ON THE SINGULARITIES OF THE DIFFERENTIAL EQUATION $\frac{d^2y}{dx^2} + f(x,y)\frac{dy}{dx} + g(x,y) = P(x)$

By Shohei SUGIYAMA

(Comm. by Y. Komatu)

§ 1

1. In this section we shall consider the differential equation

(1)
$$\frac{d^2y}{dx^2} + f(y)\frac{dy}{dx} + g(y) = P(x),$$

where f(y) and g(y) are polynomials of degree n and m respectively, i.e.,

and

$$g(\mathcal{Y}) = \alpha \mathcal{Y}^{m}_{+/3} \mathcal{Y}^{m-1}_{+\cdots} + \mathcal{Y},$$

$$\alpha \neq 0$$

and P(x) is a regular and singlevalued function of x in certain neighborhood D of x^* on the x-plane. If we put dy/dx = z, we have a simultaneous equation

$$\begin{cases} \frac{dy}{dx} = \overline{z} \\ \frac{d\overline{z}}{dx} = P(x) - f(y)\overline{z} - g(y). \end{cases}$$

Since the right hand side of it is regular in certain domain containing (x^*, y^*, z^*) in virtue of the hypotheses, there exists the one and only one regular solution through the point (x^*, y^*, z^*) . If we continue the solution along a curve C, we may encounter a singular point or tend to the point at infinity. Hence the analytic continuation carries out a problem of singularities. In the sequel we shall exclusively consider a problem of isolated singularities which will appear as essential singularities, poles or branch points. And we always exclude the cases where n=0 and m=0 or 1.

We suppose that we can continue a solution y = y(x) of (1) along any curve C up to a point x_0 , but not beyond it. Further we suppose that, if we approach to x_0 along C, y = y(x) tends to ∞ . Then, the point $x = x_0$ is an isolated singularity and it may be a branch point. Then, we make a change of variable $x - x_0 = t^K$ if x_0 is finite and $x = t^{-k}$ if $x_0 = \infty$, where k is a positive integer not equal to zero and t is a local parameter which uniformize the solution in a neighborhood of x_o. Then, it follows from the equation (1) that

$$\frac{d^{2}y}{dt^{2}} + \left(kt^{k-1}f(y) - \frac{k-1}{t}\right)\frac{dy}{dt}$$
(2)
$$+ k^{2}t^{2(k-1)}g(y) = k^{2}t^{2(k-1)}P(z+t^{k})$$

ο.

if
$$\mathbf{x} - \mathbf{x}_0 = \mathbf{t}^K$$
, and

$$\frac{d^2 \mathbf{y}}{dt^2} + \left(\frac{\mathbf{k}+\mathbf{i}}{t} - \frac{\mathbf{k}f(\mathbf{y})}{t^{k+1}}\right) \frac{d\mathbf{y}}{dt}$$
(3)

$$+ \frac{\mathbf{k}^2 f(\mathbf{y})}{t^{2(k+1)}} = \frac{\mathbf{k}^2 P(t^{-k})}{t^{2(k+1)}}$$

if $x = t^{-k}$. According to the hypotheses, the solution of (2) is of the form

$$\mathcal{Y} = \sum_{\nu = -\mathbf{r}}^{\infty} a_{\nu} t^{\nu},$$

Substituting (4) into (2), we obtain

- 23 -

(4)

$$(5) + \frac{(k-1)ra_r}{t^{r+2}} - \frac{kra_r^{n+1}}{t^{nk+r+2-k}} + \cdots + \frac{k^2a_r^m}{t^{mk-2k+2}} + \cdots = k^2t^{2(k-1)}P(x_0+t^k)$$

In order to determine the highest negative power in (5), we put

A = r + 2, B = nr + r + 2 - k, C = nr - 2k + 2.

Then,

$$B - A = nr - k$$
,
 $B - C = (n - m + 1)r + k$.

i) If $n \ge m - 1$, i.e., if B > C, we must have B = A, i.e., k = nr since the right hand side of (5) is regular at t = 0. We shall show that r = 1and k = n if $n \ge m - 1$. In fact, since B > C, we have

$$t\left(\left(\frac{d^2y}{dt^2}-\frac{k-1}{t}\frac{dy}{dt}\right)+kt^{k-1}f(y)\right)+O(1)=0.$$

in the neighborhood of t = 0. Then, the circumstances of the singularity t = 0 are equivalent to the equation

$$t^{c} \left(\frac{d^{2}y}{dt^{2}} - \frac{k-1}{t} \frac{dy}{dt} + kt^{k-1} f(y) \right) = 0.$$

Dividing this equation by $k^2t^{2(k-1)}$ and returning to the original variables, we have

$$\frac{d^2y}{dx^2} + f(y)\frac{dy}{dx} = 0.$$

Integrating this equation and choosing a suitable branch, we obtain a solution

$$\begin{aligned} y &= \sum_{y=-1}^{\infty} a'_{y} (x - x_{0})^{n}, \\ a'_{-1} &= 0, \end{aligned}$$

from which we obtain k = n and r = 1.

If k is not equal to a multiple of n, the following two cases will occur.

ii) B = C > A. By multiplying t^A , we obtain

$$t^{A}\left(kt^{k-1}f(y)\frac{dy}{dt}+k^{2}t^{2(k-1)}g(y)\right)+O(1)=0.$$

Then, returning to the original variables, the above equation is equivalent to

$$\frac{f(y)}{x}\frac{\partial y}{\partial x} + g(y) = 0$$

at $x = x_0$. If m > n + 1, integrating this equation, we have $y = \sum_{\nu=-j}^{\infty} \alpha_{\nu} (x - x_0)^{\frac{2\nu}{m-n-j}}$,

Hence, we obtain k = m - n - 1 and r = 2 if m - n - 1 is odd and k = (m - n - 1)/2 and r = 1 if m - n - 1 is even.

iii) A = C > B. By multiplying t^{B} , we obtain

$$t^{B}\left(\frac{d^{2}y}{dt^{2}}-\frac{k-1}{t}\frac{dy}{dt}+k^{2}t^{2(k-1)}g(y)\right)+O(t)=0$$

Then, returning to the original variables, we obtain

$$\frac{d^2y}{dx^2} + g(y) = 0$$

at $x = x_0$. This equation corresponds to the case n = 0 and a = 0. Integrating this equation we have a solution $\frac{2\nu}{2}$

Hence, we have k = (m - 1)/2 and r = 1if m is odd and k = m - 1 and r = 2 if m is even. Then, we have the following

Theorem 1. We suppose that in the equation (1) f(y) and g(y) are the polynomials of degree n and m respectively and P(x) is a regular and single-valued function in a certain domain D. Further we suppose that we can continue analytically a solution of (1) up to a finite point x_0 along any curve from a point, at which the solution is regular, but not beyond x_0 . If the solution tends to ∞ as we approach to x_0 , there exists a solution of (1) of such a form that

$$\begin{aligned} y &= \sum_{\nu=-i}^{\infty} a_{\nu} (x - x_0)^{\frac{\nu}{n}} \end{aligned}$$

if
$$n \ge m - 1$$
,

ii)
$$y' = \sum_{\nu=-1}^{\infty} q_{\nu} (x - x_0)^{\frac{2\nu}{m-n-1}}$$

if $n \langle m - l_{i}$

Remark: If P(x) is accidentally uniformized by a local parameter t, it is unnecessary that P(x) is regular and single-valued. That is, P(x) may be multiple-valued and may have $x = x_0$ or $x = \infty$ as a pole or branch point. In the following theorems, this remark will remain valid.

2. Now, we consider the case, k = 1, that is, x = x is a pole, but not a branch point. Then, we have

$$B - A = nr - 1$$
,
 $B - C = (n - m + 1)r + 1$.

By the same reason as above, we have the following

Theorem 2. In order that x_0 is not a branch point, but a pole, it is necessary and sufficient that

i)
$$\begin{cases} n \ge 2 \\ m = n + 2 \end{cases}$$

ii)
$$\begin{cases} n = 1 \\ m = 0, 1, 2, 3, 4 \end{cases}$$

iii)
$$\begin{cases} n = 0 \\ m = 2, 3 \end{cases}$$

§ 2

In this section we consider the equation

(6)
$$\frac{d^2y}{dx^2} + \frac{f(y)}{x}\frac{dy}{dx} + g(y) = P(x)$$

and

(7)
$$\frac{d^2y}{dx^2} + \frac{f(y)}{x}\frac{dy}{dx} + \frac{g(y)}{x^2} = P(x)$$

We suppose that the hypotheses in § 1 concerning f(y), g(y) and P(x) are satisfied. Then, there exists a solution regular and single-valued in certain neighborhood of x = 0 with an exception of x = 0.

1. At the outset, we suppose that x = 0 is not a branch point, but a pole of the solution. Then, the solution is of the form

(8)
$$\begin{aligned} \mathcal{Y} &= \sum_{\gamma = -r}^{\infty} a_{\gamma} x^{\gamma}, \\ a_{r} \neq o, \quad r \geq 1. \end{aligned}$$

Substituting (8) into (6), we obtain $\frac{Y(Y+1) A_Y}{\chi^{Y+2}} + \cdots$ $- \frac{TA A_Y^{n+1}}{\chi^{nr+1+2}} + \cdots$ $+ \frac{A A_Y^m}{\chi^{mr}} + \cdots = P(\chi).$

As in §1, we put

$$A = r + 2$$
, $B = nr + r + 2$,

C = mr.

Then, we have

We distinguish two cases:

i) B - A = 0. Then, we have n = 0since $r \ge 1$. It follows from $B - C \ge 0$ that $2 + (1 - m)r \ge 0$, i.e., (m - 1)r ≤ 2 . Hence we have

$$\begin{cases} m=2 \\ r=1 \end{cases}, \begin{cases} m=2 \\ r=2 \end{cases}, \begin{cases} m=3 \\ r=1 \end{cases}$$

ii) B - A > 0. Then, $n \ge 1$, $r \ge 1$ and B - C = 0, i.e., (m - n - 1)r = 2. Then, it is necessary that m - n - 1> 0 in order that x = 0 is a pole. Since $r \ge 1$, we obtain

$$\begin{cases} m=n+2 \\ r=2 \end{cases}, \qquad \qquad m=n+3 \\ r=1 \end{cases}.$$

iii) If n > 0, n = m - 1 and r is finite, we have n = 0, which is a contradiction. Hence, $r = \infty$ if n > 0and n = m - 1, that is, x = 0 is an essential singularity.

Theorem 3. In order that in the equation (6) x = 0 is not a branch point, but a pole, it is necessary and sufficient that

i)
$$\begin{cases} n=0 \\ m=2 \\ m=2 \end{cases}$$
, $\begin{cases} n=0 \\ m=2 \\ m=3 \\ m=3 \end{cases}$.

ii)
$$\begin{cases} n > 0 \\ m = n + 2 \end{cases}, \begin{cases} n > 0 \\ m = n + 3 \end{cases}.$$

Corollary 1. If n > 0 and n = m - 1, x = 0 is an essential singularity.

Corollary 2. If n > 0 and n > m - 1, x = 0 is a regular point.

2. We suppose that x = 0 is a branch point. If we make a change of variable $x = t^k$, where k is a positive integer and t is a local parameter which uniformize the solution of (6), the equation (6) leads to

$$\frac{d^{2}y}{dt^{2}} + \frac{kf(y) - k + 1}{t} \frac{dy}{dt}$$
(9)
$$+ k^{2} t^{2(k-1)} g(y) = k^{2} t^{2(k-1)} P(t^{k})$$

The solution are supposed to be of the form $\mathcal{Y} = \sum_{\gamma_{x=y}}^{\infty} a_{y} t^{\gamma}$

.

Substituting it into (9), we obtain

$$\frac{\chi(t+1)\,u_{-r}}{t^{r+2}} + \cdots$$

$$-\frac{(k-1)\,u_{-r}}{t^{r+2}} + \frac{k\,u\,u_{-r}}{t^{nr+r+2}} + \cdots$$

$$+\frac{k^2\,u\,u_{-r}}{t^{mr-2k+2}} + \cdots = k^2 t^{2(k-1)} P(t^k).$$

As in $\xi 1$, we put

A = r + 2, B = nr + r + 2, C = mr - 2k + 2.

Then,

B - A = nr,
B - C =
$$(n - m + 1)r + 2k$$
.

i) B - A > 0, i.e., $n \ge 1$. Then, we have B - C = 0,

$$2k = (m - n - 1)r.$$

Since $k \ge 1$, we obtain m > n + 1. We shall show that r = 1 or 2. In fact, multiplying t^A , we obtain

$$t^{A}\left(\frac{kf(y)}{t}\frac{dy}{dt}+k^{2}t^{2(k-1)}g(y)\right)+O(t)=0.$$

Then, the circumstances of the singularity t = 0 are equivalent to the equation

$$t^{A/\frac{k}{t}\frac{f(y)}{dt}\frac{dy}{dt}} + k^{2}t^{2(k-1)}g(y) = 0.$$

Returning to the original variables, we obtain

$$\frac{f(y)}{x}\frac{dy}{dx} + g(y) = 0.$$

Integrating this equation, there exists a solution such that

$$\begin{aligned} & \mathcal{Y} = \sum_{\nu=-1}^{\infty} a_{\nu}' x^{\frac{2\nu}{m-n-1}} \\ & a_{\nu}' \neq 0 . \end{aligned}$$

Hence, we obtain k = (m - n - 1)/2 and r = 1 if m - n - 1 is even and k = m- n - 1 and r = 2 if m - n - 1 is odd.

If $n \ge 1$ and $m \le n + 1$, then there exists no solutions having the point x = 0 as a pole or branch point.

ii) B - A = 0, i.e., n = 0. Then, $B \ge C$. If $f(y) \equiv a \neq 0$, we consider the equation

$$\frac{d^2y}{dx^2} + \frac{a}{x}\frac{dy}{dx} + g(y) = P(x).$$

- 26 -

This equation may have a logarithmic branch point at x = 0 if we choose a suitable a.

If a = 0, i.e., if $f(y) \equiv 0$, we consider the equation

$$\frac{d^2y}{dx^2} + g(y) = P(x)$$

Then, there exists a solution of such a form that

$$a_{j}^{u} = \sum_{\nu=-1}^{\infty} a_{\nu}^{\prime} x^{\frac{2\nu}{m-1}},$$

 $a_{j}^{\prime} \neq 0.$

Hence, we have k = (m - 1)/2 and r = 1if m is odd and k = m - 1 and r = 2 if m is even.

Theorem 4. In order that in the equation (6) x = 0 is a branch point, it is necessary and sufficient that m > n + 1. Then, there exists a solution of such a form that

$$\begin{aligned} \mathcal{Y} &= \sum_{Y=-j}^{\infty} a_Y x^{\frac{2Y}{m-n-j}} \\ a_{-j} \neq 0. \end{aligned}$$

if n > 0.

If n = 0 and $f(y) \neq 0$, x = 0 may be a logarithmic branch point.

If n = 0 and $f(y) \equiv 0$, there exists a solution of such a form that

$$\mathcal{J} = \sum_{\nu_{r-1}}^{\infty} a_{\nu} x^{\frac{2\nu}{m-1}},$$
$$a_{-1} \neq 0.$$

Corollary 1. If n > 0 and n = m - 1, x = 0 is an essential singularity.

Corollary 2. If n > 0 and n > m - 1, t = o is a regular point.

3. We consider the equation (7). If we make a change of variable x = exp t, we have

(10)
$$\frac{d^2y}{dt^2} + (f(y)-1)\frac{dy}{dt} + g(y) = e^{2t} P(e^t).$$

Hence, we can apply the same method in §1 to the equation (10) and obtain

the analogous results. If we return to the original equation (6), there exists a logarithmic branch point.

§ 3

In this section we shall consider the properties at the point at infinity.

1. Since the point at infinity $x = \infty$ corresponds to the point t = 0 by $x = t^{-k}$, the properties of $x = \infty$ are reduced to those of t = 0. We consider the equation

(11)
$$\frac{d^2y}{dx^2} + f(y)\frac{dy}{dx} + g(y) = 0$$

By making use of a change of variable $x = t^{-k}$, we have

(12)
$$\frac{d^2y}{dt^2} + \left(\frac{k+i}{t} - \frac{k}{t}\frac{f(y)}{t}\right)\frac{dy}{dt} + \frac{k^2}{t^{2(k+1)}} = 0.$$

We suppose that we can analytically continue a solution from a regular point along any curve C up to t = 0, but not beyond it, and if we approach to t = 0 along C the solution tends to ∞ . Then, t = 0 will be a pole. We suppose the solution is of such a form that

$$\mathcal{Y} = \sum_{\nu=-r}^{\infty} a_{\nu} t^{\nu},$$

$$a_{r\neq 0}, r \ge 1.$$

Substituting (13) into (12), we obtain

$$\frac{\Gamma(1+2) a_{-r}}{t^{r+2}} + \cdots$$

$$- \frac{\Gamma(k+1) a_{-r}}{t^{r+2}} + \frac{\Gamma k a_{-r}}{t^{nr+r+2+k}} + \cdots$$

$$+ \frac{\alpha k^2 a_{-r}^m}{t^{mr+2k+2}} + \cdots = 0$$

As in § 1, we put

$$A = r + 2$$
, $B = nr + r + 2 + k$,
 $C = mr + 2k + 2$.

Then,

(13)

- 27 -

$$B - A = nr + k$$
,
 $B - C = (n - m + 1)r - k$.

Since $k \ge 1$, we have B - C = 0, i.e., k = (n - m + 1)r, which show that n > m- 1 is necessary in order that t = 0 is to be a pole. By multiplying t^A , we obtain

$$t^{A\left(-\frac{k+(y)}{t^{k+1}}\frac{dy}{dt}+\frac{k^{2}g(y)}{t^{2(k+1)}}\right)}+O(1)=0.$$

Hence, the circumstances at t = 0 is equivalent to the equation

$$t^{A}\left(-\frac{kf(y)}{t^{k+1}}\frac{dy}{dt}+\frac{k^{2}g(y)}{t^{2(k+1)}}\right)=0$$

Returning to the original variables, we obtain

$$f(y)\frac{dy}{dt} + g(y) = 0$$

Integrating this equation, we have the solution of the form

$$\mathcal{J} = \sum_{\gamma=-\infty}^{1} a_{\gamma}' x^{\overline{n-m+1}},$$
$$a_{1}' \neq 0.$$

which shows k = n - m + 1 and r = 1. Hence, if t = 0 is not a branch point, but a pole, it is necessary and sufficient that n = m.

Theorem 5. We suppose that in the equation (10) the hypotheses in § 1 concerning f(y) and g(y) are satisfied. Further we suppose that we can analytically continue a solution along any curve C up to $x = \infty$ and the solution tends to ∞ if we approach to $x = \infty$ along C. Then, it is necessary and sufficient $n \ge m - 1$ in order that $x = \infty$ is not an essential singularity, but a pole or branch point.

If n > m - 1, there exists a solution of such a form that

$$\mathcal{Y} = \sum_{\gamma = -\infty}^{l} a_{\gamma} x^{\frac{\gamma}{n-m+l}},$$
$$a_{l} \neq 0.$$

Corollary 1. If $x = \infty$ is not a branch point, but a pole, it is necessary and sufficient that n = m.

Corollary 2. If n = m - 1, there exists a solution having $x = \infty$ as an essential singularity.

Corollary 3. If $n \leq m-1$, t=0 is a regular point.

2. Now, we consider the equation

(14)
$$\frac{d^2y}{dx^2} + \frac{f(y)}{x}\frac{dy}{dx} + g(y) = 0$$

By making use of a change of variable $x = t^{-K}$, we have

(15)
$$\frac{d^2y}{dt^2} + \frac{k+l-kf(y)}{t}\frac{dy}{dt} + \frac{k^2g(y)}{t^{2(k+l)}} = 0$$

If a solution is of such a form that

$$\mathcal{Y} = \sum_{\nu=-r}^{\infty} a_{\nu} t^{\nu},$$

$$a_{r} \neq 0, \quad r \ge 1,$$

we substitute it into (15) and obtain, as in δl ,

$$\frac{Y(x+1)a_{x}}{t^{x+2}} + \cdots \\ -\frac{x(x+1)a_{-x}}{t^{x+2}} - \frac{a_{rk}a_{-r}^{n+1}}{t^{nr+k+2}} + \cdots \\ + \frac{a_{k}a_{-r}^{2}a_{-r}^{m}}{t^{nr+2k+2}} + \cdots = 0.$$

As in § 1, we put

$$A = r + 2$$
, $B = nr + r + 2$,
 $C = mr + 2k + 2$.

Then,

 $B - A = nr_{,}$ B - C = (n - m + 1)r - 2k.

i) B - A > 0, i.e., $n \ge 1$, $r \ge 1$. Then, (n - m + 1)r = 2k. Hence it necessary that n > m - 1 since k > 0. By multiplying t^A , we have

$$t^{A\left(\frac{-k^{-}(y)}{t}\frac{dy}{dt}+\frac{k^{2}g(y)}{t^{2(k+1)}}\right)}+O(1)=0.$$

Returning to the original variables, the circumstances at $x = \infty$ is equivalent to

- 28 -

$$\frac{f(y)}{x}\frac{dy}{dx}+g(y)=0.$$

Integrating this equation, we obtain

$$\mathcal{Y} = \sum_{y=-\infty}^{I} a_{y}' x^{\frac{z}{n-m+1}},$$
$$a_{i}' \neq 0.$$

Hence, we have k = (n - m + 1)/2 and r = 1 if n - m + 1 is even, and k = n- m + 1 and r = 2 if n - m + 1 is odd.

ii) B - A = 0, i.e., n = 0 and $r \ge 1$. Then, $B \ge C$, i.e., $2k \le (1 - m)^{\chi}$ r. Since $k \ge 1$ and $r \ge 1$, we obtain m = 0, the case which we exclude.

Theorem 6. We suppose that the hypotheses in Theorem 5 are satisfied. Then, it is necessary and sufficient that n > m - 1. Then, there exists a solution of such a form that_...

$$Y = \sum_{\nu=-\infty}^{f} a_{\nu} \chi^{\frac{2\nu}{n-m+1}},$$

 $a_1 \neq 0.$

Corollary 1. If n = m - 1, x = 00 is an essential singularity.

Corollary 2. If $n \leq m - 1$, t=0 is a regular point.

3. We consider the case k = 1, that is, $x = \infty$ is not a branch point, but a pole. Then,

i)
$$n > 0$$
, $(n - m + 1)r = 2$.

Since r is a positive integer larger than 0, we have

$$\begin{cases} n=m \\ r=2, \end{cases} \begin{cases} n=m+1 \\ r=1 \end{cases}$$

ii)
$$n = 0$$
, i.e., $(m - 1)r \le 2$.

Then, we obtain

$$\begin{cases} m = 2 \\ r = 1, \\ r = 2, \\ r = 1, \\$$

Theorem 7. In order that $x = \infty$ is not a branch point, but a pole, it is necessary and sufficient that the following relations hold goods:

i)
$$\begin{cases} n > 0 \\ n = m \end{cases}$$
, $\begin{cases} n > 0 \\ n = m + 1 \end{cases}$
ii) $\begin{cases} n = 0 \\ m = 2 \end{cases}$, $\begin{cases} n = 0 \\ m = 2 \end{cases}$, $\begin{cases} n = 0 \\ m = 3 \end{cases}$.

Corollary 1. If n = m - 1, $x = \infty$ is an essential singularity.

Corollary 2. If $n \leq m - 1$, t=0 is a regular point.

Department of Mathematics, Waseda University.

(*) Received December 13, 1954.