm{P}=\int_{\Omega_{m}} \varphi(\mathrm{P}) \frac{1}{r_{\mathrm{PM}}^{\mathrm{M}}} d \mathrm{P}
$$

By inverting the order of the integration, it becomes

$$
\begin{equation*}
\int_{\Omega_{m}}\left\{\int_{\Omega_{m}} \frac{1}{r_{\mathrm{PQ}}^{\alpha}} \frac{1}{r_{\mathrm{PM}}^{\mu}} d \mathrm{P}\right\} f(\mathrm{Q}) d \mathrm{Q}=\int_{\Omega_{m}} \varphi(\mathrm{P}) \frac{1}{r_{\mathrm{PM}}^{\mu}} d \mathrm{P} \tag{2}
\end{equation*}
$$

By the lemma II, we have

$$
\begin{equation*}
H_{m}(\lambda, \mu) \int_{\Omega_{m}} f(\mathrm{Q}) \frac{1}{r_{\mathrm{QM}}^{\lambda+\mu-m}} d \mathrm{Q}=\int_{\Omega_{m}} \varphi(\mathrm{P}) \frac{1}{r_{\mathrm{PM}}^{\mu}} d \mathrm{P} \tag{3}
\end{equation*}
$$

Applying the Riesz's operator (A), there follows

$$
C_{m}(2 m-\lambda-\mu) H_{m}(\lambda, \mu) I^{2 m-\lambda-\mu} f(\mathrm{M})=\int_{\Omega_{m}} \varphi(\mathrm{P}) \frac{1}{r_{\mathrm{P}}^{\mu}} d \mathrm{P}
$$

Then
(4)

$$
\begin{aligned}
& \pi^{m} \cdot 2^{2 m-\lambda-\mu} \frac{\Gamma\left(\frac{m-\lambda}{2}\right) \Gamma\left(\frac{m-\mu}{2}\right)}{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\mu}{2}\right)} \Delta I^{2(m-1)-\lambda-\mu+2} f(\mathrm{M}) \\
&=\int_{\Omega_{m}} \varphi(\mathrm{P}) \Delta\left(\frac{1}{r_{\mathrm{PM}}^{\mu}}\right) d \mathrm{P} .
\end{aligned}
$$

By the property (D) of Riesz's operatior, it becomes

$$
\begin{align*}
-\pi^{m} \cdot 2^{2 m-\lambda-\mu} \frac{\Gamma\left(\frac{m-\lambda}{2}\right) \Gamma\left(\frac{m-\mu}{2}\right)}{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\mu}{2}\right)} & I^{2(m-1)-\lambda-\mu} f(\mathrm{M}) \tag{5}\\
& =\int_{\Omega_{m}} \varphi(\mathrm{P}) \Delta\left(\frac{1}{r_{\mathrm{PM}}^{u}}\right) d \mathrm{P}
\end{align*}
$$

Now since $I^{0} f=f$, if we put $2 m-2-\lambda-\mu \rightarrow 0$, i.e. $\mu \rightarrow 2 m-2-\lambda$, we then obtain from (5)

$$
K(m, \lambda) f(\mathrm{M})=\int_{\Omega_{m}} \varphi(\mathrm{P}) \Delta\left(\frac{1}{r_{P \mathrm{M}}^{2 m-2-\lambda}}\right) d \mathrm{P}
$$

where

$$
K(m, \lambda)=-\pi^{m} \cdot \frac{\Gamma\left(\frac{m-\lambda}{2}\right) \Gamma\left(\frac{2+\lambda-m}{2}\right)}{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{2 m-2-\lambda}{}\right)}
$$

Hence

$$
\begin{equation*}
f(\mathrm{M})=\frac{1}{K(m, \lambda)} \int_{\Omega_{m}} \varphi(\mathrm{P}) \Delta\left(\frac{1}{r_{\mathrm{PM}}^{2 m-2}-\lambda^{-}}\right) d \mathrm{P} \tag{6}
\end{equation*}
$$

In order that the integral in (6) exists, the function φ must behaves conveniently at the origin and at infinity. But, for example, it is sufficient for this purpose to suppose that $\varphi=o\left(r^{\alpha}\right), \alpha>0$ at the origin and $\psi=r^{-\kappa}$, $\kappa>m-\lambda$ at infinity. The expression (6) then gives the solution of the equation (1).

References

[1] Frostman, O., Potentiel d'équilibre et capacité de ensembles avec quelques applications à la théorie des fonctions. Med. Lund. Univ. Math. Sem. 3 (1935).
[2] Gunter, M., Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik. Leibzig 1957, pp. 129-134.
[3] Riesz, M., Comptes rendus du Congrès International des Mathématiciens (Oslo, 1936), Vol. II. pp. 44-45, 62-63.
[4] - Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged 9 (1938), 1-42.

Gakushuin College, Tokyo and
Tokyo Institute of Technology.

