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In our previous paper-!-' we gave a
characterization of the maximal ideal
in a factor of ,the case ( II ̂ )»
But, as Jo Dbαnier

2
) pointed out, the

statement contains an error, so we
shall correct it here

0
 Moreover, in

the previous paper, we treated only
the separable Hubert space, but the
same proof remains true for any factor
which contains a projection relatively
smaller than the identity* So that we
obtain a final form of such a charac-
terization.

1. Let M be a factor on a (not
necessarily separable) Hubert space
H

β
 It is well-known that any factor

of the finite case is simple (for
example (6J).3) Moreover, if H is
separable then a factor of the case
(III) is also sdjnple

0
 But, if M of

case (III) is countably decomposable
(i.e. any collection of mutually dis-
joint projections in M is at most
countable), then any projection in M
is mutually equivalent ((5j> Lemma
7 2o2

0
)o Therefore, we know that M

is simple by the same proof with £6}.
However, M may be not countably decom-
posable. In this case, we obtain

' Lemma 1. If a factor M is not
countably decomposable, then M con-
tains at least one ideal

 9

Proof. Let x be any element of H
and [.M

!
xJ be the closed linear mani-

fold generated by (Ax; a£M
f
), then it

is well-known that f M
!
xJ belongs to M

and countably decomposable. So that,
it is clear that

Let J be the set of all operators
AeM such that [R(A)J is contained in
a countably decomposable manifold,
then it is easily seen that J is a
non trivial ideal in M*

(Here we denote by R(A) the range
of A, and by [R(A)] its closure,,)

2
0
 Let us now correct the theorem

in the previous paper in the following
form, which is valid in the case of
(lej and (III).

Theorem 1
0
 Any factor M of the

infinite case, except the countably
decomposable (ill) case, has the
unique maximal ideal This ideal
consists of such operators A^M that

every spectral projection E(̂ ), for
|A|~(A*A)

<X
* contained inR(|Af) has

a relative dimension smaller than that
of the whole space (In the sense that

In particular, if H is separable,.
this condition is equivalent to the
condition that every spectral pro-
jection E(̂ ) contained in R(lAf) has -
a finite relative dimension, and more-
over, in the case of the total oper-
ator ring, A is a completely continu-
ous operator*

Proof o First we remark that for
projections P, Q6M, if P.Q̂ H then
PVQ;£Ho This fact is proved by the
similar manner to the proof of the
fact that if P, Q are finite then
PVQ is finite. Now let J be the set
of all A£M such that (R(A)jφH, then
J is an ideal in M as_is proved in the
previous paper,, Let J be its uniform
closure, then it is well-known that J
is also an ideal in M

β
 On the other

hand, any operator A*M such as de-
scribed in the theorem is contained
in J

β
 In fact, let A-ϋlAI be the

polar decomposition of A θAj = (A#
is positive-definite, U is a partial
isomβtry in M from £R(|A|)J to(JR(A)J),
then |A| is a uniform limit of the
operators of type Σλ̂ E(Δ̂ ), where
E(«) is a spectral measure for (A|

0

Since | A | is positive definite, we can
choose the intervals Δ* as not contain
the zeroo So that E(Λ

Λ
 )c R(|A|),



hence Σλ̂ E(A')
6
 J«_ Thus w

8
 obtain

that |A|6 J°, and A* Jo This implies
that there exists an ideal containing
all those operators stated in the
theorem*

However, if A is an element of an
ideal K, then A has the property
stated in the theorem*. This fact
follows from the second part of the
proof in the previous paper with
slight modifications. That is, if
A£K and let A=^U|A| be the polar
decomposition, then (Al~ϋ#A£K<s Now
suppose that I A\ has a spectral pro-
jection E(A)C R(jAl) such that B(Δ)
~Ή, It is clear that E(Δ)|A|E(Δ)
is the one-to-one transformation on
the E(Δ)H onto itself

 β
 Let X be the

partial isometry H~E(Λ)« Then
C~X#|A|X£K is a one-to-one trans-
formation on the whole space H onto
itself, so that there exists the

inverse G~'<£ M» This implies I» C^C^K,
which contradicts the assumption that
K is an ideal* Thus we see that the
set of all those operators stated in
the theorem is J and it is the maximal
ideal in M.

The case of the total operator ring
on a separable Hubert space is re-
duced to the result of Calkin*

Corollary. Any factor M of the
infinite case, except the countably
decomposable (III) case, has the
unique maximal ideal, which coincides
with the uniform closure of the set
of all operators A such that £R

3. By Lemma 1 and the above theorem,
we obtain

Theorem 2
0
 A ring of operators is

simple if and only if it is a countably
decomposable factor of the finite case,
or of case (III),

(It is well-known that a finite
factor is countably decomposable*)

Proof* If a ring of operators is
not a factor, then there*exists a
central projection Z in M such that
O^Z^I. Let J=(A*M; ZA«A), then
it is easily seen that J is a non
trivial ideal so that M is not simple.
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