ON A MAXIMALITY OF A CLASS OF POSITIVE HARMONIC FUNCTIONS

By Mitsuru OZAWA

A definition of harmonic dimension
for any extended C-end has been given
in our previous paper (1l. A principal
aim of the present note is to establish
that a class of positive harmonic
functions with same restrictions is
maximal in certain sense and to give
another but equivalent definition of
harmonic dimension for any extended
C-end which is a natural consequence
of the maximality. This new formu-
lation is more convenient to the
various purposes and more intrinsic in
some senses than the former one.

1. Let {2 be an extended C-end
having [ as its non=-compact analytic
relative boundary., (Cf. Ozawa (1].)
Let g(z,p,) be the Green function of
. with pole at p,. . The harmonic
dimension dim( Q. ) or CH(LL ) of £
means a maximal cardinal number of
linearly independent limit functions
lim g(z,p, ) which is non-trivial on
m-soo
£, where the limiting process m— o
is taken along a suitable non-compact
sequence {p,} . Let Ga be a set of
any linear combinations of such limit
functions, with positive coefficients,
each element of which is positive on
Q.

Let Qa be a family of positive
harmonic function w on Q. , vanishing
identically on [ , and subjecting to
a condition

0 < j-—:—vW'ds < o0,
r

Let i, —— an end in Heins' sense
—— mean a doubled domain of Q. ,
symmetric with regard to [ - % , ¥
being a compact part of [ . €Y
means, in general, the symmetric con-
figuration of a coni‘lgu.ratlon o with
respect to [ = ¥ . Then Q= Q-+
+*{C~7). Let Py be a family of
positive harmonic functions on 0
with vanishing boundary value on
THT . Let {F} be

na= 0,4,

an exhaustion of symmetric surface F
into which £ is imbedded such that
F=F-& is compact and has
T+7%  as its compact relative
boundary., Here F and F, are supposed
to be symmetric with respect to I"'-7 ,
iet C, (¥ T+ 7T ) denote a relative
boundary of F, and let ®.=C,. L,
”'E““:: C,\,\(F‘ﬂ> and r‘ﬁzl_‘{\F/fL ’
=0 0 F‘\’L

2. S and T operations, Methods and
results in this section are due to
Kuramochi who has solved affirmatively
our unsolved problem II in our previous
paper [1l] and related problems. For
completeness we shall explain his
procedure with a slight modification.

Let W(2) be any member of Qa .
Let W™2) be a function bounded and
harmonic on F, - F, satlsfymg the
following conditions: W™z) = 0 for
T+TF + Th and~ W(z) for T, .
Then evidently W™(2) 2 W(2) holds
on €, , and therefore this leads to
a fact that

2 (W -Wm) 2 0

on T'n
and

= WhD 20

0
l

on T +T+7T.

Hence we see that

o> M = J %W('z)ds
r

2 J 2 Wds = -S%W(z)ds
L T

> _E%Wﬂ(z)ds = y -:;_W"(z)ds
T T+T+ T

> | 2 W
T+

Moreover we see easily that W'(xz.
2W™z), for n>m on Quwm . There-



has a limit harmonic
w(’z) , Which

belongs to Pﬁ o This operation S :
wW—=S is a positively linear
mapping from Qg into Py &

Let U(z) € P, , then we define a
bounded harmomc fu.nct:.on U™z) on
{), such that UM =0 on [, and
=U(z) on T, . We can easily see
that U™M2)€U™(2) if n> m. There-
fore 11‘3)12 U™2) exists and is either

fore { W @)
function 1im W"(z) =
n->0

the constant zero or a positive har-
monic function on £ . If ‘I" (z)

n
~1:m Uln %0 then U(2) is said
to belong to P (.Q.) °

Let U = Sy(2) , then S,(2)
¢Fa(Q)  and Ts @ =Wz) . In
fact, S,;(2)>W™=2)  holds for any n.
And we see that

Sy@ = U'm = Sy (=
on I, ,
= 0 on Ty
and
W) = Wizy = Wtz
on [, ,
=0 on w,,
which infers that
Sy@ ~U= 2z Wzy - W(z)
on ().
Thus we see that
Sy =TSy & Sy -V
and
TS, < W
remain valid on £). . Next we see
that
Ul =5, (z) > v}m
on T,
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and

Utz =W(z) =

on [0

which implies that
on £ , Therefore we see that
ToS=1 forany We Qg .

Let {Wi} be a set of linearly
independent positive harmonic functions
belonging to o  then { Wi is
also a set of linearly :mdependent
elements of Pg . In fact, supposing

that chw‘ =0 , we have

ze,S,’g Py} SW; ,€30.dg20, Q#},ZQTS‘@Z{BVI

and 0= ZCTS =y ¢,W; , which implies
that all the c,{ vanish, Thus a set
w;] Spans a linear subspace of Py
whose dimension is equal to the har-
monic dimension dim(Q ) of & .

Let E;}‘ ' and §;}m be two related
harmonic functions such that
= (n) ~ ~
Sw =0 on Tr+T+ T s
=Sy on T,
and

n)
§.w = Sw on ?n »

0 on ‘6‘“+'K+r'i"

Evidently we have

S S m S m)

and _
Sy =Sy + 3,

S = 1 (11) - m)
v n—?g S '})!vw SW .

On the other hand, we see that

'S‘v;ﬂ) zwn’

whence follows

v Z 9.

Moreover S, 2 S,  is evidently
valid, from which we see thit

=w



Sw = S W
Thus we have

SWE 0.

3. We shall now restate a fact
which has been proved in our previous
paper {2]. Any member of the family
P, can be generated as a uniquely
determined linear combination by a set
of generators Vv, , ..., Va 3 Vasr o

3 soey Vup nep 2 P
—dm(n) , which satisfy the following
conditions:

Vi) = () , i=1,...,m,

Voo j (8 = Vi3 (%), $=1,7 P,

From these we see that the functions
defined by

an(z = —i—(vﬂ,s(z) + ’\\fmi(z))
and
Vnt;(z) ( n+3. 1\7}(2))

satisfy the symmetric and the anti-
symmetric relation, respectively,

Let Gy(2) be a non-trivial limit
function of Green function %(z p.V)
of 1 . Then, by Lebesgue's theorem

and the relative null-boundary property
f i
D] g p) e = ax

is valid, by which and by Fatou's
theorem we have

0< | 3 G(2)ds ¢ 2m |
r

Therefore Q 2 G,  holds. Thus the
results in section 2 remain valid for

£ o

We shall now investigate the corre-
spondence between &g and Pg by the
S operation. Any member wz) of Qq
which subjects to the symmetric or
anti-symmetric relation does not corre-~
spond to any member of Ga . Assume
that S,, is symmetric, that is, S,
=S4 (Z) . Then we see that

m)

(m(?) - §w =
and hence S.,,(z)—,iw(z) o
Since S (== 0 ,3,(z)= holds,
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which leads to a contradiction, that
is,Sw = 0 . For any anti-symmetric
function the proposition is evidently
valide In the sequel the above
properties which will play an im-

portant role will be more precisely
investigated.

Let {W;} ,dst,---, ¢ ,bea
set of generators of Gn, s then W;
= C;Vmy; , ¢ >0 holds. In the
sequel we may choose {Va:;} as a set
of generators of Gg and we denote
this by {W;} .

Let Sw be equal to a linear
comb:.natlon

Z n"lar Vi +Z LY-:. *'+J.Z Cla, L33

with non-negative coefficients a.; ,
bg; and Cy; o If @y >0  happens,
then Vi =0  holds, from which ¥;= 0
is deduced, since (%)= Vi(2) and
V.(Z)= V;(2) remain valid by the
symmetricity of v;(z) . Hence we
see that Vi(z) =0 holds, which is
contradictory. If by;>o0 and Cyy>0
occur simultaneously for a fixed index
%, then

Ynft =0 and ’\ng =0

hold and these lead to V¢ =0 ,
which is also absurd., Thus, for a
function Sw » its linear represent-
ation by a set of generators of Pga
connot contain both functions V.,
and V,,, simultaneously. However
there remains a possibility: A member
Sy (%) _contains Vit and does not
contain V.. 1in its positively linear
representation but another member Syt
contains vm,,_ and does not contain
Vaep in its positively linear re-
presentation for suitably chosen two
members w(z) and U@ of Gg . But

ws+y(*)  is also a corresponding
member of W) + u) € Gy by S oper-
ation., Thus the above possibility is
now rejected.

If Vney is contained in the
positively linear representation of
an element of {Sy} , WeGa , then
Xmi = 0 and hence Ve = o holds.,
On the other hand ¥V, 2Ty on



€. , which implies that TVmaF o and
Varg = 0 « This is absurd. Thus
Vnrp Cannot be contained in any
positively linear representation of
any element, of {Sw} .

Let U] and [41 are two
closed convex cones spanned by Vg »
B=1,, P and Wy » F=1, -, P

respectively, with non-negative coef-
ficients, Then each of these is a
linear space of dimension p and [U]
2(8) . If {UIR(S] , that is,
there exists a member Ve{U],¢(8] ,
then we have

and

with some negative numbers bg .
r
Tv=§lbﬁwﬁ holds and hence T () <0

for same Z on €2 by the minimality
of Wy, , R=1i,-, P . However Tv

v
=§1¢&Tv"*>o for any point = on Q ,

This is absurd. Therefore we see that
any extremal of a closed convex cone
[$] coincides with a suitable ex-
tremal of a closed convex cone [ U]
and this coincidence is one-to-one and
onto as a whole.

Next we shall show that Svm; CVnie
n

for any #. In fact, if we suppose

that Svnﬁ(-—l = c]_vq\+2 ’ then TSVT:;;; v,“‘:'

and Tvmz Vasa imply that Vou=RV,Ys,

which is to be rejected.

4. We shall now proceed to our
first goal, that is,

Q‘Q‘: GQ.

Assume that QqR Ggq , then there
is at least one generator of Q
say U , which does not belong to
Go .+ AdS;ePa by §2and S
operation gives no effect to the linear
independency. Therefore y does not

belong to a closed convex cone [ ]
and hence SU can be expressed as a
linear combination

n, £ 2

Z,: o Z« by Vv + 2. Qi,‘\ffnﬂ

vl k=1 =
with at least one positive coefficient
among a; and ¢, . However this
positivity of at least ons coef~-
ficient leads to a contradiction by
a method used in §3, (This procedure
is evidently zllowable for g instead
of Gg .) Thus S{Qgq) coincides
with S(Gq) , which implies that

e

— 1 YT e
QQ THRQ) € TS, = Gg.,
Therefore we have the desirad result:
Pan N
Theorem 1, Q,O = Lz .
TR RTINS TN T AR “

An intrinsic but equivalent defi-
nition of harmonic dimension of ). in
our sense may now be explained as
follows:

A maximal cardinal number of linear-
ly independent functions Vix' , bedng
positive harmonic on v) , vanishing
identically on ' and subj
a condition X

) L -
0 < & ST;‘V(*’ ds < a0

r

is called a harmonic dimension of £ .

We should now mention & remarkable
fact:

If V belongs to the X ~class ‘of
an extended C-end in our previous
paper (2], then there holds

j %Vds =
r
5. Class [(), ]

Let [0, (0] bvea family of positive
harmonic functions on {2 with vanishing
boundary value on [" for which the S
operation has its sense, that is, 3,
&0 , Then[Q,{)] coincides with
Gga » that is, G, is a maximal set
on which the S operation has the sense,

This is similarly verified by the
method in § 4. However we shall give
here another proof for more general
fact,



Let [Q, Q.,1 denote a family of
positive harmonic functions on
with vanishing boundary value on I’
for which the S operation has the
sense, S and T operations are similar-
ly defined as in 82 between G o and
Pa, , where Py is a class of
positive harmonic functions on Q.
with vanishing boundary value on the
campact relative boundary of ., .,
Of course, £y 1is an end in Heins!'
sense such that (0, > .

Does [Q,' Ql]
.01

coincide with

~We shall devote this section to
this question.

Lemma, If Vv is a minimal positive
harmonic function of Pa, , then ST
=9y , that is,S0T =] , unless
TV = 0

Proof. Let Ty+ 0 , then 03T
$ST. sv ,since T"<y™ sy .
¥ v = ’ v =

By the minimality of v , kv=3ST  is
valid for a suitable positive & (s1)
If o<k <i , then ’k"‘v:(ST)";, is valid
for any m . Of course, we shall put
STST- ST, =(ST)y in the above re~
lation, and then we make use of TodS=I,
Hence we obtain &"v= ST o Let m
tend to infinity, then ST, = O which
implies that T, = 0 . This is absurd.
Thus ® must be equal to 1 and hence
STV =Y is walid,

Let {ng]’}_.,,.,.,m be a maximal set of
minimals in Py =~ such that Ty %0
and [Q¥] be a closed convex céne
spanned by Wj} with non-negative
coefficients., ~Let {wxhzi,...,? be a
set of minimals generating G o and
twrl=Ga . Let {1 be the image
of [qy] by T operation. Let[d1 be
an image of lygq by S operation, then
it is also a closed convex cone of
dimension p.

Any function of {&] can be
unicuely determined by a linear
cambination

™ %
= A, V; + ) b.ow;
SW ?;—-i + 3 il\; e,

w2o, bz o,

3=
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where w ¢ (U], e Pg, but uy is
minimal in Pg = . ”f'herefore we see
that, by the above Lemma,

Sw = STSy=S(55 4Ty)-F o,

that is, by are all zero. Hence [-8]
<[9¥] , which leads to [WIS(T ] .
Since w, is a minimal in Gg ,
Sy =3 0,V
Wy éz;{ %42 Vy s
m O}y_ 20
W, = Z 0’§1T\r
3= 3
Jleads to a fact that
Wi = Qe Tvé %30 >0
is valid with a suitable index 4 and
all the coefficients except a,, reduce

to zero. Therefore, if we change the
indices of @;p and Ty, Dby the above
correspondence, then we may write as

WQ = (LQTVQ R

Zvidently this correspondence, which

is considered as the one extended onto
(U] in the positively linear manner,
is one-to-one and onto mapping between

(w1l and (] o Thus (Ul=(T I

By the definition [T]<[f,Q,] -
On the other hand [Q,0,]€(°r) . The
verification of this fact is similar as
that of [UY1<S (L] « Hence we see
that

Go=1W1 =0T =[0,0)

This relation shows that G g is also
a maximal set on which S operation has
the sense, where S transfers G into

FQI °

Theorem 2. Go=[02,Q,1, and s
operation preserves the minimality,
if it has the sense.

6. Let {i, and L1, be two ex-
tended C-ends such that Q, €, .
Between ; and L, we can similarly
define the S and T operations. Let
[Qy,Q22] be a maximal set of positive
harmonic functions on £); with vanish-
ing boundary value for which S oper-
ation has the sense. In general, [},
;1 does not coincide with [y, ]
= GQI o Let [Q¥] be a closed con-
vex cone spanned by sll the minimals



on £}, ror which T operation has the
sense,

Elm_ T([‘U']) — the T image
coincides with [Q,,0,]

and S operatlon preserves the mini-
mality if it has the sense,

It will be unnecessary to state a
detailed proof, since the proposition
can be similarly deduced as in theorem
2.

This new class [{l;,Q,] and its
dimension —— relative harmonic
dimension —— shall throw a new
light to the structure of the ideal
boundary.,
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CORRECTIONS TO THE PREVIOUS PAPER "ON HARMONIC DIMENSION II"

These Reports, No. 2, 1954, pp. 55-58.

By Mitsuru OZAWA

Page 57, the right part, line 16,

For "value & (v;-V2)5 Vi, Ve e W .
read "value 2 (v;-Vv;) on ¥ and 3y=0

on[-¥; v,,0,eQq, where we shall fix a
local parameter induced by the har-
monic measure w(z,¥,fl) such that

w= lon% and =0 onl-7 .,

Page 57, the right part, line 14~

23, Ancther proof may be carried out
as follows: Let X € Sq  such that
2Vy
v
X = 2 on T
2V
Y
R,
2
E2Y X = 0 on ['-7,
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then we see

g(l‘X)g?a
=-1+SGX§V’&¢S
=—1+SWX%L—ILM
= - + gzy; ds
-0,

which leads to the desired fact

V;= Vpo =—~—— This proof is the same
as in Heins' proof. (Cf. Heins,
Riemann surfaces of infinite genus,
Ann, of Math. 55(1952) 296-317.
Theorem 11,2.)





