ON THE SINGULARITIES OF THE DIFFERENTIAL EQUATION

$$
\frac{d^{2} y}{d x^{2}}+f(x, y) \frac{d y}{d x}+g(x, y)=P(x)
$$

By Shohei SUGIYAMA
(Comm. by Y. Komatu)

§ 1

1. In this section we shall consider the differential equation
(1) $\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}+g(y)=P(x)$,
where $f(y)$ and $g(y)$ are polynomials of degree n and m respectively, i.e.,

$$
\begin{gathered}
f(y)=a y^{n}+2 y^{n-1}+\cdots+c, \\
a \neq 0
\end{gathered}
$$

and

$$
\begin{gathered}
g(y)=\alpha y^{m}+\beta y^{m-1}+\cdots+\gamma, \\
\alpha \neq 0
\end{gathered}
$$

and $P(x)$ is a regular and singlevalued function of x in certain neighborhood D of x^{*} on the $x-$ plane. If we put $d y / d x=z$, we have a simultaneous equation

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=z \\
\frac{d z}{d x}=P(x)-f(y) z-g(y)
\end{array}\right.
$$

Since the right hand side of it is regular in certain domain containing (x^{*}, y^{*}, z^{*}) in virtue of the hypotheses, there exists the one and only one regular solution through the point (x^{*}, y^{*}, z^{*}). If we continue the so lution along a curve C, we may encounter a singular point or tend to the point at infinity. Hence the analytic continuation carries out a problem of singularities. In the sequel we shall exclusively consider a problem of isolated singularities which will appear as essential singu-
larities, poles or branch points. And we always exclude the cases where $n=0$ and $m=0$ or 1 .

We suppose that we can continue a solution $y=y(x)$ of (1) along any curve C up to a point x_{O}, but not beyond it. Further we suppose that, if we approach to x_{0} along $C, y=y(x)$ tends to ∞. Then, the point $x=x_{0}$ is an isolated singularity and it may be a branch point. Then, we make a change of variable $x-x_{0}=t^{k}$ if x_{0} is finite and $x=t^{-k}$ if $x_{0}=\infty$, where k is a positive integer not equal to zero and t is a local parameter which uniformize the solution in a neighborhood of x_{0}. Then, it follows from the equation (1) that

$$
\begin{align*}
& \frac{d^{2} y}{d t^{2}}+\left(k t^{k-1} f(y)-\frac{k-1}{t}\right) \frac{d y}{d t} \\
& +k^{2} t^{2(k-1)} g(y)=k^{2} t^{2(k-1)} P\left(x_{0}+t^{k}\right) \tag{2}
\end{align*}
$$

if $x-x_{0}=t^{k}$, and

$$
\frac{d^{2} y}{d t^{2}}+\left(\frac{k+1}{t}-\frac{k f(y)}{t^{k+1}}\right) \frac{d y}{d t}
$$

$$
\begin{equation*}
+\frac{\frac{k}{2}^{2} g(y)}{t^{2(k+1)}}=\frac{k^{2} P\left(t^{-k}\right)}{t^{2(k+1)}} \tag{3}
\end{equation*}
$$

if $x=t^{-k}$. According to the hypo theses, the solution of (2) is of the form

$$
\begin{equation*}
y=\sum_{\nu=-r}^{\infty} a_{\nu} t^{\nu} \tag{4}
\end{equation*}
$$

$$
a_{-r} \neq 0, \quad r \geqq 1
$$

Substituting (4) into (2), we obtain

$$
\frac{r(r+1) a_{r}}{t^{r^{2}}}+\cdots
$$

(5)

$$
\begin{aligned}
& +\frac{(k-1) r a_{-r}}{t^{r+2}}-\frac{k r a_{r}^{n+1}}{t^{n r+r+2-k}}+\cdots \\
& +\frac{k^{2} a_{r r}^{m}}{t^{m r-2 k+2}}+\cdots=k^{2} t^{2(k-1)} P\left(x_{0}+t^{k}\right) .
\end{aligned}
$$

In order to determine the highest negative power in (5), we put

$$
\begin{aligned}
& A=r+2, \quad B=n r+r+2-k, \\
& C=m r-2 k+2
\end{aligned}
$$

Then,

$$
\begin{aligned}
& B-A=n r-k \\
& B-C=(n-m+1) r+k
\end{aligned}
$$

i) If $n \geqq m-1$, i.e., if $B>C$, we must have $B=A$, i.e., $k=n r$ since the right hand side of (5) is regular at $t=0$. We shall show that $r=1$ and $k=n$ if $n \geqq m-1$. In fact, since $B>C$, we have

$$
t \cdot\left(\left(\frac{d^{2} y}{d t^{2}}-\frac{k-1}{t} \frac{d y}{d t}\right)+k t^{k-1} f(y)\right)+O(1)=0
$$

in the neighborhood of $t=0$. Then, the circumstances of the singularity $t=0$ are equivalent to the equation

$$
t^{c}\left(\frac{d^{2} y}{d t^{2}}-\frac{k-1}{t} \frac{d y}{d t}+k t^{k-1} f(y)\right)=0 .
$$

Dividing this equation by $\mathrm{k}^{2} \mathrm{t}^{2(\mathrm{k}-1)}$ and returning to the original variables, we have

$$
\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}=0
$$

Integrating this equation and choosing a suitable branch, we obtain a solution

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu}^{\prime}\left(x-x_{0}\right)^{\frac{\nu}{n}} \\
a_{-1}^{\prime} \neq 0
\end{gathered}
$$

from which we obtain $k=n$ and $r=1$.
If k is not equal to a multiple of n, the following two cases will occur.
ii) $\mathrm{B}=\mathrm{C}>\mathrm{A}$. By multiplying t^{A}, we obtain

$$
t^{A}\left(k t^{k-1} f(y) \frac{d y}{d t}+k^{2} t^{2(k-1)} g(y)\right)+O(1)=0 .
$$

Then, returning to the original variables, the above equation is equivalent to

$$
\frac{f(y)}{x} \frac{d y}{d x}+g(y)=0
$$

at $x=x_{0}$. If $m>n+1$, integrating this equation, we have

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu}^{\prime}\left(x-x_{0}\right)^{\frac{2 v}{m-n-1}} \\
a_{-1}^{\prime} \neq 0
\end{gathered}
$$

Hence, we obtain $k=m-n-1$ and $r=2$ if $m-n-1$ is odd and $k=$ (m $-n-1) / 2$ and $r=1$ if $m-n-1$ is even.
iii) $A=C>B$. By multiplying t^{B}, we obtain

$$
t^{B}\left(\frac{d^{2} y}{d t^{2}}-\frac{k-1}{t} \frac{d y}{d t}+k^{2} t^{2(k-1)} g(y)\right)+O(l)=0 .
$$

Then, returning to the original variables, we obtain

$$
\frac{d^{2} y}{d x^{2}}+g(y)=0
$$

at $x=x_{0}$. This equation corresponds to the case $n=0$ and $a=0$. Integrating this equation we have a solution

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu}^{\prime}\left(x-x_{0}\right)^{\frac{2 \nu}{m-1}}, \\
a_{1}^{\prime} \neq 0
\end{gathered}
$$

Hence, we have $k=(m-1) / 2$ and $r=1$ if m is odd and $k=m-1$ and $r=2$ if m is even. Then, we have the following

Theorem 1. We suppose that in the equation (I) $f(y)$ and $g(y)$ are the polynomials of degree n and m respectively and $P(x)$ is a regular and single-valued function in a certain domain D. Further we suppose that we can continue analytically a solution of (1) up to a finite point x_{0} along any curve from a point, at which the solution is regular, but not beyond x_{0}. If the solution tends to ∞ as we approach to x_{0}, there exists a solution of (1) of such a form that
i)

$$
y=\sum_{\nu=-1}^{\infty} a_{\nu}\left(x-x_{0}\right)^{\frac{\nu}{n}}
$$

if $n \geq m-1$,
ii)

$$
y=\sum_{\nu=-1}^{\infty} a_{\nu}\left(x-x_{0}\right)^{\frac{2 \nu}{m-n-1}}
$$

if $n<m-1$.
Remark: If $P(x)$ is accidentally uniformized by a local parameter t, it is unnecessary that $P(x)$ is regular and single-valued. That is, $P(x)$ may be multiple-valued and may have $x=x_{0}$ or $x=\infty$ as a pole or branch point. In the following theorems, this remark will remain valid.
2. Now, we consider the case, $k=1$, that is, $x=x_{o}$ is a pole, but not a branch point. Then, we have

$$
\begin{aligned}
& B-A=n r-1 \\
& B-C=(n-m+1) r+1
\end{aligned}
$$

By the same reason as above, we have the following

Theorem 2. In order that x_{0} is not a branch point, but a pole, it is necessary and sufficient that
i) $\left\{\begin{array}{l}n \geqq 2 \\ m=n+2\end{array}\right.$
ii) $\left\{\begin{array}{l}n=1 \\ m=0,1,2,3,4\end{array}\right.$
iii) $\left\{\begin{array}{l}n=0 \\ m=2,3\end{array}\right.$

§ 2

In this section we consider the equation
(6) $\frac{d^{2} y}{d x^{2}}+\frac{f(y)}{x} \frac{d y}{d x}+g(y)=P(x)$
and
(7) $\frac{d^{2} y}{d x^{2}}+\frac{f(y)}{x} \frac{d y}{d x}+\frac{g(y)}{x^{2}}=P(x)$.

We suppose that the hypotheses in § 1 concerning $f(y), g(y)$ and $P(x)$ are satisfied. Then, there exists a solution regular and single-valued in certain neighborhood of $x=0$ with an exception of $x=0$.

1. At the outset, we suppose that $x=0$ is not a branch point, but a pole of the solution. Then, the som lution is of the form

$$
\begin{align*}
& y=\sum_{\nu=-r}^{\infty} a_{\nu} x^{\nu} \tag{8}\\
& a_{-r} \neq 0, \quad r \geqq 1 .
\end{align*}
$$

Substituting (8) into (6), we obtain

$$
\begin{aligned}
& \frac{r(r+1) a_{r}}{x^{r+2}}+\cdots \\
- & \frac{r a a_{r}^{n+1}}{x^{n r+r+2}}+\cdots \\
+ & \frac{\alpha a_{r}^{m}}{x^{m r}}+\cdots=P(x)
\end{aligned}
$$

As in $\S 1$, we put

$$
\begin{aligned}
& A=r+2, \quad B=n r+r+2 \\
& C=m r
\end{aligned}
$$

Then, we have
$B-A=n r$,

$$
B-C=2+(n+1-m) r
$$

We distinguish two cases:
i) $B-A=0$. Then, we have $n=0$ since $r \geqq 1$. It follows from $B-C \geqq 0$ that $2+(1-m) r \geqq 0$, i.e., $(m-1) r$ §2。
Hence we have

$$
\left\{\begin{array}{l}
m=2 \\
r=1
\end{array},\left\{\begin{array}{l}
m=2 \\
r=2
\end{array},\left\{\begin{array}{l}
m=3 \\
r=1
\end{array}\right.\right.\right.
$$

ii) $B-A>0$. Then, $n \geqq 1, r \geqq 1$ and $B-C=0$, i.e., $(m-n-1)_{r}=2$ 。 Then, it is necessary that $m-n=1$ >0 in order that $x=0$ is a pole. Since $r \geq 1$, we obtain

$$
\left\{\begin{array}{l}
m=n+2 \\
r=2
\end{array},\left\{\begin{array}{l}
m=n+3 \\
r=1
\end{array}\right.\right.
$$

iii) If $n>0, n=m-1$ and r is finite, we have $n=0$, which is a contradiction. Hence, $r=\infty$ if $n>0$ and $n=m-1$, that is, $x=0$ is an essential singularity.

Theorem 3. In order that in the equation (6) $x=0$ is not a branch point, but a pole, it is necessary and sufficient that
i) $\left\{\begin{array}{l}n=0 \\ m=2,\end{array}\left\{\begin{array}{l}n=0 \\ m=2\end{array},\left\{\begin{array}{l}n=0 \\ m=3 .\end{array}\right.\right.\right.$
ii) $\left\{\begin{array}{l}n>0 \\ m=n+2\end{array},\left\{\begin{array}{l}n>0 \\ m=n+3 .\end{array}\right.\right.$

Corollary 1. If $n>0$ and $n=m-1$, $x=0$ is an essential singularity.

Corollary 2. If $n>0$ and $n>m-1$, $x=0$ is a regular point.
2. We suppose that $x=0$ is a branch point. If we make a change of variable $x=t^{k}$, where k is a positive integer and t is a local parameter which uniformize the solution of (6), the equation (6) leads to

$$
\begin{align*}
& \frac{d^{2} y}{d t^{2}}+\frac{k f(y)-k+1}{t} \frac{d y}{d t} \tag{9}\\
& +k^{2} t^{2(k-1)} g(y)=k^{2} t^{2(k-1)} P\left(t^{k}\right)
\end{align*}
$$

The solution are supposed to be of the

$$
\begin{aligned}
y & =\sum_{\nu=-r}^{\infty} a_{\nu} t^{\nu} \\
& a_{-r} \neq 0, \quad r \leq 1 .
\end{aligned}
$$

Substituting it into (9), we obtain

$$
\begin{aligned}
& \quad \frac{r(r+1) a_{-x}}{t^{r+2}}+\cdots \\
& -\frac{(k-1) a_{-r}}{t^{x+2}}+\frac{k a a_{-r}^{n+1}}{t^{n x+r+2}}+\cdots \\
& +\frac{k^{2} \alpha a_{-r}^{m}}{t^{m r-2 k+2}}+\cdots=k^{2} t^{2(k-1)} P\left(t^{k}\right) .
\end{aligned}
$$

As in $\oint 1$, we put

$$
\begin{aligned}
& A=r+2, \quad B=n r+r+2, \\
& C=m r-2 k+2 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& B-A=n r, \\
& B-C=(n-m+1) r+2 k .
\end{aligned}
$$

i) $B-A>0$, i.e., $n \geqq 1$. Then, we have $B-C=0$,

$$
2 k=(m-n-1) r
$$

Since $k \geq 1$, we obtain $m>n+1$. We shall show that $r=1$ or 2 . In fact, multiplying t^{A}, we obtain

$$
t^{A}\left(\frac{k f(y)}{t} \frac{d y}{d t}+k^{2} t^{2(k-1)} g(y)\right)+O(1)=0
$$

Then, the circumstances of the singularity $t=0$ are equivalent to the equation

$$
t^{A}\left(\frac{k f(y)}{t} \frac{d y}{d t}+k^{2} t^{2(k-1)} g(y)\right)=0 .
$$

Returning to the original variables, we obtain

$$
\frac{f(y)}{x} \frac{d y}{d x}+g(y)=0
$$

Integrating this equation, there exists a solution such that

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu}^{\prime} x^{\frac{2 \nu}{m-n-1}} \\
a_{\lambda}^{\prime} \neq 0 .
\end{gathered}
$$

Hence, we obtain $k=(m-n-1) / 2$ and $r=1$ if $m-n-1$ is even and $k=m$ $-n-1$ and $r=2$ if $m-n-1$ is odd.

If $n \geqq 1$ and $m \leqq n+1$, then there exists no solutions having the point $x=0$ as a pole or branch point.
ii) $B-A=0$, i.e., $n=0$. Then, $B \geqq C$. If $f(y) \equiv a \neq 0$, we consider the equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+g(y)=P(x) .
$$

This equation may have a logarithmic branch point at $x=0$ if we choose a suitable a.

If $a=0$, i.e., if $f(y) \equiv 0$, we consider the equation

$$
\frac{d^{2} y}{d x^{2}}+g(y)=P(x)
$$

Then, there exists a solution of such a form that

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu}^{\prime} x^{\frac{2 \nu}{m-1}} \\
a_{-1}^{\prime} \neq 0
\end{gathered}
$$

Hence, we have $k=(m-1) / 2$ and $r=1$ if m is odd and $k=m-1$ and $r=2$ if m is even.

Theorem 4. In order that in the equation (6) $x=0$ is a branch point, it is necessary and sufficient that $m>n+1$. Then, there exists a som lution of such a form that

$$
\begin{aligned}
y= & \sum_{v=-1}^{\infty} a_{v} x^{\frac{2 v}{m-n-1}} \\
& a_{-1} \neq 0
\end{aligned}
$$

if $n>0$.
If $n=0$ and $f(y) \neq 0, x=0$ may be a logarithmic branch point.

If $n=0$ and $f(y) \equiv 0$, there exists a solution of such a form that

$$
\begin{gathered}
y=\sum_{\nu=-1}^{\infty} a_{\nu} x^{\frac{2 \nu}{m-1}} \\
a_{-1} \neq 0
\end{gathered}
$$

Corollary 1. If $n>0$ and $n=m-1$, $x=0$ is an essential singularity.

Corollary 2. If $n>0$ and $n>m-1$, $t=0$ is a regular point.
3. We consider the equation (7). If we make a change of variable $x=$ exp t, we have
(10) $\frac{d^{2} y}{d t^{2}}+(f(y)-1) \frac{d y}{d t}+g(y)=e^{2 t} P\left(e^{t}\right)$.

Hence, we can apply the same method in $\S 1$ to the equation (10) and obtain
the analogous results. If we return to the original equation (6), there exists a logarithmic branch point.

§ 3

In this section we shall consider the properties at the point at infinity.

1. Since the point at infinity x $=\infty$ corresponds to the point $t=0$ by $x=t^{-k}$, the properties of $x=\infty$ are reduced to those of $t=0$. We consider the equation
(11) $\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}+g(y)=0$.

By making use of a change of variable $x=t^{-k}$, we have

$$
\begin{align*}
& \frac{d^{2} y}{d t^{2}}+\left(\frac{k+1}{t}-\frac{k f(y)}{t^{k+1}}\right) \frac{d y}{d t} \tag{12}\\
& +\frac{k^{2} g(y)}{t^{2(k+1)}}=0
\end{align*}
$$

We suppose that we can analytically continue a solution from a regular point along any curve C up to $t=0$, but not beyond it, and if we approach to $t=0$ along C the solution tends to ∞. Then, $t=0$ will be a pole. We suppose the solution is of such a form that

$$
\begin{align*}
& y=\sum_{\nu=-r}^{\infty} a_{-y} t^{\nu} \tag{13}\\
& a_{r} \neq 0, \quad r \geqq 1 .
\end{align*}
$$

Substituting (13) into (12), we obtain

$$
\begin{aligned}
& \frac{r(r+2) a_{-r}}{t^{r+2}}+\cdots \\
& -\frac{r(k+1) a_{r}}{t^{r+2}}+\frac{r k a a_{-r}^{n+1}}{t^{n r+x+2+k}}+\cdots \\
& +\frac{\alpha k^{2} a_{-r}^{m}}{t^{m x+2 k+2}}+\cdots=0
\end{aligned}
$$

As in $\oint 1$, we put

$$
\begin{aligned}
& A=r+2, \quad B=n r+r+2+k \\
& C=m r+2 k+2
\end{aligned}
$$

Then,

$$
\begin{aligned}
& B-A=n r+k \\
& B-C=(n-m+1) r-k
\end{aligned}
$$

Since $k \geqq 1$, we have $B-C=0$, i.e., $k=(n-m+1) r$, which show that $n>m$ -1 is necessary in order that $t=0$ is to be a pole. By multiplying t^{A}, we obtain

$$
t^{A}\left(-\frac{k f(y)}{t^{k+1}} \frac{d y}{d t}+\frac{k^{2} g(y)}{t^{2}(k+1)}\right)+O(1)=0
$$

Hence, the circumstances at $t=0$ is equivalent to the equation

$$
t^{A}\left(-\frac{k f(y)}{t^{k+1}} \frac{d y}{d t}+\frac{k^{2} g(y)}{t^{2(k+1)}}\right)=0
$$

Returning to the original variables, we obtain

$$
f(y) \frac{d y}{d t}+g(y)=0
$$

Integrating this equation, we have the solution of the form

$$
\begin{gathered}
y=\sum_{\nu=-\infty}^{1} a_{\nu}^{\prime} x^{\frac{\nu}{n-m+1}}, \\
a_{1}^{\prime} \neq 0
\end{gathered}
$$

which shows $k=n-m+1$ and $r=1$. Hence, if $t=0$ is not a branch point, but a pole, it is necessary and sufficient that $n=m$.

Theorem 5. We suppose that in the equation (10) the hypotheses in $\S 1$ concerning $f(y)$ and $g(y)$ are satisfied. Further we suppose that we can analytically continue a solution along any curve C up to $x=\infty$ and the solution tends to ∞ if we approach to $\mathbf{x}=\infty$ along C. Then, it is necessary and sufficient $n>m-1$ in order that $x=\infty$ is not an essential singularity, but a pole or branch point.

If $n>m-1$, there exists a solution of such a form that

$$
\begin{gathered}
\text { such a form that } y_{\nu=-\infty}^{\frac{1}{y}} a_{\nu} x^{\frac{1}{n-m+1}} \\
a_{1} \neq 0 .
\end{gathered}
$$

Corollary 1. If $x=\infty$ is not a branch point, but a pole, it is necessary and sufficient that $n=m$.

Corollary 2. If $n=m-1$, there exists a solution having $x=\infty$ as an essential singularity.

Corollary 3. If $n<m-1, t=0$ is a regular point.
2. Now, we consider the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{f(y)}{x} \frac{d y}{d x}+g(y)=0 \tag{14}
\end{equation*}
$$

By making use of a change of variable $x=t^{-k}$, we have

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\frac{k+1-k f(y)}{t} \frac{d y}{d t}+\frac{k^{2} g(y)}{t^{2(k+1)}}=0 \tag{15}
\end{equation*}
$$

If a solution is of such a form that

$$
\begin{aligned}
& y=\sum_{\nu=-x}^{\infty} a_{\nu} t^{\nu}, \\
& a_{-x} \neq 0, \quad r \geq 1,
\end{aligned}
$$

we substitute it into (15) and obtain, as in § 1 ,

$$
\begin{gathered}
\frac{r(x+1) a_{r}}{t^{k+2}}+\cdots \\
-\frac{r(k+1) a_{-r}}{t^{k+2}}-\frac{a_{k} a_{-r}^{n+1}}{t^{n k+k+2}}+\cdots \\
+\frac{\alpha k^{2} a_{-r}^{m}}{t^{m r}+2 k+2}+\cdots=0
\end{gathered}
$$

As in $\oint 1$, we put

$$
\begin{aligned}
& A=r+2, \quad B=n r+r+2 \\
& C=m r+2 k+2
\end{aligned}
$$

Then,

$$
B-A=n r
$$

$$
B-C=(n-m+1) r-2 k
$$

i) $B-A>0$, i.e., $n \geqq 1, r \geqq 1$ 。 Then, $(n-m+1) r=2 k$. Hence it necessary that $n>m-1$ since $k>0$. By multiplying t^{A}, we have

$$
t^{A}\left(\frac{-k f(y)}{t} \frac{d y}{d t}+\frac{k^{2} g(y)}{t^{2(k+1)}}\right)+O(1)=0
$$

Returning to the original variables, the circumstances at $x=\infty$ is equivalent to

$$
\frac{f(y)}{x} \frac{x y}{d x}+g(y)=0 .
$$

Integrating this equation, we obtain

$$
\begin{gathered}
y=\sum_{\nu=-\infty}^{1} a_{\nu}^{\prime} x^{\frac{2 \nu}{n-m+1}} \\
a_{1}^{\prime} \neq 0
\end{gathered}
$$

Hence, we have $k=(n-m+1) / 2$ and $r=1$ if $n-m+1$ is even, and $k=n$ $-m+1$ and $r=2$ if $n-m+1$ is odd.
ii) $\mathrm{B}-\mathrm{A}=0$, i.e., $\mathrm{n}=0$ and r \geqq 1. Then, $B \geqq C$, i. $\theta_{0}, 2 k \leqq(1-m) X$ r. Since $k \geqq 1$ and $r \geqq 1$, we obtain $m=0$, the case which we exclude.

Theorem 6. We suppose that the hypotheses in Theorem 5 are satisfied. Then, it is necessary and surficient that $n>m-1$. Ther, there exists a solution of such a form that

$$
y=\sum_{\nu=-\infty}^{1} a_{\nu} x^{\frac{1}{n-m+1}}
$$

$$
a_{1} \neq 0 .
$$

Corollary 1. If $n=m-1, x=\infty$ is an essential singularity.

Corollary 2. If $n<m-1, t=0$ is a regular point.
3. We consider the case $k=1$, that is, $x=\infty$ is not a branch point, but a pole. Then,
i) $n>0, \quad(n-m+1) r=2$.

Since r is a positive integer larger than 0 , we have

$$
\left\{\begin{array} { l }
{ \mathrm { n } = \mathrm { m } } \\
{ \mathrm { r } = 2 , }
\end{array} \quad \left\{\begin{array}{l}
\mathrm{n}=\mathrm{m}+1 \\
\mathrm{r}=1
\end{array}\right.\right.
$$

ii) $n=0$, i.e., $(m-1) r \leqq 2$.

Then, we obtain

$$
\left\{\begin{array}{l}
\mathrm{m}=2 \\
\mathrm{r}=1
\end{array},\left\{\begin{array}{l}
\mathrm{m}=2 \\
\mathrm{r}=2,
\end{array}, \begin{array}{l}
\mathrm{m}=3 \\
\mathrm{r}=1
\end{array}\right.\right.
$$

Theorem 7. In order that $x=\infty$ is not a branch point, but a pole, it is necessary and sufficient that the following relations hold goods:
i) $\left\{\begin{array}{l}n>0 \\ n=m\end{array},\left\{\begin{array}{l}n>0 \\ n=m+1\end{array}\right.\right.$
ii) $\left\{\begin{array}{l}n=0 \\ m=2\end{array},\left\{\begin{array}{l}n=0 \\ m=2,\end{array}\left\{\begin{array}{l}n=0 \\ m=3 .\end{array}\right.\right.\right.$

Corollary 1. If $n=m-1, x=\infty$ is an essential singularity.

Corollary 2. If $n<m-1, t=0$ is a regular point.

Department of Mathematics, Waseda University.
(*) Received December 13, 1954。

