NOTE ON UNIPOTENT INVERSIBIA SEMIGROUPS[1]

By Takayuki TAMURA

A semigroup with only one idempotent is called unipotent [2]. In this note we shall investigate the construction of unipotent inversible semigroup (defined as below). After all the study of such a semigroup will be reduced to that of a zero-semigroup [3].

Lemma 1. A semigroup is unipotent if and only if it contains the greatest group [4].

Proof. Suppose that a semigroup S has its greatest group G, and S contains idempotents e and f. Then, since $\{e\}$ and $\{f\}$ are groups in S, we see that $\{e\} \subset G$ and $\{f\} \subset G ; e$ and f are idempotents contained in G. Hence $e=f$; S is unipotent. Conversely, if S is unipotent, S has at least one group as a subsemigroup. Let $\left\{G_{\alpha}\right\}(\alpha \in \Gamma)$ be the set of all groups in S. Since every G_{α} has the idempotent e of S in common, the semigroup G generated by all $G_{\alpha}(\alpha \in \Gamma)$ is proved to be a group. It is easy to see that G is greatest.

When a unipotent semigroup S, for example, is finite, the greatest group G is represented as $G=$ Se where e is an idempotent. What is the necessary and sufficient condition in order that Se is the greatest group of S ?

Let S be a unipotent semigroup with an idempotent c. If, for any $a \in S$, there exists $k \in S$ such that $a b=e(b a=e), S$ is called right (left) inversible, and b is a right (left) inverse of a. Of course b depends on a. Then since e is a right (left) zeroid [5] of S, a unipotent right (left) inversible semigroup is equivalent to a unipotent semigroup with zeroids [5]. The following lemmas follow immediately from the general theories of a semigroup with zeroids.

Lemma 2. Let S be a unipotent semigroup. The following conditions
are equivalent.
(1) S is right inversible.
(2) S is left inversible.
(3) Se is a group.
(4) eS is a group.

We need no distinction between right inversibleness and left inversibleness. If S is right or left inversible, it is said to be inversible.

Lemma 3. Let S be a unipotent inversible semigroup, and G be its greatest group.
(1) $G=S_{e}=e S$
(2) G is a two-sided ideal of S as well as the least one--sided ideal of S.
(3) e commutes with every $x \in S$.
(4) S is homomorphic on G by the mapping $\varphi(x)=x e=e x$.

We denote by Z the difference semigroup of S modulo $G[6] . Z$ is a zero-semigroup.

Now we shall discuss the structure of a semigroup with zeroids in preparation for the theory of a unipotent inversible semigroup.

Let S be a semigroup having zeroids, and U be its group of zeroids. Since U is a two-sided ideal, we can consider the difference semigroup M of S modulo U; and M is a semigroup with a zero. Converse-i ly, if we are given arbitrarily a semigroup M with a zero and a group U disjoint from M, there exists always at least one ramified homomorphism ${ }^{[7]} \psi$ of M into U, e.g., the mapping of all non-zero elements of M into the unit of U. Consequently we have the following lemma ${ }^{[7]}$.

Lemma 4. Given a semigroup M with a zero 0 , and a non-trivial group U which is disjoint from M, and given a ramified homomorphism ψ of M into U, we can construct uniquely a semi-
group S with zeroids such that
(I) S is the union of U and \bar{M} where \bar{M} is the set of all nonzero elements of M.
(2) U is the group of zeroids of S and is an ideal of S.
(3) M is the differenc semigroup of S modulo U.
(4) ψ is the ramified homomorphism of M into U.

In the case that a group is trivial, i.e., a group formed by only one element e, S is isomorphic with M; the lemma is trivial.

Thus the semigroup S with zeroids is determined in this fashion by G, M and ψ. We denote by $x \cdot y$ the product of x and y in G, by $x \times y$ in M. Then the product $x y$ in S is defined as:

$$
x y= \begin{cases}x \cdot y & \text { if } x \in G, y \in G, \\ x \cdot \psi(y) & \text { if } x \in G, y \in \bar{M}, \\ \psi(x) \cdot y & \text { if } x \in \bar{M}, y \in G, \\ \psi(x) \cdot \psi(y) & \text { if } x, y \in \bar{M} \text { and } x \times y=0, \\ x \times y & \text { if } x, y \in \bar{M} \text { and } x \times y \neq 0 .\end{cases}
$$

The mapping f of S onto G is defined as follows.

$$
\begin{array}{lll}
\text { (1) } & f(x)=x & \text { if } \\
\text { (2) } & f(x)=\psi(x) & \text { if } \\
x \in \bar{M} .
\end{array}
$$

It is easy to see that f is a homomorphism of S onto G and ψ is a contraction of f to \bar{M}. We may say that a semigroup S with zeroids is determined by G, M and f; and S is written as $S=(G, M, f)$ where the product is given as

$$
x y= \begin{cases}f(x) \cdot f(y) & \begin{array}{l}
\text { if at least one of } x \\
\text { and } y \text { belongs to } G, \\
\text { or if } x, y \in \bar{M} \text { and }
\end{array} \\
x \times y=0, \\
x \times y & \text { if } x, y \in \bar{M} \text { and } \\
x \times y \neq 0 .\end{cases}
$$

Now S is unipotent if and only if M is a zero-semigroup. Then M is called the characteristic zerosemigroup of the unipotent semigroup S. By applying Lemma 4 to this case, we get immediately the following theorem.

[^0]and a homomorphism f above mentioned determine uniquely a unipotent inversible semigroup S such that $S=(G, 2, f)$, that is to say,
(1) $S=G \cup \bar{Z}$,
(2) G is the greatest group of S and is an ideal of S,
(3) Z is the characteristic zerosemigroup of S,
(4) f is a homomorphism of S onto G.

Finally we shall take in question the condition for two semigroups, which are thus obtained, to be isomorphic.

Theorem 2. There are two unipotent inversible semigroups S_{1} and S_{2} 。 $S_{1}=\left(G_{1}, Z_{1}, f\right)$ is isomorphic with $S_{2}=\left(G_{2}, Z_{2}\right.$, g) if and only if there exists a one-to-one mapping σ of S_{1} onto S_{2} such that
(1) G_{1} is isomorphic with G_{2} by σ,
(2) Z_{1} is isomorphic with Z_{2} by the modified mapping σ^{\prime} defined as below,
(3) $f=\sigma^{-1} g \sigma$

Here the modified mapping σ^{\prime} is a mapping of Z_{1} on Z_{2} such that

$$
\begin{gathered}
\sigma^{\prime}\left(0_{1}\right)=o_{2} \text { where } \begin{array}{c}
0_{1} \text { and } o_{2} \text { are } \\
\text { zeros of } z_{1} \text { and } z_{2} \\
\\
\text { respectively, }
\end{array} \\
\sigma^{\prime}\left(x_{1}\right)=\sigma\left(x_{1}\right) \text { if } o_{1} \neq x_{1} \in Z_{1} .
\end{gathered}
$$

Proof. Suppose that S_{1} is isomorphic with S_{2}. Let σ be the isomorphism of S_{1} onto $S_{2}: S_{1} \rightarrow x_{1} \longrightarrow$ $\sigma\left(x_{1}\right) \in S_{2}$. Since σ maps the idempotent $e_{1} \in S_{1}$ to the idempotent $e_{2} \in S_{2}$, it is easily seen that $G_{1}=S_{1} e_{1}$ is isomorphic with $G_{2}=S_{2} e_{2}$ by σ. Also (2) is clear, for σ makes an element of $S_{1}-G_{1}{ }^{[10]}$ correspond to one of $S_{2}-G_{2}$. We shall show (3). By the definition of the product, for every $x_{1} \in S_{1}$,

$$
\begin{aligned}
\sigma\left(x_{1} e_{1}\right) & =\sigma\left(f\left(x_{1}\right) \cdot f\left(e_{1}\right)\right) \\
& =\sigma\left(f\left(x_{1}\right) \cdot e_{1}\right)=\sigma\left(f\left(x_{1}\right)\right),
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\sigma\left(x_{1}\right) \sigma\left(e_{1}\right) & =g\left(\sigma\left(x_{1}\right)\right) \cdot g\left(\sigma\left(e_{1}\right)\right) \\
& =g\left(\sigma\left(x_{1}\right)\right) \cdot g\left(e_{2}\right) \\
& =g\left(\sigma\left(x_{1}\right)\right) \cdot e_{2}=g\left(\sigma\left(x_{1}\right)\right) .
\end{aligned}
$$

From the assumption that $\sigma\left(x_{1} e_{1}\right) \approx \sigma\left(x_{1}\right)$.

$$
\begin{aligned}
& \sigma\left(e_{1}\right), \\
& \\
&\left(f\left(x_{1}\right)\right)
\end{aligned}=g\left(\sigma\left(x_{1}\right)\right) .
$$

Hence we have $\sigma f=g \sigma$, i.e., $f=\sigma^{-1} g \sigma$.
Consequently, suppose that a mapping σ exists, then we shall prove that $\quad \sigma\left(x_{1} y_{1}\right)=\sigma\left(x_{1}\right) \sigma\left(y_{2}\right) \quad$ for $x_{1}, y_{1} \in S_{1}$.

At first, if $x_{1} y_{1} \in G_{1}$,

$$
\begin{aligned}
& \sigma\left(x_{1} y_{1}\right)=\sigma\left(f\left(x_{1}\right) \cdot f\left(y_{1}\right)\right) \text { by the defi- } \\
& \text { nition of the prom } \\
& \text { duct, }
\end{aligned}
$$

while $\quad \sigma\left(x_{1}\right) \sigma\left(y_{1}\right)=g\left(\sigma\left(x_{1}\right) \cdot g\left(\sigma\left(y_{1}\right)\right)=\right.$ $=(\sigma f(x))(\sigma f(y))$ by the definition and (3). Since $f(x)$ and $f(y)$ lie in G_{1}, it follows from (1) that $\sigma\left(f\left(x_{1}\right) \cdot f\left(y_{1}\right)\right)=\left(\sigma f\left(x_{1}\right)\right)\left(\sigma f\left(y_{1}\right)\right)$.
Therefore we have $\sigma\left(x_{1} y_{1}\right)=\sigma\left(x_{1}\right) \sigma\left(y_{1}\right)$.
Secondly, if $x_{1} y_{1} \notin G_{1}$ i.e., and $x_{1} \times y_{1} \neq 0_{1}, \quad \sigma\left(x_{1} y_{1}\right)=\sigma\left(x_{1} \times y_{1}\right)$
and $\sigma\left(x_{1}\right) \sigma\left(y_{1}\right)=\sigma\left(x_{1}\right) \times \sigma\left(y_{1}\right)$
because $\sigma\left(x_{1}\right) \times \sigma\left(y_{1}\right) \neq 0_{2}$. Since $\sigma\left(x_{1} \times y_{1}\right)$ $=\sigma\left(x_{1}\right) \times \sigma\left(y_{1}\right)$ by (2), we have $\sigma\left(x_{1}, y_{1}\right)$ $=\sigma\left(x_{1}\right) \sigma\left(y_{1}\right)$. Thus we have proved that σ is an isomorphism of S, onto S_{2}.

Remark. Theorem 2 is also valid for a semigroup S with zeroids.

In order to complete the study of unipotent inversible semigroups, we require the determination of the structure of zeromsemigroups, which we shall call in question in another article.

References.

(1) I found a part of the theory of the previous paper (8], [9] contained in the paper [5] by A. H. Clifford. We argue them here synthetically by using Clifford's theory.
(2) We once called it onemidempotent.
[3) By a zeromsemigroup we mean a unipotent semigroup whose idempotent is a twomided zero.
[4] The greatest group G of S is the group G contained in S such that $G_{1} \subset G$ for every group $G_{1} \subset S$. Of course, the subset \{e\} formed by only an idempotent element is considered as a group.
[5] A. H. Clifford \& D. D. Miller, Semigroups having zeroid elements, Amer. Jour of Math. Vol.LXX, No. 1, 1948, pp.117-125.
[6] D. Rees, On semigroups, Proc. Cambridge Philo. Soc., Vol. 36, 1940, pp.387-400.
[7] A. H. Clifford, Extensions of semigroups, Tran. of Amer. Nath. Soc., Vol.68, No.2, 1950, pp. 165-173.
(8) T. Tamura, on finite one-idempotent semigroups, Jour. of Gakugei, Tokushima Univ., Vol.IV, 1954, pp.11-20.
(9] T. Tamura, On compact one-idempotent semigroups. Kodai Math. Semi. Rep. No.l, 1954, pp.17-21. Supplement to the paper "On compact one-idempotent semigroups", Kodai Math. Semi. Rep., No. , , pp.
[IU] $S_{1}-G_{1}$ means the complementary set of G_{1} to S.

Gakugei Faculty, Tokushima University
(*) Received October 13, 1954.

[^0]: - Theorem l. A non-trivial group G , a. zeromemigroup Z disjoint from G,

