By Kiyuki Yamada

(Comm. by Y. Komatu)

If there exists a homomorphism of a semigroup S onto a semigroup S^{*}, S is decomposed into the class sum of mutually disjoint subsets $\left\{S_{x^{*}}\right\}_{x^{*} \in S^{*}}$, each of which is a inverse image of some element x^{*} of S^{*}; i.e., $S=\cdot \sum_{k={ }^{*}} S_{x^{*}}$. ($\Sigma \Sigma$ is meant the direct sum of sets) In this case, clearly $\left\{S_{\left.x^{*}\right\}}\right\}_{x^{*} \in S}$ forms a factor algebraic system of S and is isomorphic to S^{*}. We call such a partition of S a decomposition of S to S^{*}, and each $S_{x^{*}}$ a residue class of this decomposition. The decomposition to a semilattice is most important among others; i.e., $S=\cdot \Sigma S_{\alpha}$ where every S_{α} is a semigroup and for any $\$_{\beta}, S_{\gamma}$, there exists a unique S_{δ} such that $S_{\gamma} S_{\beta} \subset S_{\delta}$ and $S_{\beta} S_{\gamma} \subset S_{\delta}$. Henceforward we will call the decomposition of S to a semilattice the semilattice decomposition of S.

Generally there exist many semilattice decompositions of a semigroup, but since it is proved that the collection of all semilattice decompositions of a semigroup forms a complete semilattice, there exists the greatest one.

In this paper, we shall determine the greatest semilattice decomposition of a semigroup. T. Tamura and N. Kimura showed that such the decomposition of a commutative semigroup is determined as the decomposition to the factor algebraic system under a congruence relation (\sim) introduced as follows (1). $a \sim b$ if $a^{n}=b x$ and $b^{m}=a y$ for some positive integers m, x and some elements x, y.

In this paper, the author deals with general case. To abbreviate the terminology, from now on, S denotes a general semigroup and the symbol \exists denotes the word 'exist'. Hence if we describe as $\exists x$; , it means that there exists an element x which satisfies the relation .

\$1 Semilattice decomposition

If we define $a \sim b$ between elements a, b of S to mean that a, b are contained in a same residue class of a semilattice decomposition of S,
then the relation (\sim) is a congruence relation of S which satisfies the following two conditions:
(1) $a^{2} \sim a$ for any $a \in S$
(2) $a b \sim b a$ for any $a, b \in S$.

Moreover this converse also holds good; i.e.,

Lemma 1. If a congruence relation (~) which satisfies two conditions (1), (2) is defined on S, then the factor algebraic system of S under the relation (\sim) forms a semilattice.

Proof. Obvious by the definition of the congruence relation.

We turn our attention to a subsemigroup S^{\prime} of S which has the following property (P) :
(P) For any number of elements $a_{1}, a_{2}, \ldots \ldots, a_{n} \in S$, S' $\ni a_{1} a_{2}$ $\ldots . a_{n}$ implies $\xi_{1} \xi_{2} \ldots$. $\xi_{m} \in S^{\prime}$ for any number of elements $\xi_{1}, \xi_{2}, \ldots \ldots, \xi_{m} \in S$ which satisfy the relation $\left\{\xi_{j}\right\}_{j=1}^{m}=\left\{a_{i}\right\}_{i=1}^{n}$.
We call such a subsemigroup to be a P-subsemigroup of S.

Lemma 2. If S^{\prime} is a P-subsemigroup of S, then
(1) $x y \in S^{\prime}$ implies $y x \in S^{\prime}$ for any
(2) $x^{k} \in S^{\prime}$ implies $x \in S^{\prime}$ for any $x \in S$ and for any positive integer K.

Proof. Since S^{\prime} has the property (P), if we set $m=z, n=z, a_{1}=x$, $a_{2}=y, \xi_{1}=y$ and $\xi_{2}=x$ in the abovementioned property (P) the first part of this Lemma is proved. Similarly if we set $n=K, m=1, a_{i}=x(i=1$, $\ldots, K)$ and $\xi_{1}=x$ the second part follows.

We denote by Ω the collection of all P-subsemigroups of S, and by $S \alpha$, $S_{s}, \cdots .$. etc. elements of Ω, that is, P-subsemigroups of S. We introduce by a subcollection $\dot{\Gamma}$ of Ω the following relation ($\widetilde{\Gamma}$), which is
closely related to one defined by Pierce (2).

If $\left\{(x, y) \mid x a y \in S_{\alpha}\right\}=\left\{(x, y) \mid x b y \in S_{\alpha}\right\}$ for every element $S_{\alpha} \in \Gamma$, then $a \sim b$ in S.

It is easy to see ($\tilde{\Gamma}$) to be an equivalence relation of S.

Lemma 3. ($\tilde{\Gamma}$) is congruence relation, and the factor algebraic system of \bar{S} under ($\widetilde{\Gamma}$) forms a semilattice. Therefore, ($\widetilde{\Gamma}$) gives one of semilattice deconpositions of S.

Proof. We first show that $a \sim b$ implies ac $\tilde{r}^{b c}$ as well as $c a \sim c b^{\Gamma}$ for any $c \in S$. ${ }^{\text {Let }} S_{\alpha}$ be any elefent of I. Then $x a(c y)=x a c y \in S_{,}$implies $x b(c y)=x b c y \in S \alpha$. COnversely, $x b(c y)=x b c y \in P_{\alpha}$ implies $x a(c y)=x a c y$ $\in S_{\alpha}$. Hence $\left\{(x, y) \mid x a c y \in S_{\alpha}\right\}=\{(x, y)$ $\left\{x b c y \in \mathcal{S}_{\alpha}\right\}$ for any $S_{\alpha} \in \Gamma$, and this implies $a c \sim b c$. Similarly $c a \sim c b$ is easy to prove. Next if $a \sim b r$ and $c \widetilde{r}^{d}$ are assumed, then $a c \underset{\widetilde{\sim}}{\widetilde{F}} b c$, $b c^{\Gamma} \approx^{b d}$ follow from the above. Hence ac $\tilde{\Sigma}^{b d}$ by transitivity. This implies ($\frac{\Gamma}{\Gamma}$) to be a congruence relation. Since $\dot{\vec{j} \alpha}$ is a P-subsemigroup of $S, x a^{2} y \in S_{\alpha}$ or $x a b y \in S_{\alpha}$ is equivalent to $x a y \in S_{\alpha}$ or $x b a y \in S_{\alpha}$ respectively. Therefore, $a \sim a^{2}$ and $a b \widetilde{\Gamma} b a$. Accordingly, the remainder of our Lemma follows from Lemma 1.

Lemma 4. Any semilattice decomposition of S is the decomposition to the factor algebraic system of S under a congruence relation ($\widetilde{\Gamma}$) introduced by some subcollection Γ of Ω.

Proof. Let $S=\cdot \sum_{\alpha} D_{\alpha}$ be a semilattice decomposition of S. Since it is not hard to verify that each D_{α} is a P-subsemigroup of $S, I C \Omega$ if we set $\Gamma=\left\{D_{\alpha}\right\}_{\alpha}$. Take up any two elements a, b contained in a same residue class D_{α}. Then since $x a y \in D_{\beta}$ is equivalent to $x b y \in D_{\beta}$ for any $D_{\beta} \in \Gamma$ and any $\dot{x}, y \in S$. Therefore $a \sim \mathscr{b}$ follows from the definition of $\widetilde{\Gamma}$). On the other hand if $a \sim^{b}$, then $a b a \in D_{\alpha}$ and $b a b \in D_{\beta}$ hold good because of $a a a \in D_{\alpha}$ and $b b b \in D_{\beta}$, where D_{α} or D_{β} is a residue c̈lass such that it contains an element a or b respectively. As D_{α} and D_{β} are P_{-} subsemigroups of $S, a b$ and $b a$ are contained in both D_{α} and D_{β}. Hence $a \widetilde{\Gamma}^{b}$ implies $D_{\alpha}=D_{\beta}$, that is, a, b are contained in a same residue class of the decomposition.

Summarizing the above-mentioned results, we obtain the following Theorem
which will play an important part in the next paragraph.

Theorem 1. Any semilattice decomposition of S is the decomposition to the factor algebraic system of S under a congruence relation ($\widetilde{\Gamma}$) introduced by some subcollection Γ of Ω. Conversely, the decomposition to the factor algebraic system of S under a congruence relation (\widetilde{F}) introduced by any subcollection Γ of Ω is a semilattice decomposition of S.

§2 Greatest semilattice decomposition

Let $\varphi ; S=-\sum_{\alpha} S_{\alpha}$ and $\psi ; S=\sum_{\alpha} S_{\alpha^{\prime}}$ be any two semilattice decompósitions of 5 . ife define an ordering $\varphi \geqq \psi$ between 9 and ψ to mean that for any
S_{α} there exists S_{β}, such that S_{α} $\subset S_{\beta^{\prime}}$ 。

Then the collection D of all semilattice decompesitions of S forms not only a partial ordered set but also a completre semilattice (1), and therefore there exists the greatest element, that is, the greatest semilattice decomposition of S. Our first purpose of this paragraph is to show that the greatest semilattice decomposition of S is the decomposition to the factor algebraic system of S under the congruence relation ($\widetilde{\Omega}$), and the second is to obtain a necessary and sufficient condition for each redisue class of the greatest semilattice decomposition to be either a nonpotent semigroup or a unipotent semigroup (3), (4).

Theorem 2. The greatest semilattice decomposition of S is the decomposition to the factor algebraic system of S under the congruence relation ($\widetilde{\Omega}$).

Proof. Let $\varphi ; S=\sum S_{\alpha}$ be the greatest semilattice decomposition of S. Then $\Gamma \subset \Omega$ iff we set $\Gamma=\left\{S_{\alpha}\right\}_{d}$, because each residue class of any semilattice decomposition of S is a P-subsemigroup of S. Hence for any $a, b \in S, a \widetilde{\widetilde{\Omega}}^{b}$ implies $a \widetilde{\Gamma}^{b}$. On the one hand the decomposition to the factor algebraic system under the congruence relation ($\widetilde{\Gamma}$) is the greatest semilattice decomposition of S as is seen in the proof of Lemma 4, and on the other hand, by Lemma 3, the decomposition to the factor algebraic system under the congruence relation ($\widetilde{\Omega}$) is a semilattice decomposition of S. Therefore $(\tilde{\Gamma})=(\widetilde{\Omega})$, i.e., ($\widetilde{\Omega}$) gives the greatest semilattice decomposition of S.

Corollary l. The greatest semilattice decomposition of a commutative semigroup S is the decomposition to the factor algebraic system of S under a congruence relation (\approx) introduced as follows (1).
$a \approx b$ if $a^{n}=b x$ and $b^{n n}=a y$ are satisfied for some positive integers m, n and some elements $x, y \in S$.

Proof. First of all, since S is a conmutative semigroup, a relation $\{(x, y)$ $\left.\mid x a y \in S_{\alpha}\right\}=\left\{(x, y) \mid x b y \in S_{\alpha}\right\}$ is equivalent to a relation $\left\{x \mid x_{a} \in S_{\alpha}\right\}=\left\{x \mid x b \in S_{\alpha}\right\}$ for any $S_{\alpha} \in \Omega$. We first show that $a \widetilde{\Omega}^{b}$ implies $a \approx b$ for any elements $a, b \in S$. By the definition, $a \Omega^{b}$ means $\left\{x \mid x a \in S_{\alpha}\right\}=\left\{x \mid x b \in S_{\alpha}\right\}$ to be ${ }^{\Omega}$ satisfied for any $S_{\alpha} \in \Omega$. If we set $S^{\prime}=\{t \mid \exists$ positive integers m, n, \exists elements $\left.x, y ; a^{m}=t x, t^{n}=a y\right\}$, S^{\prime} is clearly a P-subsemigroup which contain: the element a. Therefore $\left\{x \mid x a \in S^{\prime}\right\}=\left\{x \mid x b \in S^{\prime}\right\}$. Since $a \in S^{\prime}$, the following results follow in order; i.e., $a^{2} \in S^{\prime}, a b \in S^{\prime}, b^{2} \in S^{\prime}$ and consequently $b \in S^{\prime}$.
Therefore, there exist positive integers m, n and elements x, y such that

$$
a^{m}=b x \text { and } b^{x}=a y
$$

Hence $a \approx b$. Next, $a \approx b$ implies $a \widetilde{\Omega}^{b}$ for any elements $a, b \in S$. If $a \approx b$, there exist positive integers m, x and elements x, y such that

$$
a^{m}=b x \quad \text { and } \quad b^{x}=a y
$$

Take up any $S_{\alpha} \in \Omega$. Then if $t a \in S_{\alpha,}$ the following relation are satisfied in order; i.e., $t a^{m n} \in S_{\alpha}, t_{a} y x^{m}$ $\in S_{\alpha}, t a^{m+1} y x^{n} \in S_{\alpha}$, tay ${ }^{\prime} b x^{n+1} \in S_{\alpha}$, $\operatorname{tay}^{a^{m}} \in S_{\alpha,} t b^{n} \in S_{\alpha}$ and consequently $t b \in S_{\alpha}$. Hence ta $\in S_{\alpha}$ implies $t b \in S \alpha$ for any element $t \in S$ Similarly for any $t \in S$, tb $\in S_{\alpha}$ implies ta $\in S_{\alpha}$. Thus a $\tilde{\Omega}^{b}$. Therefore $(\approx)=(\widetilde{\Omega})$. This completes the proof of this corollary.

Theorem 3. In the greatest semilattice decomposition of S, each of residue classes is either a nonpotent semigroup or a unipotent semigroup if and only if, for each pair of mutually different idempotent elements e_{1}, e_{2}, there exists a P-subsemigroup S^{\prime} of S^{\prime} such that either $S^{\prime} \ni e_{1}$ but $S^{\prime} p e_{2}$ or $S^{\prime} \ni e_{2}$ but $S^{\prime} \neq e_{1}$.

Proof. Since necessity of the condition is obvious, we may prove only sufficiency. We assume that there exists a pair of mutually different idempotent elements e_{1}, e_{2} such that $e_{1} \approx e_{2}$. By the hypothesis, there exists a Pasubsemigroup S^{\prime} of S such
that either $S^{\prime} \ni e_{1}$ but $S^{\prime} \neq e_{2}$ or
$S^{\prime} \ni e_{2}$ but $S^{\prime} \neq e_{1}$. Without loss of generality, we may assume $S^{\prime} \ni e_{1}$ but $S^{\prime} \not{ }^{\prime} e_{2}$, Since $e_{1} \tilde{\Omega}^{e_{2}}$ and $e_{1} e_{1} e_{1} \in S^{\prime}$, $e_{1} e_{2} e_{1} \in S^{\prime}$. Hence $\Omega_{e_{1}} e_{2} \in S^{\prime}$ because S^{\prime} is a P -subsemigroup of S . Therefore
$e_{2} e_{1} e_{2} \in S^{\prime}$; hence $e_{2} e_{2} e_{2} \in S^{\prime}$; hence
$e_{2} \in S^{\prime}$. This is contradictory to
$e_{2} \notin S^{\prime}$. Thus, there exist no pairs of mutually different idempotent elements e_{1}, e_{2} such that $e_{1} \tilde{\Omega}_{2}$.

Remark. In the greatest semilattice decomposition of a general semigroup, each of residue classes is not necessarily a nonpotent or unipotent semigroup. This is obtained by a simple example as follows.

Example. Let S be a right singular semigroup (4) consisting of two or more elements. Since S contains no P subsemigroups of S except S own, residue classes of the greatest semilattice decomposition of S are S alone. However, S is neither a nonpotent semigroup nor a unipotent semigroup.

Corollary 2. In the greatest semilattice decomposition of a commutative semigroup, each of residue classes is either a nonpotent semigroup or a unipotent semigroup.

Proof. Let S be a commutative semigroup and e_{1}, e_{2} be two mutually different idempotent elements of S. If we set $S_{1}=\{a \mid \exists x, y \in S, \exists$ positive integer n; $\left.e_{1}=a x, a^{n}=e_{1} y\right\}$, then S_{1} is a P-subsemigroup of S. It is obvious that $e_{1} \in S_{i}$. If e_{2} is also contained in S_{1}, then there exist elements x, y such that $e_{1} x=e_{2}$ and $e_{2} y=e_{1}$ 。 Therefore $e_{1} e_{2}=e_{1} e_{1} x=e_{1} x=e_{2}$ and $e_{2} e_{1}$ $=e_{2} e_{2} y=e_{2} y=e_{1}$, and consequently $e_{1}=e_{20} e_{2}$ Hence $e_{2} \not S_{1}$ 。 By Theorem 3, this completes the proof of this Corollary.

REFERTNCES

(1) T. Tamura and N. Kimura, On decompositions of a commutative semigroup. Kodai. Hath. Sem. Rep. No. 4 (1954).
(2) R. S. Pierce, Homomorphisms of semigroups. Ann. of Math. Vol. 59, No. 2 (1954).
(3) To Tamura, Note on inversible semigroups. Kodai, Liath. Sem。Repe No. 3 (1954). A note on middle
(4) M. Yamada, A note on middl
unitary semigroups. (not yet published)

Shimane University.
(*) Received June 30, 1955 。

Differentialgeometrie, $I_{\text {. }}$ Von P. K. Strubecker. Slg. Goschen Bd. 1113-1113a, 18 Fig. 150 S. 1955 geh. DM 4.80.

This book deals with the elementary differential geometry of curves and surfaces in two and three-euclidean spaces.

The contents of this book which are divided into two parts, may be sketched as follows. The first is the theory of plane curves, and the second that of space curres. The former contains: 51 . Vector calculus in plain. \$2-5. Representations of curves, Tangential formulas, etc. § 6-7. Arc length, and its geometrical meaning. §1l-14. Natural equations of curves, Canonical representation, Osculation of higher orders, Circle of curvature. § 15-16. Evolute, Involute。 § 17-18. Special curves, etc. The latter contains: § 1 . Vector calculus in the plain. \& 2-6. Representations of curves, Arc length, Osculating circles, Principal normal, Binormal. Formulas of Frenet. § 7. Metric classification of space curves by E. Study. § 8-10. Three spheric images of curves and their examples. s $11-13$. Canonical development, Natural equations. etc. §14. Osculation of higher orders, Osculating circle, Sphere, Spherical curves. § 15-16. Families of surfaces, etc. 9 17-18. Various sorts of torsions, etc. §19-20. Evolute surface, Involute surface. § 21. The theory of isotropic space curves.

The book covers the whole field of the elementary differential geometry, the vector notation being adopted throughout. Concise and clear explanations can be found passim. Both relevant remarks and rich examples in the book will help the reader in getting the ideal which the author wants to tell in the book. We may say, at the close of this short comments, the book is very handy for students.
(A. Kuribayasi)

Fünfstellige Tafeln der Kreis- und Hyperbelfunktionen. Neudruck. By Keilchi Hayashi. Walter de Gruyer \& Co. Berlin. 1955. 182 pp. DM 12.00.

This is the "Neudruck" of the table published first in 1921. This interesting and useful table gives five figure values of trigonometric and hyperbolic functions: $\cos x, \sin x$, $\tan x, \cosh x, \sinh x, \tanh x, s i x$ figure values of e^{x} and seven figure values of e^{-x} for

$$
x=0(.0001) 0.1
$$

$x=0.1(.001) 3.0$
$x=3.0(.01) 6.3$

$$
x=6.3(.1) 10.0
$$

and $\quad x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3}{2} \pi, \pi, \frac{5}{4} \pi, \frac{3}{2} \pi$, $\frac{4}{4} \pi, 2 \pi, \frac{9}{4} \pi, \frac{5}{2} \pi, \frac{11}{4} \pi$,

The argument x is measured in radian and its value in degree (noted φ in the table) is also given for each above mentioned value of x to two decimals in second. In six final pages, there are also well chosen lists of formulas relevant to the functions tabulated and a page of "conversion table of radians (x) into degrees (φ) ".

The values of all functions are justaposed in two successive pages, so that the users of this table get the facilities of finding the values of trigonometric, hyperbolic and exponential functions of the same argument x at a time.
(Kazumichi Hayashi, Tokyo Institute of Technology.)

Differential- und Integralrechnung, unter besonderer Berücksichtigung neuerer Ergebnisse. (Göschens Lehrbücherei, I. Gruppe : Reine und angewandte Mathematik Bd. 26.) III. Band: Integralrechnung. Zweite, völlig neubearbeitete Auflage. Von Otto Haupt, Georg Aumann und Christian Y. Pauc. Walter de Gruyter \& Co., Berlin, 1955. xii+319 Seiten. DM 28.00.

The present work is formally the second edition of a book with the same title written by the first two of the authors and published in 1938. However, its contents are, compared with the former edition, so substantially revised throughout that it seems to be quite another new book. Attempting to make the reader familiar with new formulations and methods in the theory of integrals from classical as well as modern view-points, this book takes an intermediate situation. For instance, on the one hand, measures and integrals are dealt with in usual sense while, on the other hand, the theory of linear functionals is developed as an extension of Lebesgue integral.

The titles of contents listed in the following lines will well explain an extensive and profound character of this book:

First part. Contents, measures and their extensions. I. Introduction to the theory of Boolean lattices. II. General theorems on contents and measures. III. Extension of contents and measures.

Second part. Integrals by subdivision and σ-additive functions. Linear functionals. IV. Integral by subdivision belonging to a measure. V. Additive functions with arbitrary sign. VI. Linear continuous functionals. VII. Measures and integrals in product spaces. Multiple integrals.

Third part. Measures and integrals in topological spaces. VIII. Measures and contents adaptive to a topology. Integrals belonging to them.

Fourth part. Primitive functions. Indefinite integral. IX. σ-additive function as a primitive function. X. Additive function as a primitive function.

Fifth part. Some Applications.
XI。 Functions and surfaces of bounded dilatation in E_{n}.

Literature。
(Y. Komatu, Tokyo Institute of Technology.)

