By Mitsuru OZAWA

A definition of harmonic dimension for any extended C-end has been given in our previous paper [1]. A principal aim of the present note is to establish that a class of positive harmonic functions with some restrictions is maximal in certain sense and to give another but equivalent definition of harmonic dimension for any extended C-end which is a natural consequence of the maximality. This new formulation is more convenient to the various purposes and more intrinsic in some senses than the former one.

1. Let Ω be an extended C-end having Γ as its non-compact analytic relative boundary. (Cf. Ozawa [1].) Let $g(z,p_m)$ be the Green function of Ω with pole at p_m . The harmonic dimension dim(Ω) or CH(Ω) of Ω means a maximal cardinal number of linearly independent limit functions lim $g(z,p_m)$ which is non-trivial on

 Ω , where the limiting process $m\to\infty$ is taken along a suitable non-compact sequence $\{p_m\}$. Let $G_{\mathbf{n}}$ be a set of any linear combinations of such limit functions, with positive coefficients, each element of which is positive on Ω .

Let Q_{Ω} be a family of positive harmonic function w on Ω , vanishing identically on Γ , and subjecting to a condition

 $0 < \int_{\Gamma} \frac{\Im}{\Im^{\nu}} W \, ds < \infty.$

Let $\widehat{\Omega}$ — an end in Heins' sense — mean a doubled domain of Ω , symmetric with regard to $\Gamma - \mathbf{T}$, γ being a compact part of Γ . $\widehat{\Box}$ means, in general, the symmetric configuration of a configuration \Box with respect to $\Gamma - \sigma$. Then $\widehat{\Omega} = \Omega + \widehat{\Omega}$ $+ (\Gamma - \tau)$. Let $P_{\widehat{\Omega}}$ be a family of positive harmonic functions on $\widehat{\Omega}$ with vanishing boundary value on $\tau + \widetilde{\tau}$. Let $\{F_n\}_{n=0,1,\cdots}$ be an exhaustion of symmetric surface F into which $\widehat{\Omega}$ is imbedded such that $F_{\bullet} = F - \widehat{\Omega}$ is compact and has $\overline{\tau} + \widetilde{\tau}$ as its compact relative boundary. Here F and F_n are supposed to be symmetric with respect to $\Gamma - \overline{\tau}$. Let C_n ($\neq \overline{\tau} + \widetilde{\tau}$) denote a relative boundary of F_n and let $\overline{\tau}_n = C_n \cap \Omega$, $\widetilde{\tau}_n = C_n \cap (F - \Omega)$ and $\Gamma_n = \Gamma_0 F_n$, $\Omega_n = \Omega_0 F_n$.

2. S and T operations. Methods and results in this section are due to Kuramochi who has solved affirmatively our unsolved problem II in our previous paper [1] and related problems. For completeness we shall explain his procedure with a slight modification.

Let W(z) be any member of Q_{Ω} . Let Wⁿ(z) be a function bounded and harmonic on $F_n - F_o$ satisfying the following conditions: Wⁿ(z) = 0 for $\tau + \tilde{\tau} + \tilde{\tau}_n$ and = W(z) for τ_n . Then evidently Wⁿ(z) \geq W(z) holds on Ω_n , and therefore this leads to a fact that

$$\int \frac{\partial}{\partial v} \left(W^n(z) - W(z) \right) \geq 0$$
 on \mathfrak{T}_n

and

$$\frac{\partial}{\partial \nu} W^n(z) \ge 0 \qquad \text{on} \quad \widetilde{v}_n + \tau + \widetilde{\tau}.$$

Hence we see that

$$\infty > M = \int_{\Gamma} \frac{\Im}{\Im v} W(z) ds$$

$$\geq \int_{\Gamma_{n}} \frac{\Im}{\Im v} W(z) ds = -\int_{\widetilde{T}_{n}} \frac{\Im}{\Im v} W(z) ds$$

$$\geq -\int_{\widetilde{T}_{n}} \frac{\Im}{\Im v} W^{n}(z) ds = \int_{\widetilde{T} + \widetilde{T} + \widetilde{T}_{n}} \frac{\Im}{\Im v} W^{n}(z) ds$$

$$> \int_{\widetilde{T} + \widetilde{T}} \frac{\Im}{\Im v} W^{n}(z) ds .$$

Moreover we see easily that $W^n(z)$. $\geq W^m(z)$, for n > m on Ω_m . There-

fore $\{W^{n}(z)\}$ has a limit harmonic function $\lim_{n \to \infty} W^{n}(z) = S_{W}(z)$, which belongs to $\mathsf{P}_{\widehat{\mathbf{n}}}$. This operation S : $W \to S_W$ is a positively linear mapping from $Q_{\mathbf{n}}$ into $P_{\widehat{\mathbf{n}}}$.

Let $U(z) \in P_{\Omega}$, then we define a bounded harmonic function $U^n(z)$ on Ω_n such that $U^n(z) = 0$ on Γ_n and $= U(z) \quad \text{on } \tau_n \quad \text{we can easily see} \\ \text{that } U^n(z) \leq U^m(z) \quad \text{if } n > m. \text{ There-} \\ \text{fore } \lim_{z \to \infty} U^n(z) \quad \text{exists and is either} \\ \end{array}$

the constant zero or a positive harmonic function on Ω . If $T_{r_{r_{i}}}(z)$

= $\lim_{n \to \infty} U^n(z) \neq 0$, then U(z) is said to belong to $P_{\widehat{\Omega}}(\Omega)$.

Let $U(z) \equiv S_W(z)$, then $S_W(z) \in P_{\Omega}(\Omega)$ and $TS_W(z) = W(z)$. In fact, $S_W(z) > W''(z)$ holds for any n. And we see that

. . . .

$$S_{W}^{(z)} - U^{n}^{(z)} = S_{W}^{(z)}$$

on Γ_{n}
= 0 on τ_{n}

and

 $W^{n}(z) - W(z) = W^{n}(z)$ on Γ_n , = 0 on γ_n ,

which infers that

$$S_{W}(z) - U^{n}(z) \geq W^{n}(z) - W(z)$$

on Ω_n .

Thus we see that

$$S_{w} - TS_{w} \ge S_{w} - W$$

and

remain valid on Ω . Next we see that

$$\bigcup^{n}(z) = S_{W}^{n}(z) \geq W(z)$$
on \mathfrak{T}_{n}

and

$$\bigcup^{n}(z) = W(z) = 0$$

on Γ_m ,

,

which implies that on Ω . Therefore we see that $T \circ S = I$ for any $W \in Q_{\Omega}$

Let $\{W_i\}$ be a set of linearly independent positive harmonic functions belonging to Q_{Ω} , then $\{S_{W_i}\}$ is also a set of linearly independent elements of $P_{\widehat{\Omega}}$. In fact, supposing that $\Sigma c_i S_{W_i} = 0$, we have $\Sigma e_j S_{W_j} = \Sigma d_2 S_{W_k}$, $e_j \ge 0$, $l \neq j$, $l \neq j$, $\Sigma e_j T S_{W_j} = \Sigma d_2 T S_{W_k}$

and $0 = \sum c_i T S_{W_i} = \sum c_i W_i$, which implies that all the c_i vanish. Thus a set $\{S_{W_i}\}$ spans a linear subspace of $P_{\widehat{a}\widehat{a}}$ whose dimension is equal to the harmonic dimension $\dim(ilde{\Omega}$) of Ω .

Let $\overline{S}_w^{(n)}$ and $\underline{S}_w^{(n)}$ be two related harmonic functions such that = (n)

$$S_{W}^{(m)} = 0 \quad \text{on} \quad \widetilde{\mathfrak{r}}_{n} + \mathfrak{r} + \widetilde{\mathfrak{r}}$$
$$= S_{W} \quad \text{on} \quad \mathfrak{r}_{n}$$

and

 $\underline{S}_{W}^{(n)} = S_{W}$ on $\widehat{\tau}_{n}$, $= 0 \quad \text{on} \quad \mathfrak{T}_n + \mathfrak{T} + \widetilde{\mathfrak{T}}$

Evidently we have

$$S_{\mathbf{w}} = \overline{S}_{\mathbf{w}}^{(n)} + \underline{S}_{\mathbf{w}}^{(n)}$$

and

$$S_{w} = \overline{S}_{w} + \underline{S}_{w} ,$$

$$\overline{S}_{w} = \lim_{n \to \infty} \overline{S}_{w}^{(n)}, \quad \underline{S}_{w} = \lim_{n \to \infty} \underline{S}_{w}^{(n)}.$$

On the other hand, we see that $\overline{S}_{w}^{(n)} \geq W^{n},$

whence follows

 $\tilde{S}_{w} \geq S_{w}$.

Moreover $S_w \geq \overline{S}_w$ is evidently valid, from which we see that

$$S_w = \overline{S}_w$$

Thus we have

$$\underline{S}_{w} \equiv 0$$

3. We shall now restate a fact which has been proved in our previous paper [2]. Any member of the family P_{Ω} can be generated as a uniquely determined linear combination by a set of generators V_1 , ..., V_n , V_{n+1} , \widetilde{V}_{n+1} , ..., V_{n+1} , \widetilde{V}_{n+1} , ..., V_{n+1} , p = dim(Ω), which satisfy the following conditions:

$$V_{i}(z) = V_{i}(\widetilde{z}) , \quad i = 1, \dots, n,$$
$$\widetilde{V}_{n+\frac{1}{2}}(z) \equiv V_{n+\frac{1}{2}}(\widetilde{z}), \quad j = 1, \dots, p.$$

From these we see that the functions defined by

$$\mathbf{V}_{n+j}^{*}(z) = \frac{1}{2} \left(\mathbf{V}_{n+j}(z) + \widetilde{\mathbf{V}}_{n+j}(z) \right)$$

and

$$V_{n+j}^{a}(z) = \frac{1}{2} \left(V_{n+j}(z) - \widetilde{V}_{n+j}(z) \right)$$

satisfy the symmetric and the antisymmetric relation, respectively.

Let $G_4(z)$ be a non-trivial limit function of Green function $g(z, p_m^{(i)})$ of Ω . Then, by Lebesgue's theorem and the relative null-boundary property of Ω , $\int_{\Gamma} \frac{\Im}{\Im^{\vee}} g(z, p_m^{(i)}) ds = 2\pi$

is valid, by which and by Fatou's theorem we have

$$0 < \int_{\Gamma} \frac{\partial}{\partial y} G_{i}(z) ds \leq 2\pi$$

Therefore $Q_n \ge G_n$ holds. Thus the results in section 2 remain valid for G_n .

We shall now investigate the correspondence between G_{Ω} and P_{Ω} by the S operation. Any member w(z) of Q_{Ω} which subjects to the symmetric or anti-symmetric relation does not correspond to any member of G_{Ω} . Assume that S_{W} is symmetric, that is, $S_{w}(z) = S_{w}(\tilde{z})$. Then we see that $\overline{S}_{w}^{(m)}(\tilde{z}) = S_{w}^{(m)}(z)$ and hence $\overline{S}_{w}(\tilde{z}) = S_{w}(z)$. Since $\underline{S}_{w}(z) = 0$, $\overline{S}_{w}(z) = 0$ holds,

which leads to a contradiction, that is, $S_W \equiv 0$. For any anti-symmetric function the proposition is evidently valid. In the sequel the above properties which will play an important role will be more precisely investigated.

Let $\{W_i\}$, $j=1, \cdots, p$, be a set of generators of G_{Ω} , then W_j = $c_j V_{n+j}$, $c_j > 0$ holds. In the sequel we may choose $\{V_{n+j}\}$ as a set of generators of G_{Ω} and we denote this by $\{W_j\}$.

Let S_{w_j} be equal to a linear combination

$$\sum_{i=1}^{n} a_{ij} V_{i} + \sum_{k=1}^{p} b_{kj} V_{n+k} + \sum_{l=1}^{p} c_{lj} \widetilde{V}_{n+l}$$

with non-negative coefficients a_{ij} , b_{kj} and c_{2j} . If $a_{ij} > 0$ happens, then $\underline{V}_i = 0$ holds, from which $\overline{v}_i = 0$ is deduced, since $\overline{v}_i(\overline{z}) = \underline{V}_i(z)$ and $\overline{V}_i(\overline{z}) = \overline{V}_i(z)$ remain valid by the symmetricity of $v_i(z)$. Hence we see that $V_i(z) \equiv 0$ holds, which is contradictory. If $b_{kj} > 0$ and $c_{kj} > 0$ occur simultaneously for a fixed index $\mathbf{\hat{x}}$, then

$$\underline{V}_{n+k} \equiv 0$$
 and $\underline{\widetilde{V}}_{n+k} \equiv 0$

hold and these lead to $V_{n+\text{R}}\equiv 0$, which is also absurd. Thus, for a function S_{w_i} , its linear representation by a set of generators of $P_{\widehat{\Omega}}$ connot contain both functions V_{n+k} and \widetilde{V}_{n+k} simultaneously. However there remains a possibility: A member $S_{\mathbf{w}}(\mathbf{x})$ contains V_{n+k} and does not contain $\widetilde{\nu_{n+k}}$ in its positively linear representation but another member $S_{U}^{(z)}$ contains \widetilde{v}_{n+k} and does not contain Vn+t in its positively linear representation for suitably chosen two members W(z) and U(z) of G_{Ω} . $S_{w+u}(z)$ is also a corresponding member of $W(z) + U(z) \in G_{\Omega}$ by S operation. Thus the above possibility is now rejected.

If \widetilde{V}_{n+k} is contained in the positively linear representation of an element of $\{\widetilde{S}_w\}$, $w \in G_{\Omega}$, then $\widetilde{Y}_{n+k} = 0$ and hence $\widetilde{V}_{n+k} = 0$ holds. On the other hand $\widetilde{V}_{n+k} \ge T_{V_{n+k}}$ on Ω , which implies that $T_{v_{n+k}}\equiv o$ and $v_{n+k}^{\alpha}\equiv o$. This is absurd. Thus \widetilde{v}_{n+k} cannot be contained in any positively linear representation of any element of $\left\{S_w\right\}$.

Let $[\mathcal{V}]$ and $[\mathcal{S}]$ are two closed convex cones spanned by v_{n+k} , $k=1,\cdots, r$ and $S_{W_i}, j=1,\cdots, r$, respectively, with non-negative coefficients. Then each of these is a linear space of dimension p and $[\mathcal{V}]$ $\geq [\mathcal{S}]$. If $[\mathcal{V}] \geq [\mathcal{S}]$, that is, there exists a member $V \in [\mathcal{V}], \notin [\mathcal{S}]$, then we have

$$V = \sum_{k=1}^{\mathbf{P}} a_k V_{n+k} , \quad a_k \ge 0$$

and

 $V = \sum_{k=1}^{p} b_{k} S_{W_{k}}$

with some negative numbers $b_{\mathcal{R}}$. $T_V = \sum_{k=1}^{T} b_k W_k \quad \text{holds and hence } T_V^{(z)} < 0$

for some ${\mathbb Z}$ on ${\Omega}$ by the minimality of W_{{\bf k}} , ${\bf k}=1,\cdots,p$. However T_V

= $\sum_{k=1}^{p} a_k T_{V_{n+k}} > 0$ for any point z on Ω .

This is absurd. Therefore we see that any extremal of a closed convex cone [S] coincides with a suitable extremal of a closed convex cone [\mathcal{V}] and this coincidence is one-to-one and onto as a whole.

Next we shall show that $S_{V_{n+k}^{\alpha}=\,^{C}e^{V_{n+k}}}$

for any **%**. In fact, if we suppose

that $S_{V_{n+1}^{\alpha}} = c_1 V_{n+2}$, then $TS_{V_{n+1}^{\alpha}} = V_{n+1}^{\alpha}$ and $T_{V_{n+2}} \ge V_{n+2}^{\alpha}$ imply that $V_{n+1}^{\alpha} = \& V_{n+2}^{\alpha}$, which is to be rejected.

4. We shall now proceed to our first goal, that is,

$$Q_{\Omega} = G_{\Omega}$$
.

Assume that $Q_{\Omega} \not\cong G_{\Omega}$, then there is at least one generator of Q_{Ω} , say U, which does not belong to G_{Ω} . And $S_{U} \in P_{\widehat{\Omega}}$ by §2 and S operation gives no effect to the linear independency. Therefore S_{U} does not belong to a closed convex cone [5] and hence $S_{\mathbf{U}}$ can be expressed as a linear combination

$$\sum_{i=1}^{n} a_i V_i - \sum_{k=1}^{p} b_k V_{n+k} + \sum_{l=1}^{p} c_l \widetilde{V}_{n+l}$$

with at least one positive coefficient among α_i and c_ℓ . However this positivity of at least one coefficient leads to a contradiction by a method used in §3. (This procedure is evidently allowable for Q_{Ω} instead of G_{Ω} .) Thus $S(Q_{\Omega})$ coincides with $S(G_{\Omega})$, which implies that

$$Q_{\Omega} = \mathsf{TS}(Q_{\Omega}) \subseteq \mathsf{TS}(G_{\mathcal{A}}) = G_{\Omega}.$$

Therefore we have the desired result:

Theorem 1. $Q_{\Omega} = G_{\Omega}$.

An intrinsic but equivalent definition of barmonic dimension of Ω in our sense may now be explained as follows:

A maximal cardinal number of linear-ly independent functions V(2) , being positive harmonic on Ω , vanishing identically on Γ and subjecting to a condition

$$0 < \int \frac{\partial}{\partial v} V(z) \, ds < \infty$$

is called a harmonic dimension of Ω .

We should now mention a remarkable fact:

If V belongs to the X -class of an extended C-end in our previous paper [2], then there holds

$$\int_{\Gamma} \frac{\partial}{\partial v} \sqrt{ds} = \infty$$
5. Class [Ω,].

Let $[\Omega, \widehat{\Omega}]$ be a family of positive harmonic functions on Ω with vanishing boundary value on Γ for which the S operation has its sense, that is, S_{ν} $\neq \infty$. Then $[\Omega, \widehat{\Omega}]$ coincides with G_{Ω} , that is, G_{Ω} is a maximal set on which the S operation has the sense.

This is similarly verified by the method in § 4. However we shall give here another proof for more general fact.

Let $[\Omega, \Omega_1]$ denote a family of positive harmonic functions on Ω with vanishing boundary value on Γ for which the S operation has the sense. S and T operations are similarly defined as in §2 between G_{Ω} and P_{Ω_1} , where P_{Ω_1} is a class of positive harmonic functions on Ω_1 with vanishing boundary value on the compact relative boundary of Ω_1 . Of course, Ω_1 is an end in Heins' sense such that $\Omega_1 \supset \Omega$.

Does $[\Omega, \Omega_1]$ coincide with $[\Omega, \widehat{\Omega}]$?

We shall devote this section to this question.

Lemma. If v is a minimal positive harmonic function of P_{Ω_1} , then ST_v = v , that is, $S\circ T=I$, unless T_v = o .

Proof. Let $T_v \neq o$, then $0 \notin T_v$ $\notin ST_v \notin v$, since $T_v^n \notin \overline{v}^{(n)} \notin v$.

By the minimality of v , $\&v = ST_v$ is valid for a suitable positive $\&(\leq 1)$. If o < & < 1 , then $\&''v = (ST)''_v$ is valid for any m . Of course, we shall put $STST \cdots ST_v = (ST)''_v$ in the above relation, and then we make use of $T \circ S = I$. Hence we obtain $\&''v = ST_v$. Let m tend to infinity, then $ST_v = 0$ which implies that $T_v \equiv 0$. This is absurd. Thus & must be equal to 1 and hence $ST_v = v$ is valid.

Let $\{V_i\}_{i=1,\cdots,m}$ be a maximal set of minimals in $P_{\Omega_{\lambda_i}}$ such that $T_{V_i} \neq 0$ and $[\mathcal{V}]$ be a closed convex cone spanned by $\{V_i\}$ with non-negative coefficients. Let $\{w_k\}_{k=1,\cdots,p}$ be a set of minimals generating G_{Ω_i} and $[\mathcal{W}] \equiv G_{\Omega_i}$. Let $[\mathcal{V}]$ be the image of $[\mathcal{V}]$ by T operation. Let $[\mathcal{S}]$ be an image of G_{Ω_i} by S operation, then it is also a closed convex cone of dimension p.

Any function of $[\mathfrak{S}]$ can be uniquely determined by a linear combination

$$S_{\mathbf{W}} = \sum_{j=1}^{m} a_{j} \mathbf{v}_{j} + \sum_{i=1}^{4} b_{i} u_{i},$$
$$a_{j} \ge 0, \quad b_{i} \ge 0,$$

where $u_i \notin [\mathcal{Y}], \in P_{\Omega_i}$, but u_i is minimal in P_{Ω_i} . Therefore we see that, by the above Lemma,

$$S_{\mathbf{w}} = STS_{\mathbf{w}} = S\left(\sum_{j=1}^{m} a_{j}T_{\mathbf{v}_{j}}\right) = \sum_{j=1}^{m} a_{j}\mathbf{v}_{j},$$

that is, b_i are all zero. Hence [3] $\leq [\mathcal{V}]$, which leads to $[\mathcal{W}] \leq [\mathcal{T}]$.

Since w_{ℓ} is a minimal in G_{Ω} , $S_{W_{\ell}} = \sum_{j=1}^{m} a_{j\ell} v_{j}$, $w_{\ell} = \sum_{j=1}^{m} a_{j\ell} T_{v_{j}}$,

leads to a fact that

$$W_{\ell} = a_{j\ell} T_{V_j} , \qquad a_{j\ell} > 0$$

is valid with a suitable index j and all the coefficients except $a_{j,\ell}$ reduce to zero. Therefore, if we change the indices of $a_{j,\ell}$ and T_{v_j} by the above correspondence, then we may write as

$$V_{g} = a_{g} T_{v_{o}}$$
.

Evidently this correspondence, which is considered as the one extended onto [\mathcal{W}] in the positively linear manner, is one-to-one and onto mapping between [\mathcal{W}] and [\mathcal{T}]. Thus [\mathcal{W}] \equiv [\mathcal{T}].

By the definition $[\mathcal{T}] \subseteq [\Omega, \Omega_1]$. On the other hand $[\Omega, \Omega_1] \subseteq [\mathcal{T}]$. The verification of this fact is similar as that of $[\mathcal{W}] \subseteq [\mathcal{T}]$. Hence we see that

$$\mathbf{G}_{\boldsymbol{\Omega}} = [\mathcal{W}] = [\mathcal{T}] = [\boldsymbol{\Omega}, \boldsymbol{\Omega}_{\mathbf{i}}],$$

This relation shows that G_{Ω} is also a maximal set on which S operation has the sense, where S transfers G_{Ω} into P_{Ω} .

<u>Theorem 2.</u> $G_{\Omega} = [\Omega, \Omega_1]$, and S operation preserves the minimality, if it has the sense.

6. Let Ω_1 and Ω_2 be two extended C-ends such that $\Omega_1 \subset \Omega_2$. Between Ω_1 and Ω_2 we can similarly define the S and T operations. Let $[\Omega_1, \Omega_2]$ be a maximal set of positive harmonic functions on Ω_1 with vanishing boundary value for which S operation has the sense. In general, $[\Omega_1, \Omega_2]$ does not coincide with $[\Omega_1, 1] = G_{\Omega_1}$. Let $[\mathcal{V}]$ be a closed convex cone spanned by all the minimals on $\Omega_{\mathbf{2}}$ for which T operation has the sense.

<u>Theorem 3.</u> $T([\mathcal{V}])$ — the T image of $[\mathcal{V}]$ — coincides with $[\Omega_i, \Omega_2]$ and S operation preserves the minimality if it has the sense.

It will be unnecessary to state a detailed proof, since the proposition can be similarly deduced as in theorem 2.

This new class $[\Omega_1, \Omega_2]$ and its dimension — relative harmonic dimension — shall throw a new light to the structure of the ideal boundary.

References

- M.Heins. Riemann surfaces of infinite genus. Ann. of Math. 55(1952), pp. 296-317.
 Z.Kuramochi. In press.
 M.Ozawa. [1] On harmonic dimension.
- These Reports. 1954 No.2, pp.55-58.

Department of Mathematics, Tokyo Institute of Technology.

(*) Received September 25, 1954.

CORRECTIONS TO THE PREVIOUS PAPER "ON HARMONIC DIMENSION II"

These Reports, No. 2, 1954. pp. 55-58.

By Mitsuru OZAWA

Page 57, the right part, line 16. For "value $\frac{\partial}{\partial y}(v_1 - v_2)$; $v_1, v_2 \in Q_{\Omega}$." read "value $\frac{\partial}{\partial y}(v_1 - v_2)$ on τ and $\frac{\partial u}{\partial y} \equiv 0$ on $\Gamma - \vartheta; v_1, v_2 \in Q_{\Omega}$, where we shall fix a local parameter induced by the harmonic measure $\omega(z, \tau, \Omega)$ such that $\omega = 1$ on τ and = 0 on $\Gamma - \tau$."

Page 57, the right part, line 14-23. Another proof may be carried out as follows: Let $X \in S_{\Omega}$ such that

$$X = \frac{\frac{\partial v_{q}}{\partial v}}{\frac{\partial v_{1}}{\partial v}} \quad \text{on } \mathcal{T}$$
$$\frac{\partial v_{1}}{\partial v} \quad v_{1}, v_{2} \in Q_{\Omega}$$
$$\frac{\partial}{\partial v} X = 0 \quad \text{on } \Gamma - \mathcal{T},$$

then we see

$$\int_{\gamma} \left(1 - X\right)^{2} \frac{\partial v_{1}}{\partial v} ds$$

$$= -1 + \int_{\gamma} X \frac{\partial v_{2}}{\partial v} ds$$

$$= -1 + \int_{\gamma} X \frac{\partial v_{1}}{\partial v} ds$$

$$= -1 + \int_{\gamma} \frac{\partial v_{2}}{\partial v} ds$$

$$= 0,$$

which leads to the desired fact $U_1 \equiv U_2$. This proof is the same as in Heins' proof. (Cf. Heins, Riemann surfaces of infinite genus. Ann. of Math. 55(1952) 296-317. Theorem 11.2.)