A definition of harmonic dimension for any extended C-end has been given in our previous paper [1]. A principal aim of the present note is to establish that a class of positive harmonic functions with some restrictions is maximal in certain sense and to give another but equivalent definition of harmonic dimension for any extended Coend which is a natural consequence of the maximality. This new formum lation is more convenient to the various purposes and more intrinsic in some senses than the former one.

1. Let Ω be an extended C-end having Γ as its non-compact analytic relative boundary. (Cf. Ozawa [l]。) Let $g\left(z, p_{m}\right)$ be the Green function of Ω with pole at p_{m}. The harmonic dimension $\operatorname{dim}(\Omega)$ or $\mathrm{CH}(\Omega)$ of Ω means a maximal cardinal number of linearly independent limit functions $\lim _{m \rightarrow \infty} g\left(z, p_{m}\right)$ which is non-trivial on
Ω, where the limiting process $m \rightarrow \infty$ is taken along a suitable non-compact sequence $\left\{p_{m}\right\}$. Let G_{Ω} be a set of any linear combinations of such limit functions, with positive coefficients, each element of which is positive on Ω 。

Let Q_{Ω} be a family of positive harmonic function w on Ω, vanishing identically on Γ, and subjecting to a condition

$$
0<\int_{\Gamma} \frac{\partial}{\partial \nu} w d s<\infty .
$$

Let $\widehat{\Omega}$ an end in Heins' sense - mean a doubled domain of Ω, symmetric with regard to $\Gamma-\gamma, \gamma$ being a compact part of Γ. means, in general, the symmetric configuration of a configuration \square with respect to $\Gamma-\gamma$. Then $\widehat{\Omega}=\Omega+\widetilde{\Omega}$ $+(\Gamma-\gamma)$. Let $P_{\widehat{\Omega}}$ be a family of positive harmonic functions on $\widehat{\Omega}$ with vanishing boundary value on $\gamma+\widetilde{\gamma}$. $\operatorname{Let}\left\{F_{n}\right\}_{n=0,1, \ldots}$ be
an exhaustion of symmetric surface F into which $\widehat{\Omega}$ is imbedded such that $F_{0}=F-\widetilde{\Omega} \quad$ is compact and has $\sigma+\widetilde{T}$ as its compact relative boundary. Here F and F_{n} are supposed to be symmetric with respect to $\Gamma-\gamma$. Let $C_{n}(\neq \gamma+\widetilde{\gamma})$ denote a relative boundary of F_{n} and let $\gamma_{n}=C_{n} \Omega$, $\widetilde{\gamma}_{n}=C_{n,}(F-\Omega)$ and $\Gamma_{n}=\Gamma \cap F_{n}$, $\Omega_{n}=\Omega_{n} F_{n}$.
2. S and T operations. Methods and results in this section are due to Kuramochi who has solved affirmatively our unsolved problem II in our previous paper [l] and related problems. For completeness we shall explain his procedure with a slight modification.

Let $W(z)$ be any member of Q_{Ω}. Let $W^{n}(z)$ be a function bounded and harmonic on $F_{n}-F_{0}$ satisfying the following conditions: $W^{n}(z)=0$ for $\gamma+\widetilde{\gamma}+\widetilde{\gamma}_{n}$ and $=W(z)$ for γ_{n}. Then evidently $W^{n}(z) \geqq W(z)$ holds on Ω_{n}, and therefore this leads to a fact that

$$
\therefore \frac{\partial}{\partial v}\left(W^{n}(z)-W(z)\right) \geqq 0 \quad \text { on } \gamma_{n}
$$

and

$$
\frac{\partial}{\partial \nu} W^{n}(z) \geqq 0
$$

$$
\text { on } \widetilde{\gamma}_{n}+\gamma+\widetilde{\gamma}
$$

Hence we see that

$$
\begin{aligned}
\infty & >M=\int_{\Gamma} \frac{\partial}{\partial \nu} W(z) d s \\
& \geqq \int_{\Gamma_{n}} \frac{\partial}{\partial \nu} W(z) d s=-\int_{\gamma} \frac{\partial}{\partial \nu} W(z) d s \\
& \geqq-\int_{\gamma_{n}}^{\partial \nu} \frac{\partial}{\partial} W^{n}(z) d s=\int_{\gamma+\widetilde{\gamma}+\widetilde{\gamma}_{n}} \frac{\partial}{\partial \nu} W^{n}(z) d s \\
& >\int_{\gamma+\widetilde{\gamma}} \frac{\partial}{\partial \nu} W^{n}(z) d s .
\end{aligned}
$$

Moreover we see easily that $W^{n}(z$. $\geqq W^{m}(z)$, for $n>m$ on Ω_{m}. There.
fore $\left\{W^{n}(z)\right\}$ has a limit harmonic function $\lim _{n \rightarrow \infty} W^{n}(z)=S_{W}(z)$, which belongs to $P_{\widehat{S}}$. This operation S : $\mathrm{W} \rightarrow \mathrm{S}_{\mathrm{W}} \quad$ is a positively linear mapping from Q_{Ω} into $P_{\widehat{\Omega}}$.

Let $U(z) \in P_{\Omega}$, then we define a bounded harmonic function $U^{n}(z)$ on Ω_{n} such that $U^{n}(z)=0$ on Γ_{n} and $=U(z)_{n}$ on γ_{n}. We can easily see that $U^{n}(z) \leqq U^{m}(z)$ if $n>m$. Therefore $\lim _{n \rightarrow \infty} U^{n}(z)$ exists and is either the constant zero or a positive harmonic function on Ω. If $T_{U}(z)$
$=\lim _{n \rightarrow \infty} U^{n}(z) \neq 0$, then $U(z)$ is said to ${ }^{n \rightarrow \infty}$ belong to $\mathrm{P}_{\widehat{\Omega}}\left(\mathcal{\Omega}_{\Omega}\right)$ -

Let $U(z) \equiv S_{W}(z)$, then $S_{W}(z)$ $\in P_{\widehat{\Omega}}\left(\Omega_{\Omega}\right.$ and $T S_{W}(z)=W(z)$. In fact, $S_{w}(z)>W^{n}(z)$ holds for any n. And we see that

$$
\begin{aligned}
S_{W}(z)-U^{n}(z) & =S_{W}(z) \\
& =0 \text { on } \Gamma_{n},
\end{aligned}
$$

and

$$
\begin{aligned}
W^{n}(z)-W(z) & =W^{n}(z) \\
& \text { on } \Gamma_{n}, \\
& =0 \text { on } \gamma_{n},
\end{aligned}
$$

which infers that

$$
S_{W}(z)-U^{n}(z) \geqq W^{n}(z)-W(z)
$$

$$
\text { on } \Omega_{n} \text {. }
$$

Thus we see that

$$
S_{w}-T S_{w} \geqq S_{w}-w
$$

and

$$
T S_{w} \leq w
$$

remain valid on Ω. Next we see that

$$
U^{n}(z)=S_{w}^{n}(z) \geqq W(z)
$$

and

$$
\begin{aligned}
& U^{n}(z)=W(z)=0 \\
& \quad \text { on } \Gamma_{n},
\end{aligned}
$$

which implies that
on Ω. Therefore we see that $T \circ S=I$ for any $W \in Q_{\Omega}$.

Let $\left\{W_{i}\right\}$ be a set of linearly independent positive harmonic functions belonging to Q_{Ω}, then $\left\{S_{W_{i}}\right\}$ is also a set of linearly independent elements of $P_{\widehat{\Omega}}$. In fact, supposing that $\sum c_{i} S_{W_{i}}=0$, we have $\sum e_{j} S_{M_{g}}=\sum d_{l} S_{W_{\ell}}, e_{j} \neq 0, d_{l} \neq 0, \ell \neq j ; \sum e_{j} T S_{v_{j}} \sum d_{\ell} T S_{w_{\ell}}$ and $0=\sum c_{i} T S_{W_{i}}=\sum c_{i} W_{i}$, which implies that all the c_{i} vanish. Thus a set $\left\{S_{W_{i}}\right\}$ spans a linear subspace of P_{S} whose dimension is equal to the harmonic dimension $\operatorname{dim}(\Omega)$ of Ω.

Let $\bar{S}_{w}^{(n)}$ and $\underline{S}_{w}^{(n)}$ be two related harmonic functions such that

$$
\begin{aligned}
\bar{S}_{W}^{(n)} & =0 \quad \text { on } \quad \tilde{\gamma}_{n}+\gamma+\widetilde{\gamma} \\
& =S_{W} \quad \text { on } \quad \gamma_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\underline{S}_{W}^{(n)} & =S_{W} \\
& \text { on } \quad \widetilde{\gamma}_{n} \\
& =0 \quad \text { on } \quad \gamma_{n}+\gamma+\widetilde{\gamma}
\end{aligned}
$$

Evidently we have

$$
S_{W}=\bar{S}_{W}^{(n)}+\underline{S}_{W}^{(n)}
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{aligned}
S_{W} & =\bar{S}_{W}+\underline{S}_{W} \\
\bar{S}_{W} & =\lim _{n \rightarrow \infty} \bar{S}_{W}^{(n)}, \underline{S}_{W}=\lim _{n \rightarrow \infty} S_{W}^{(n)}
\end{aligned}
\end{aligned}
$$

On the other hand, we see that

$$
\bar{S}_{W}^{(n)} \geqq W^{n}
$$

whence follows

$$
\bar{S}_{W} \geqq S_{W}
$$

Moreover $S_{W} \geqq \bar{S}_{w} \quad$ is evidently valid, from which we see that

$$
S_{w}=\bar{S}_{w} .
$$

Thus we have

$$
S_{w} \equiv 0
$$

3. We shall now restate a fact which has been proved in our previous paper [2]. Any member of the family $P_{\text {a }}$ can be generated as a uniquely determined linear combination by a set of generators $V_{1}, \ldots, V_{n}, V_{n+1}$, $\widetilde{\mathrm{v}}_{n+1}, \ldots, \mathrm{v}_{n+p}, \widetilde{\mathrm{v}}_{n+p}, p$ $=\operatorname{dim}(\Omega)$, which satisfy the following conditions:

$$
\begin{aligned}
& V_{i}(z)=V_{i}(\widetilde{z}), i=1, \cdots, n \\
& \widetilde{v}_{n+j}(z) \equiv V_{n+j}(\widetilde{z}), j=1, \cdots, p .
\end{aligned}
$$

Fram these we see that the functions defined by

$$
V_{n+j}^{z}(z)=\frac{1}{2}\left(V_{n+j}(z)+\widetilde{V}_{n+j}(z)\right)
$$

and

$$
V_{n+j}^{a}(z)=\frac{1}{2}\left(V_{n+j}(z)-\widetilde{V}_{n+j}(z)\right)
$$

satisfy the symmetric and the antisymmetric relation, respectively.

Let $G_{i}(z)$ be a non-trivial limit function of Green function $g\left(z, p_{m}^{(i)}\right)$ of Ω. Then, by Lebesgue's theorem and the relative null-boundary property of $\Omega, \int_{\Gamma} \frac{\partial}{\partial \nu} g\left(z, p_{m}^{(i)}\right) d s=2 \pi$ is valid, by which and by Fatou's theorem we have

$$
0<\int_{\Gamma} \frac{\partial}{\partial \nu} G_{i}(z) d s \leqq 2 \pi
$$

Therefore $Q_{\Omega} \geqslant G_{\Omega}$ holds. Thus the results in section 2 remain valid for G_{Ω}.

We shall now investigate the correspondence between G_{Ω} and $P_{\widehat{\Omega}}$ by the S operation. Any member $w(z)$ of Q_{Ω} which subjects to the symmetric or anti-symmetric relation does not correspond to any member of G_{Ω}. Assume that S_{w} is symmetric, that is, $S_{w}(z)$ $=S_{w}\left({ }^{z}\right)$. Then we see that

$$
\bar{S}_{w}^{(n)}(\bar{z})=S_{w}^{(n)}(z)
$$

and hence $\bar{S}_{w}(\tilde{z})=S_{W}(z)$ 。
Since $S_{w}(z)=0 \quad, \bar{S}_{w}(z)=0 \quad$ holds,
which leads to a contradiction, that is, $S_{W} \equiv 0$ - For any anti-symmetric function the proposition is evidently valid. In the sequel the above properties which will play an important role will be more precisely investigated.

Let $\left\{W_{j}\right\}, j=1, \cdots, p$, be a set of generators of G_{Ω}, then W_{j} $=c_{j} V_{n+j}^{a}, c_{j}>0$ holds. In the sequel we may choose $\left\{v_{n+j}^{a}\right\}$ as a set of generators of G_{Ω} and we denote this by $\left\{W_{j}\right\}$ 。

Let $S_{W_{j}}$ be equal to a linear combination

$$
\sum_{i=1}^{n} a_{i j} v_{i}+\sum_{k=1}^{p} b_{k j z} v_{n+k}+\sum_{l=1}^{p} c_{l j} \widetilde{v}_{n+l}
$$

with non-negative coefficients $a_{i j}$, $b_{k j}$ and $c_{2 j}$. If $a_{i j}>0$ happens, then $V_{i}=0$ holds, from which $\bar{V}_{i}=0$ is deduced, since $\bar{V}_{i}(\widetilde{Z})=\underline{V}_{i}(Z)$ and $\bar{V}_{i}(\widetilde{Z})=\bar{V}_{i}(z) \quad$ remain valid by the symmetricity of $V_{i}(z)$. Hence we see that $V_{i}(z) \equiv 0$ holds, which is contradictory. If $b_{k j}>0$ and $c_{k j}>0$ occur simultaneously for a fixed index k, then

$$
\underline{V}_{n+k} \equiv 0 \quad \text { and } \quad \widetilde{V}_{n+k} \equiv 0
$$

hold and these lead to $V_{n+k} \equiv 0$, which is also absurd. Thus, for a function $S_{W_{i}}$, its linear representation by a set of generators of $\mathrm{P}_{\widehat{\Omega}}$ connot contain both functions V_{n+k} and \widetilde{V}_{n+k} simultaneously. However there remains a possibility: A member $S_{W}(z)$ contains V_{n+k} and does not contain \widetilde{v}_{n+k} in its positively linear representation but another member $S_{U}(z)$ contains $\widetilde{\mathrm{V}}_{n+k}$ and does not contain $\mathrm{V}_{\mathrm{n}+\mathrm{R}}$ in its positively linear representation for suitably chosen two members $W(z)$ and $U(z)$ of G_{Ω}. But $S_{W+U^{(z)}}$ is also a corresponding member of $W(z)+U(z) \in G_{\Omega}$ by S operation. Thus the above possibility is now rejected.

If $\widetilde{\mathrm{V}}_{n+6}$ is contained in the positively linear representation of an element of $\left\{S_{W}\right\}, W \in G_{\Omega}$, then $\widetilde{Y}_{n+k} \equiv 0$ and hence $\bar{V}_{n+k}=0^{\prime}$ holds. On the other hand $\bar{v}_{n+k} \geq T_{v_{n+k}}$ on
Ω ，which implies that $\mathrm{T}_{\mathrm{V}_{n+k}}=0$ and $\mathrm{V}_{n+k}^{a} \equiv 0$ ．This is absurd．Thus $\widetilde{\mathrm{V}}_{n+\text { re }}$ cannot be contained in any positively linear representation of any element of $\left\{S_{w}\right\}$ ．

Let $[V]$ and $[8]$ are two closed convex cones spanned by V_{n+k} ， $k=1, \cdots, p$ and $S_{w_{j}}, j=1, \cdots, p$ ， respectively，with non－negative coef－ ficients．Then each of these is a linear space of dimension p and $[\vartheta]$ $\supseteq[\delta]$ ．If $[\vartheta]$ 平 $[\delta]$ ，that is， there exists a member $V \in[\vartheta\}], \notin[\mathcal{S}]$ then we have

$$
V=\sum_{k=1}^{p} a_{k} V_{n+k}, \quad a_{k} \geqq 0
$$

and

$$
V=\sum_{k=1}^{p} b_{k} S_{w_{k}}
$$

with some negative numbers b_{k} ． $T_{V}=\sum_{k=1}^{T} b_{k} w_{k}$ holds and hence $T_{V}(z)<0$ for some Z on Ω by the minimality of $W_{k}, k=1, \cdots, p$ 。 However T_{V} $=\sum_{k=1}^{p} a_{f f} T_{V_{n+k}}>0$ for any point z on Ω ．

This is absurd．Therefore we see that any extremal of a closed convex cone ［ \＆］coincides with a suitable ex－ tremal of a closed convex cone［ V ］ and this coincidence is one－to－one and onto as a whole．

Next we shall show that $S_{V_{n+k}^{a}}=c_{k} V_{n+k}$ for any t．In fact，if we suppose that $S_{V_{n+1}^{a}}=c_{1} V_{n+2}$ ，then $T S_{V_{n+1}^{a}}=V_{n+1}^{a}$ and $\mathrm{T}_{\mathrm{V}_{n+2}} \geqq \mathrm{~V}_{n+2}^{a}$ imply that $\mathrm{V}_{n+1}^{a}=k V_{n+2}^{a}$ ， which is to be rejected．

4．We shall now proceed to our first goal，that is，

$$
Q_{\Omega}=G_{\Omega}
$$

Assume that $Q_{\Omega} \supsetneq G_{\Omega}$ ，then there is at least one generator of Q_{Ω} ， say U ，which does not belong to G_{Ω} ．And $S_{U} \in P_{\widehat{\Omega}}$ by $\S 2$ and s operation gives no effect to the linear independency．Therefore S_{U} does not
belong to a closed convex cone［t］ and hence S_{U} can be expressed as a linear combination

$$
\sum_{i=1}^{n} a_{i} v_{i}+\sum_{k=1}^{p} b_{k=} v_{n+k}+\sum_{l=1}^{p} c_{l} \tilde{v}_{n+l}
$$

with at least one positive coefficient among a_{i} and c_{ℓ} ．However this positivity of at least one coef－ ficient leads to a concradiction by a method used in \＄3．（This procedure is evidently allowable for Q_{Ω} instead of G_{Ω} ．）Thus $S\left(Q_{\Omega}\right)$ coincides with $S\left(G_{\Omega}\right)$ ，which implies that

$$
Q_{\Omega}=T S\left(Q_{\Omega}\right) \cong T S\left(G_{2}\right)=G_{\Omega}
$$

Therefore we have the desjed result：

$$
\text { Theorem \&. } Q_{\Omega}=G_{\Omega} \text {. }
$$

An intrinsic but equivalent defi－ nition of harmonic dimension of Ω in our sense may now be explatned as follows：

A maximal cardinal number of linear－ I．y independent functions Viz：beine positive harmonic on ，wanishing identically on Γ and subjecting to a condition

$$
0<\int_{\Gamma} \frac{\partial}{\partial \nu} V(z) d s<\infty \text {, }
$$

is called a harmonic dimension of 32 ．
We should now mention a remarkable fact：

If V belongs to the X－class of an extended C－end in our previous paper［2］，then there holds

$$
\int_{\Gamma} \frac{\partial}{\partial \nu} V d s=\infty
$$

5．Class $[\Omega$,$] 。$
Let $[\Omega, \widehat{\Omega}]$ be a family of positive harmonic functions on Ω with vanishing boundary value on Γ for which the S operation has its sense，that is，S_{U}丰 ∞－Then $[\Omega, \widehat{\Omega}]$ coincides with G_{Ω} ，that is，G_{Ω} is a maximal set on which the S operation has the sense．

This is similarly verified by the method in §4．However we shall give here another proof for more general fact．

Let $\left[\Omega, \Omega_{1}\right]$ denote a family of positive harmonic functions on Ω with vanishing boundary value on Γ for which the S operation has the sense. S and T operations are similarly defined as in $\S 2$ between G_{Ω} and $P_{\Omega_{1}}$, where $P_{\Omega_{1}}$ is a class of positive harmonic functions on Ω_{1} with vanishing boundary value on the compact relative boundary of Ω_{1}. Of course, Ω_{1} is an end in Heins ' sense such that $\Omega_{1} \supset \Omega$.

Does $\left[\Omega, \Omega_{1}\right]$ coincide with $[\Omega, \widehat{\Omega}]$?

- We shall devote this section to this question.

Lemma. If V is a minimal positive harmonic function of $P_{\Omega_{1}}$, then $S T_{V}$ $=V$, that is, $S \circ T=1$, unless $T_{V} \equiv 0$ 。

Proof. Let $\mathrm{T}_{\mathrm{V}} \neq 0$, then $0 \nsubseteq \mathrm{~T}_{\mathrm{V}}$ $\nsubseteq \mathrm{ST}_{\mathrm{V}} \leqq \mathrm{V}$, since $\mathrm{T}_{\mathrm{V}}^{n} \leqq \overline{\mathrm{~V}}^{(n)} \leqq \mathrm{V}$

By the minimality of $v, k v=S T_{v}$ is valid for a suitable positive $k(\leqq 1)$. If $0<k<1$, then $k^{m} v=(S T)_{V}^{m}$ is valid for any m. Of course, we shall put $\operatorname{STST} \cdots \mathrm{ST}_{V}=(S T)_{V}^{m}$ in the above rem lation, and then we make use of $T 0 S=1$ 。 Hence we obtain $k^{m} v=S T v$. Let m tend to infinity, then $S T_{V} \equiv 0$ which implies that $\mathrm{T}_{V} \equiv 0$. This is absurd. Thus t must be equal to 1 and hence $S T_{V}=V$ is valid.

Let $\left\{\boldsymbol{V}_{\mathfrak{j}}\right\}_{j=1, \cdots, m}$ be a maximal set of minimals in $\mathrm{P}_{\Omega_{1}}$ such that $\mathrm{T}_{\mathrm{v}_{j}} \neq 0$ and $[\vartheta]$ be a closed convex cone spanned by $\left\{V_{j}\right\}$ with non-negative coefficients. Let $\left\{W_{l}\right\}_{\ell=1, \ldots, p}$ be a set of minimals generating \dot{G}_{Ω} and $[\omega] \equiv G_{\Omega}$. Let $[\mathcal{I}]$ be the image of [V] by T operation. Let $[\&]$ be an image of $G_{, \Omega}$ by S operation, then it is also a closed convex cone of dimension p.

Any function of $[\mathcal{B}]$ can be uniquely determined by a linear combination

$$
\begin{gathered}
S_{W}=\sum_{j=1}^{m} a_{j} v_{j}+\sum_{i=1}^{q} b_{i} u_{i}, \\
a_{j} \geq 0, \quad b_{i} \geq 0
\end{gathered}
$$

where $u_{i} \notin[\vartheta], \in P_{\Omega_{2}}$ but u_{i} is minimal in $P_{\Omega_{1}}$. Therefore we see that, by the above Lemma,

$$
S_{W}=S T S_{W}=S\left(\sum_{j=1}^{m} a_{j} T_{v_{j}}\right)=\sum_{j=1}^{m} a_{j} v_{j}
$$

that is, b_{i} are all zero. Hence [8] $\subseteq[\vartheta]$, which leads to $[W] \subseteq[d]$.

Since w_{l} is a minimal in G_{Ω},

$$
S_{W_{l}}=\sum_{j=1}^{m} a_{j l} v_{j}
$$

$$
W_{\ell}=\sum_{j=1}^{m} a_{j \ell} T_{v_{j}}, \quad a_{j \ell} \geqq 0
$$

leads to a fact that

$$
W_{l}=a_{j l} T_{V_{j}}, \quad a_{j l}>0
$$

is valid with a suitable index j and all the coefficients except a_{y} reduce to zero. Therefore, if we change the indices of $a_{j e}$ and ' T ' ${ }_{v j}$ by the above correspondence, then we may write as

$$
w_{\ell}=a_{\ell} T_{v_{\ell}}
$$

Evidently this correspondence, which is considered as the one extended onto [W] in the positively linear manner, is one-to-one and onto mapping between $\left[W^{\prime}\right]$ and $[\mathcal{T}]$. Thus $\left[\mathcal{W}^{\prime}\right] \equiv[d$.

By the definition $[\mathscr{T}] \subseteq\left[\Omega, \Omega_{1}\right]$. On the other hand $\left[\Omega, \Omega_{1}\right] \subseteq[\mathcal{I}]$. The verification of this fact is similar as that of $[\mathcal{W}] \subseteq[\mathscr{C}]$. Hence we see that

$$
G_{\Omega}=[W]=[d]=\left[\Omega, \Omega_{1}\right]
$$

This relation shows that G_{Ω} is also a maximal set on which S operation has the sense, where S transfers G_{s} into $P_{\Omega_{1}}$.

Theorem 2. $G_{\Omega} \equiv\left[\Omega, \Omega_{1}\right]$, and S operation preserves the minimality, if it has the sense.
6. Let Ω_{1} and Ω_{2} be two extended C-ends such that $\Omega_{1} \subset \Omega_{2}$. Between Ω_{1} and Ω_{2} we can similarly define the S and T operations. Let $\left[\Omega_{1}, \Omega_{2}\right]$ be a maximal set of positive harmonic functions on Ω_{1} with vanishing boundary value for which S operation has the sense. In general, $\left[\Omega_{1}\right.$, $\left.\Omega_{2}\right]$ does not coincide with $\left[\Omega_{1},\right]$ $\equiv G_{\Omega_{1}}$. Let $[\vartheta]$ be a closed convex cone spanned by 311 the minimals
on Ω_{2} for which T operation has the sense.

Theorem 3. $\mathrm{T}([\vartheta])$ - the T image of $[\vartheta]$ - coincides with $\left[\Omega_{1}, \Omega_{2}\right]$ and S operation preserves the minimality if it has the sense.

It will be unnecessary to state a detailed proof, since the proposition can be similarly deduced as in theorem 2.

This new class $\left[\Omega_{1}, \Omega_{2}\right]$ and its dimension - relative harmonic dimension - shall throw a new light to the structure of the ideal boundary.

References

M.Heins. Riemann surfaces of infinite genus. Ann. of Math. 55(1952), pp. 296-317.
Z.Kuramochi. In press.
M.Ozawa, [1] On harmonic dimension. There Reports. 1954 No.2, pp.3337.
[2] On harmonic dimension. II. These Reports. 1954 No.2, pp.5558.

Department of Mathematics, Tokyo Institute of Technology.
(*) Received September 25, 1954。

CORRECTIONS TO THE PREVIOUS PAPER "ON HARMONIC DIMENSION II"
These Reports, No. 2, 1954. pp. 55-58.

By Mitsuru OZAWA

Page 57, the right part, line 16. For "value $\frac{b}{\partial v}\left(v_{1}-v_{2}\right) ; v_{1}, v_{2} \in Q_{\Omega} . "$ read "value $\frac{\partial}{\partial \nu}\left(v_{1}-v_{2}\right)$ on γ and $\frac{\partial u}{\partial \nu}=0$ on $\Gamma-\gamma ; v_{1}, v_{2} \in Q_{\Omega}$, where we shall fix a local parameter induced by the hearmonic measure $\omega(z, \gamma, \Omega)$ such that $\omega=1$ on γ and $=0$ on $\Gamma-\gamma$."

Page 57, the right part, line 1423. Another proof may be carried out as follows: Let $X \in S_{\Omega}$ such that

$$
\begin{array}{cc}
X=\frac{\frac{\partial v_{2}}{\partial \nu}}{\frac{\partial v_{1}}{\partial \nu}} & \text { on } \gamma \\
\frac{\partial}{\partial \nu} X=0 & v_{1}, v_{2} \in Q_{\Omega} \\
\text { on } \Gamma-\gamma,
\end{array}
$$

then we see

$$
\begin{aligned}
& \int_{\gamma}(1-X)^{2} \frac{\partial v_{1}}{\partial v} d s \\
& \quad=-1+\int_{\gamma}^{\gamma} X \frac{\partial v_{2}}{\partial \nu} d s \\
& =-1+\int_{\gamma}^{\gamma} X \frac{\partial v_{1}}{\partial \nu} d s \\
& =-1+\int_{\gamma} \frac{\partial v_{2}}{\partial \nu} d s \\
& \quad=0,
\end{aligned}
$$

which leads to the desired fact $v_{1} \equiv v_{2}$. This proof is the same as in Heins' proof. (Cf. Heins, Riemann surfaces of infinite genus. Ann. of Math. 55(1952) 296-317. Theorem 11.2.)

