LINEAR FUNCTIONAL

By Hisaharu UMEGAKI

In this paper we shall introduce a stationary natural mapping in W*algebra generated by a two-sided representation of a D^* -algebra \mathcal{O} with a motion G (e.g. cf. [8]) - a D^* algebra of is mean by a normed*-algebra with an approximate identity and a motion G is mean by a group of *automorphisms on a (the motion has been introduced by Segal for C*-algebra). Next, applying the stationary natural mapping and the decomposition theorem of Segal (cf. Th.4 and its proof of [7]) we shall prove an ergodic decomposition of a G-stationary semitrace of separable OL under a restriction which generalizes an irreducible decomposition of finite semitrace (cf. Th.1 of [9], I), ergodic decomposition of G-stationary trace (cf. Th.6 of [8]) and ergodic decomposition of invariant regular measure on a compact metric space with a group of homeomorphisms (cf. Th. in App. II of [3] and Th.7 of [7]).

1. Let $\mathcal{O}l$ be a D^* -algebra with an approximate identity $\{e_{\alpha}\}_{\alpha \in D}$ and with a motion $G(= \{s\})$ i.e. D is a directed set and $e_{\alpha}^* = e_{\alpha}$, $\|e_{\alpha}\| \leq 1$ for all $\alpha \in D$, $\|e_{\alpha} \times -x\| \rightarrow 0$ for all $x \in \mathcal{O}l$, and any s, $t \in G$ are automorphisms on $\mathcal{O}l$ such that $\|x^{s}\| = \|xx\|, x^{s^{s}} = x^{s^{s}}$ and $(x^{s})^{t} = x^{s^{t}}$ for all $x \in \mathcal{O}l$. Let τ be a Gstationary semi-trace of $\mathcal{O}l$, i.e. τ is a linear functional on the selfadjoint subalgebra generated by $\{xy\}, x, y \in \mathcal{O}l$ $(i.e. \mathcal{O}l^2)$ such that $\tau(x^* \times) \geq 0$, $\tau(y^*) = \tau(x^y) = \tau(y^* x^*)$, $\tau((e_{\alpha}x)^{s}e_{\alpha}x) \xrightarrow{\alpha} \tau(x^* x)$, $\tau((x^*y)^*(xy)) \leq \|x\|^2 \tau(y^*y)$ and $\tau(x^{s}y^{s}) = \tau(x^{s}y)$ for all $x, y \in \mathcal{O}l$ and $s \in (\tau$.

Putting $\mathcal{N} = \{x \in \mathcal{O}\}; \tau(x^*x) = 0\}, \mathcal{N}$ is a two-sided ideal in \mathcal{O} . Let \mathcal{O}° be qoutient algebra of \mathcal{O} (= \mathcal{O}/\mathcal{N}) and for any $x \in \mathcal{O}$ let x° be the class containing x. Letting (x°, y°) = $\tau(y^*x)$ for all $x, y \in \mathcal{O}$, \mathcal{O}° is an incomplete Hilbert space. Let fy be competion of \mathcal{O}^{θ} . Putting $x^{\bullet}y^{\theta} = (xy)^{\theta}$, $x^{\flat}y^{\theta} = (yx)^{\theta}$ and $jy^{\theta} = y^{*\theta}$ for all x, $y \in \mathcal{O}$, jx^{*} , x^{\flat} , j, ξ^{\flat} defines a two-sided representation of \mathcal{O} . Moreover putting $u_{s}y^{\theta} = (y^{s})^{\theta}$ for all $s \in \mathcal{F}$ and $y \in \mathcal{O}$, $\{u_{s}, f_{T}\}$ is a dual unitary representation of \mathcal{G} . For, $(u_{s}y^{\theta}, x^{\theta}) =$ $(y^{s}^{\theta}, x^{\theta}) = \tau(x^{*}y^{s}) = \tau(x^{s^{-1}*}y) = (y^{\theta}, u_{s^{-1}}x^{\theta})$ and $u_{st}y^{\theta} = (y^{st})^{\theta} = u_{t}y^{s\theta} = u_{t}u_{s}y^{\theta}$. Then we have:

(1) $(x^{s})^{\alpha} = U_{s} x^{\alpha} U_{s^{-1}}$ and $(x^{s})^{b} = U_{s} x^{b} U_{s^{-1}}$ for all $x \in \mathcal{O}$ and $s \in \mathcal{O}$.

For, $U_s x^{a} U_{s^{-1}} y^{\theta} = U_s x^{a} (y^{s^{-1}})^{\theta} = U_s (x^{s^{-1}})^{\theta}$ = $(x^{s} y)^{\theta} = x^{s^{a}} y^{\theta}$ and similarly for the latter. Putting W^{a} , W^{b} and W_{G} W^{*} -algebras generated by $\{x^{a}, x \in \Omega\}$, $\{x^{b}; x \in \Omega\}$ and $\{u_{s}, s \in G\}$ respectively, $W^{a} = W^{b'}$, $W^{a'} = W^{b}$, $jAj = A^{*}$ for all $A \in W^{a} \cap W^{b}$ and the τ is G-ergodic if and only if $W^{a} \cap W^{b} \cap W_{G}' = \{x, I\}$ (cf. Th.2 and Th.5 of [8]) where for any set F of bounded operators on f_{X} F' is the commutor of F.

Let Ly be the family of all bounded elements v in by (i.e. v belongs to Jy if and only if #x^bv# ≤ MHX⁹# for all cf. [8] and [9]) whose corresponding bounded operators on h be v^{α} and v^{b} such that $v^{\alpha}x^{\theta} = x^{b}v^{\theta}$, $v^{b}x^{\theta} = x^{\alpha}v$. Then $\{x^{\theta}; x \in \mathcal{O}\} \in \mathcal{L}$ and $x^{\theta \cdot \epsilon} = x^{\alpha}$ for all $x \in \partial I$, and the following relations are equivalent each other : for any v_1 and v_2 in $\mathcal{L} = v_1^*$, $v_i^b = v_2^b$ (both as operator) and $v_i = v_2$ (as point in f_{γ}). Now we can define in La*-involution and a ring product : v^* and $v_i v_j (= v_i^* v_j = v_j^* v_i)$. for all v, v_1 , $v_2 \in \mathcal{L}$ satisfying that $v^* = jv$, $v^{**} = v^{a*}$, $v^{*b} = v^{b*}$ (v^{a*} , v^{b*} are adjoint operators of v^{*} and v^{b}), $jv^{a}j = v^{b*}$, $(v, v_{2})^{a} =$ $v_1^{\alpha} v_2^{\alpha}$, $(v_1 v_2)^b = v_2^b v_1^b$ and $(\lambda_1 v_1 + \lambda_2 v_2)^{d} = \lambda_1 v_1^d + \lambda_2 v_2^d$ (for $d = a \ \sigma \ b$) (cf. p.35) of [8], p.61 of [9], II).

(2) $U_s v \in \mathcal{L}$ and $(U_s v)^{\alpha} = U_s v^{\alpha} U_{s^{-1}}$,

 $(u_s v)^b = u_s v^b u_{s^{-1}}$ for all set and vet.

For, $x^{b}U_{s}v = U_{s}U_{s^{-1}}x^{b}U_{s}v = U_{s}x^{s^{-1}b}v$ and $\|x^{b}U_{s}v\| = \|(x^{s^{-1}})^{b}v\| = \|v^{a}U_{s^{-1}}x^{e}\|$ $\leq \|v^{a}\| \|x^{e}\|$.

Next $U_{\mu}v^{\alpha}U_{\mu^{-1}}x^{\theta} = U_{\mu}v^{\alpha}(x^{\nu^{-1}})^{\theta} = U_{\mu}(x^{\nu^{-1}})^{b}v$ = $U_{\mu}U_{\mu^{-1}}x^{b}U_{\mu}v^{\nu} = x^{b}U_{\mu}v^{\nu} = (U_{\mu}v)^{\alpha}x^{\theta}$. The latter follows from the similar method.

Let $W^{a(u)}$ and $W^{b(u)}$ be the sets of all unitary operators in W^a and W^b respectively, and put $U^* = U_j U_j$ for all $U \in W^{a(u)}$. Then $(U^* v)^a = (U_j U_j v)^a$ $= U_{u^a} U^{-1}$ for all $v \in \mathcal{L}$ (cf. Lem 3 of [8]). It is evident that for any $U \in W^{a(u)}$ $JU_j \in W^{b(u)}$ and $(U_j U_j)^{-1} =$ $JU^{-1}_j U^{-1}_j U^{-1}_j$.

Put G = unitary group generated by { u^{*} ; $u \in W^{o(u)}$ } and { u_{5} ; $s \in G$ }.

Lemma 1. For any $U' \in G$ and VEL, $U'v \in \mathcal{J}$ and there exists a unitary operator U on \mathcal{J} such that $(U'v)^{\circ} = Uv^{\circ}U^{1}$ for all $v \in \mathcal{J}$.

Proof. For $U' = U_S U^{*}$ (for some $s \in G$ and $U \in W^{a(u_s)}$), $U' = U_S$ follows from (2) and the fact that d_{y}^{a} is ideal in W^{a} , and $(U'v)^{a}$ $= (U_S U^{*}v)^{a} = (U_S U_J U_J v)^{a} = U_S (U_J U_J v)^{a} U_{S'}^{-1}$ $= U_S U^{a} U^{-1} U_{S'}^{-1} = (U_S U_J v^{a} (U_S U_J)^{-1}$. For $U'' = U^{*} U_S$, similarly $U'' v \in \mathcal{L}_{T}$ and $(U''v)^{a} = (U^{*} U_S v)^{a} = (U_J U_J U_S v)^{a}$ $= U(U_S v)^{a} U^{-1} = U_S v^{a} U_S^{-1} U^{-1} = (U_S U_S u_S)^{-1}$. Since general element in G has product form of a finite number of the above forms U' and U'', we can prove for any U' in G.

Let \mathcal{J} be the closed linear manifold of all the vectors ξ in \mathcal{J} such that $\mathcal{U}'\xi = \xi$ for all $\mathcal{U}' \in \mathcal{G}$, and let Z be the projection from \mathcal{J} onto \mathcal{J} . For any $\xi \in \mathcal{L}$, put $K_{\xi} =$ closed convex hull of $\{\mathcal{U}'\xi; \mathcal{U}' \in \mathcal{G}\}$. Then

Lemma 2. (Godement's lemma; cf. [2]). (i) $K_{\xi} \land \beta$ consists of only one point ξ , (ii) $||\xi_0|| = \inf\{|\zeta||$; $\zeta \in K_{\xi}\}$, (iii) $Z \xi = \xi_0$.

(3) j U = U j for all $U \in G$ and j Z = Z j

For, $j U_s x^{\theta} = j (x^s)^{\theta} = x^{s \times \theta}$ = $x^{s \times \theta} = U_s j x^{\theta}$ and $j U_s^{\theta} = j U_j U_j x^{\theta}$

= $jjujux^{\circ} = ujux^{\circ} = ujujjx^{\circ} = u^{*}jx^{\circ}$ for all st G and U & Wolly. For any $\xi \in f_{y}$ taking $\xi_{n} = \sum x_{1}^{m} \mathcal{U}_{1}^{m} \xi \in K_{\xi}$ ($\mathcal{U}_{1}^{m} \in G$) and $\xi_{n} \rightarrow \xi_{0} = \mathbb{Z}\xi$), $j\mathbb{Z}\xi = j\xi_{0}$ = jlim: $\xi_{n} = \lim_{j \in \mathbb{Z}} \lim_{j \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \int_{j \in \mathbb{Z}} for all$ $\mathcal{U}_{1}^{*} \in G$ and $j\xi_{0} \in K_{j\xi} \cap \mathcal{F}$. (4) $x^{a}\xi = x^{b}\xi$ for all $x \in \mathcal{J}$ and $\xi \in \mathcal{F}$ For, $U_j U_j \xi = \xi$ implies $j U_j \xi = U^{-1} \xi$. Let $x \in \partial U$ be $x^* = x$ and $\| x^{-1} \| \leq 1$. Putting $U_1 = x^{-1} + i(1 - x^{-1})^{1/2}$ and $U_2 = x^a - i(I - x^{-1})^{1/2}$, U_1 and u_2 belong to $W^{a(u)}$. Hence $(jx^{a}j - i)(I - x^{a^{2}})^{1/2}j)\xi = (x^{a} - i(I - x^{a^{2}})^{1/2})\xi$ $(jx^{a}j+ij(I-x^{a^{2}})^{1/2}j)\xi = (x^{a}+i(I-x^{a^{2}})^{1/2})\xi$ and $jx^{e}j\xi = x^{e}\xi$, $x^{b}\xi = x^{e}\xi$. This holds for all s.a. $x \in Ol$. Since any x & OL can be represented as 7 + 1Z (y and z being self adjoint in OL), $x^{a}\xi = (y^{a} + iz^{a})\xi = (y^{b} + iz^{b})\xi = x^{b}\xi$ for all x E OL. (5) Krc L for any ve L and ZL cL.

For, let $\{\xi_n\} \in \mathcal{K}_v$ such that $\xi_n = \sum_{i=1}^{m(n)} \lambda_i^{(n)} \mathcal{U}_i^{(n)} v \left(\mathcal{U}_i^{(n)} \in W^{a(u)}, \sum_{i=1}^{m(n)} \lambda_i^{(n)} = 1 \right)$

and $\lambda_{i}^{(m)} \geq 0$) and $\xi_{m} \rightarrow \xi$. Then $\| x^{k} \xi_{m} \| = \| \sum_{i=1}^{m(m)} \lambda_{i}^{k} \bigcup_{i=1}^{m(m)} v^{i} \|$ $= \| \sum_{i=1}^{m(m)} \lambda_{i}^{k} \bigcup_{i=1}^{m(m)} v^{i} \| \leq \| v^{\alpha} \| \| \| x^{\theta} \|$ and $\| x^{b} \xi_{m} \| \longrightarrow \| x^{b} \xi \| \leq \| v^{\alpha} \| \| \| x^{\theta} \|$ for all $x \in \delta L$. Hence $\xi \in \mathcal{L}$, and we have the former. The latter is evident by the former.

Putting $(v^{\alpha})^{\frac{5}{2}} = (Zv)^{\alpha}$ for all $v \in \mathcal{J}_{\mathcal{J}}$, by the proof of (5) $|| (v^{\alpha})^{\frac{5}{2}} \times^{0} || =$ $|(Zv)^{\alpha} \times^{0} || = || \times^{0} Zv || \le ||v^{\alpha}|| \cdot ||x^{\alpha}||$ for all $x \in \mathcal{O}L$ and we have

(6) $|v^{a}| \leq |v^{a}|$ for all $v \in \mathcal{L}$

Let \mathcal{R} and $\mathcal{R}^{\frac{1}{2}}$ be the uniform closures of \mathcal{L}^{α} and $\mathcal{L}^{\frac{1}{2}}$ respectively, then

Proposition 1. The mapping § is uniquely extended to a linear mapping on \mathcal{R} onto \mathcal{R}^{j} such that : (i) $A \in \mathcal{R}^{j}$ implies $A^{j} = A$. (ii) $A^{*j} = A^{j*}$ and $(A^{*}A)^{j} \ge 0$. (iii) $(UAU^{-1})^{j} = A^{j}$ for all $U \in W^{*(u)}$ and all $U = U_{s}$ (s $\in G$).

and all $U = U_s$ (s c G). (iv) (AB)[§] = (BA)[§] and (A[§]B)[§] = (AB[§])[§] = A[§]B[§] for all A, B c R.

(v) (AE,E)=(A⁹E,E) for all AERand SE 3.

Proof. (i) follows immediately from (6). (ii): $v^{a*b} = (Z_J v)^a = (J_Z v)^a$ (by (3)) = $(Z_V)^{a*} = v^{ab}$. While $((v^*v)^{ab}x^0, x^0) = (x^b Z v^*v, x^0)$ = lim $(\Sigma \lambda_i^{(m)} \times^{\flat} U_i^{(m)} v^* v, x^*).$ Since $(x^{b} U' v^{*} v, x^{\theta}) = (U v^{*a} v^{a} U' x^{\theta}, x^{\bullet})$ = $\| v^{\circ} U^{-1} \times e^{\frac{1}{2}} \ge 0$ (where u is as in lemma 1), $((v^*v)^{a \frac{1}{2}} x^{\theta}, x^{\theta}) \geq 0$. Taking v, & & such that "v? - A " = $\|v_n^{a*} - A^*\| \rightarrow O(n \rightarrow \infty)$ we have (ii). (iii): Since for any U & W^{a(u)} Kuty < Ku, ZU*v EKu and ZU*v EKun 3. Hence by lemma 2 $ZU^{\dagger}v = Zv$ and $(Uv^{\alpha}U^{\dagger})^{\delta}$ = $(U^{\dagger}v)^{\alpha\delta} = (ZU^{\dagger}v)^{\alpha} = (Zv)^{\alpha} = v^{\alpha\delta}$ for all U & W^{atu} and v & L. While for $s \in G$, similarly $Z U_s v = Z v$ and $(U_{s}v^{a}U_{s'})^{\frac{1}{2}} = (U_{s}v)^{a\frac{1}{2}} = (ZU_{s}v)^{a} = (Zv)^{a} = v^{a\frac{1}{2}},$ Taking $\mathbf{v} \in \mathcal{L}$ as the previous we have (ii). (iv): For any v, w & L and $\begin{array}{l} x \quad y \in OL \quad , \quad (Z \cup w, x^{\theta}) = (v^{\alpha} w, Z \times^{\theta}) \\ = (w, v^{**} Z \times^{\theta}) = (w, v^{**} Z \times^{\theta})^{3} = (v^{b} w, Z \times^{\theta}) = (Z \cup^{a} v, x^{\theta})_{q} \end{array}$ hence $(v^{\alpha}w^{\alpha})^{ij} = (Zvv)^{\alpha} = (Zvv)^{\alpha} = (w^{\alpha}v^{\alpha})^{ij}$ $((v^{\alpha}i^{j}w^{\alpha})^{ij}x^{0}, y^{0}) = (x^{\alpha}Zv^{\alpha}i^{j}w, y^{0}) = (Zv^{\alpha}i^{j}w, (yx^{\alpha})^{0})$ $= (v, v^{\alpha}i^{j} + Z(yx^{\alpha})^{0}) = (Zv, v^{\alpha}i^{j} + Z(yx^{\alpha})^{0})$ (because $v^{\alpha\beta \dagger} \overline{Z} (yx^{\dagger})^{\theta} \in \widetilde{J}$) = $(v^{\alpha\beta} \overline{Z} w_{\gamma} (yx^{\dagger})^{\theta}) = (x^{\alpha\beta} \overline{Z} w_{\gamma} (yx^{\dagger})^{\theta}) = (x^{\alpha\beta} \overline{Z} w_{\gamma} (yx^{\dagger})^{\theta}) = (v^{\alpha\beta} \overline{Z} w_{\gamma} (yx^{\dagger})^{\theta}) = (v^{\alpha\beta} \overline{Z} w_{\gamma} (yx^{\dagger})^{\theta})$ For any $A, B \in \mathbb{R}$, taking $\{v_n\}, \{w_n\} \in \mathcal{L}_0$: $\|v_n^* - A\| \longrightarrow 0$ and $\|v_n^* - B\| \longrightarrow 0$ we can prove $(AB)^{f} = (BA)^{f}$, $(A^{f}B)^{h} = A^{f}B^{h}$ and clearly = $(AB^{h})^{h}$. (v): For $v , w \in \mathcal{I}_{\sigma}$, $(w^{-}Zw, Zw) = (w^{-\frac{1}{2}}v, Zw)$ = $(Zv, w^{-\frac{1}{2}+}Zw) = (w^{-\frac{1}{2}}Zv, Zv) = (v^{-\frac{1}{2}}Zw, Zw)$. Since $Z\mathcal{I}$ is dense in \mathcal{J} and $\|v_{n}^{-}A\|$ \rightarrow o implies $|v_{h}^{ab} - A^{b}| \rightarrow 0$, (v) holds.

Lemma 3. If 3 has the following properties:

(7)
$$\{x^{*}_{2}\}$$
; $x \in \mathbb{O}$ is dense in f_{2} .

Then the mapping $v^{\alpha} \rightarrow v^{\alpha}$ is strongly continuous on a sphere of 2. .

Proof. Since ZL is dense in \Im , (7) is equivalent to that $\{\times^{*} Z_{\nu}; \times^{*} \mathcal{O}, \nu \in \mathcal{L}\}$ is dense in $\mathcal{L}_{\mathcal{L}}$. If $v_y^a \rightarrow v^a$ strongly and $\|v_y^a\| \leq M$, then $\|(v_3^a - v^a)^{\frac{1}{2}} w^{a\frac{1}{2}} x^{\theta}\| = \|x^b (v_3^a - v^a)^{\frac{1}{2}} Z w\|_{9}$ (since $((v_{\vartheta}^{a} - v^{a})^{b} Z u, x^{\theta}) = ((Z u)^{a} Z (v_{\vartheta} - v), Z x^{\theta})$ $= (v_{y} - v_{y} (Zw)^{a*} Zx^{e}) = (Z(v_{y}^{a} - v^{a}) Zw, x^{e})$ for all $x \in OL$, $(v_y^a - v^a)^j Z_w = Z(v_y^a - v^a) Z_w$ = #x 2(v - v) 2 w + => 0 and v + v + s strongly.

(8) The approximate identity $\{e_n\}$ in

 σ_L satisfies that e_α belongs to the center of Ol and $e_{\alpha}^{s} = e_{\alpha}$ for all seG and a ED.

If $\{e_{\alpha}\}$ satisfy (8), then (7) is always satisfied. For, clearly $e_{\alpha}^{\alpha} \in \mathcal{J}$ and $e_{\alpha}^{\alpha} \times^{\alpha} \longrightarrow \times^{\alpha}$ strongly in f_{α} , and $\{x^{\alpha} e_{\alpha}^{\alpha}; x \in \mathcal{O}, \alpha \in \mathcal{D}\}$ is dense in f_{α} .

THEOREM 1. Under the assumption (7) or (8), the mapping $\frac{1}{2}$ (on \mathcal{L}_{τ}) is uniquely extended to a linear mapping on w^a onto w³ (= W^a o W^a W₄)satisfying the conditions(i) - (v) in the Prop. 1, where we take W^{α} and w^{β} in the place of \mathcal{R} and \mathcal{R}^{β} respectively which coincides with β on \mathcal{R} introduced in Prop. 1, and moreover (v1) $I^{i} = I$, and $(A^{*}A)^{i} = 0$ for A

 εW implies A = 0.

Proof. Since \mathcal{L}^{a} is dense in W^{a} under the bounded strong topology (cf. [4]), by lemma 3 and its proof § (on \mathcal{L}°) can be uniquely extended onto W°. Since the uniform con-vergence in \mathcal{L}° implies boundedly strong convergence (in the operator topology), the introduced mapping § (on W^{α}) coincides with § (on \mathcal{R}). If $v_{\beta} \in \mathcal{L}$ and $\|v_{\beta}^{*}\| \leq M$, then $v_{\beta}^{*} \rightarrow A$ (strongly) if and only if $v_{\rho}^{*} \rightarrow A^{*}$. For, $w_2^* v_1^* Z w_1 = w_2^* v_1^* Z w_1 = v_1^* w_2^* Z w_1$ and $\{v_1^* \times X_2^* Z_{\vee_1}\}_{\rho}$ is Cauchy directed set for all $\mathbb{W}_1, \mathbb{W}_2 \in \mathcal{L}_7$; since $\{\times^{\alpha} Z_{\vee_1};$ $x \in OL, v \in \mathcal{L}$ is dense in by and $\|v_{\phi}^{b}\| = \|jv_{\phi}^{a*}j\|$ = $\|v_{\beta}\| \le M$, there exists a strongly limit B of v_{β}^{*} . Since for any $\xi, \xi \in \{j, \zeta\} = \lim (j v_{\beta}^{*} j \xi, \zeta) =$ $\lim (v_{\alpha}^{*} \xi, \zeta) = \lim (\xi, v_{\beta}^{*} \zeta) = (\xi, A\zeta) = (A^{*} \xi, \zeta),$ $jBj = A^*$ and hence $v_{\beta}^* = jv_{\beta}^* j \rightarrow jBj = A^*$ The converse is clear. If $(Zv)^* \xi = 0$ for all $\forall \in \mathcal{I}_{\mathcal{F}}$, then $(\forall^{a*\frac{1}{2}}\xi, x^{\theta}) = ((Z_{v})^{a*}\xi, x^{\theta})$ = $(\xi, x^{a}Z_{v}) = 0$ for all $x \in \mathbb{O}_{v}$, $v \in \mathcal{I}_{v}$, and $\xi = 0$. Hence there exists $\{u_s\}$ CZL such that $||u_1^{n}| \leq 1$ and $|u_2^{n} \rightarrow I$ (strongly) by Satz 5 in [5] and Th.1 in [4]. For any $u \in ZL$, $A \in W^{\sharp}$ and $u' \in G$, u'A = Au', and hence u'Au = AU'u = Au or $Au \in ZL$. By the con-struction of $\frac{1}{2}$ on W° , A^{\sharp} is boundedly strong limit of a {v \$} $(v_p \in \mathcal{L}_r)$ and hence $A^{j} u_r^{s} = (A^{u_p})^{j} = (ZAu_r)^{s} = Au_r^{s}$. Since $u_r^{s} \longrightarrow I$ strong-ly, $A^{j} = A$. The fact $A^{j} \in W^{j}$ for any A EWª follows from that L° is dense in W^a under the bounded strong topoloby. Since for any A & W° we can take $|v_s| \in \mathcal{L}$ such that $||v_p^{\alpha}|| \leq M$, $v_s^{\alpha} \rightarrow A$

and $v_{\mu}^{a*} \rightarrow A^{*}$ strongly, for any $\xi \in \mathcal{G}_{\mu}$ $\|(A^{*}A - v_{\mu}^{a*}v_{\mu}^{a}\xi\| \leq \|(A^{*} - v_{\mu}^{a*})A\xi\| + M\|(v_{\mu}^{a} - v_{\mu}^{a})\xi\|^{4})$ hence $v_{\mu}^{a*}v_{\mu}^{a} \rightarrow A^{*}A$ strongly and $\|v_{\mu}^{a*}v_{\mu}^{a}\| = \|v_{\mu}^{a*}v_{\mu}^{a*}X\|^{2} \leq M^{2}$. Since (i) - (v) fold in χ_{*}^{a} (cf. Proof of Prop. 1), we have also (i) - (v) for $A \in W^{a}$.

(vi): Since $I \in W^{\frac{1}{2}}$, $I^{\frac{1}{2}} = I$ is evident. Let $A \in W^{\infty}$ satisfies $(A^*A)^{\frac{1}{2}}$ = 0, then $((A^*A)^{\frac{1}{2}}Z_{\nu}, Z_{\nu}) = (A^*AZ_{\nu}, Z_{\nu})$ $(by(v)) = \|AZ_{\nu}\|^2 = 0$ and $x^{\frac{1}{2}}A Z_{\nu} = A x^{\frac{1}{2}}Z_{\nu} = 0$ for all $x \in OL$ and $v \in \mathcal{L}$. Hence A = 0.

Now we have following

Corollary 1. Let τ be arbitrary G -stationary trace of a D*-algebra on with a motion G and let w^a, w^b and W_G be the W*-algebras generated by the representations {*, c_2 }, {*, c_3 } and { u₅, c_1 }. Then there exists a Gstationary natural mapping on w^a onto W^a \wedge W^b \wedge W^b satisfying the properties (i) - (vi) on w^a.

Proof. There exists a strictly normalizing vector $\xi \in f_{f}$ such that $j\xi = \xi$, $x^{0} = x^{\alpha}\xi = x^{\beta}\xi$, $\tau(x) = (x^{\alpha}\xi, \xi)$ for all $x \in \mathbb{O}$ and $i \times \xi$; $x \in \mathbb{O}$ } is dense in f_{2} (e.g. cf. Th.l in [8]). We now prove $u_{p}^{\alpha} \rightarrow \xi$ strongly in f_{2} for any approximate identity iu_{p} in $\mathcal{O}($. $(u_{p}^{\alpha}, x^{\alpha}) = (u_{p}^{\alpha}\xi, x^{\alpha}\xi) = \tau(u_{p} \times^{\alpha}) \rightarrow$ $\tau(x^{\alpha}) = (u_{p}^{\alpha}\xi, x^{\alpha}\xi) = \tau(u_{p} \times^{\alpha}) \rightarrow$ $\tau(x^{\alpha}) = (iu_{p}^{\alpha}\xi, x^{\alpha}\xi) = \xi$ weakly, and u_{g}^{α} being uniformly bounded, converges strongly. Clearly e_{a}^{α} is also approximate identity in \mathcal{O} for all $s \in G$ Hence $(e_{a}^{\beta})^{\alpha} = u_{s}e_{a}^{\alpha} \longrightarrow u_{s}\xi$, $(e_{a}^{\beta})^{\alpha} \longrightarrow \xi$ and hence $u_{i}\xi = \xi$ for all $s \in G$. Therefore ξ belongs to the manifold \mathcal{J} , and the condition (7) is always satisfied and by Th.l we have Cor.l.

2. In this section, we shall prove an ergodic decomposition of a G stationary semi-trace τ of a separable D^{*}-algebra σ with a motion G. We shall use the same notations in § 1, and assume the condition (7) or (8). Since σ is separable, the Hilbert space f_{σ} is also separable (cf. Lem.5 of [8]).

Lemma 4. There exists a nonzero vector ξ in \Re such that $j\xi = \xi$ and $\{x^{*}\xi; x \in \Omega\}$ is dense in \Re_{Y} .

The proof follows from the similar proof of a theorem of Segal (cf. the last paragraph of the proof of Th.9, p.49 of [7]): Let $\{\xi_n\}$ be a countable family of nonzero elements of \Im which is maximal with respect to the properties: 1) $j\xi_n = \xi_n$, 2) $j\mathfrak{A}^*\xi_n$; are orthogonal with respect to each other. Putting $\xi = \sum \xi_n / 2^n \xi_{n}$ is the required one. This follows from the proof of Segal adjoining the facts, that the closure \mathcal{M}_n of $\mathfrak{A}^*\xi_n$ and projection \mathcal{P}_n (onto \mathfrak{M}_n) satisfy that $\mathfrak{A}^*\mathfrak{M}_n \subset \mathfrak{M}_n$, $\mathfrak{A}^*\mathfrak{M}_n \subset \mathfrak{M}_n$, $\mathfrak{M}_n \subset \mathfrak{M}_n$ for all $s \in \mathfrak{F}$ and $\mathcal{P}_n \in W^{\sharp}$ (-WW*W4), and that $\{x^*3; x \in \mathfrak{A}, 5 \in \mathfrak{F}\}$

Let \mathcal{R}_i (resp. \mathcal{R}_i^{δ}) be (*-algebras generated by \mathcal{R} (resp. \mathcal{R}^{δ}) and I. Then the natural mapping δ on \mathcal{R} is uniquely extended on \mathcal{R}_i onto \mathcal{R}_i^{δ} which coincides with the contraction of the mapping δ on \mathbb{W}^{∞} . For any $s \in G$ and $A \in \mathcal{R}$ (or \mathcal{R}_i) putting $A^{\delta} = U_i A^{U_{\delta^{-1}}}$, $A^{\delta} \in \mathcal{R}$ (or \mathcal{R}_i), Gdefines a motion on \mathcal{R} (or \mathcal{R}_i), such that $x^{*\delta} = x^{*\delta}$ for all $s \in G$ and $x \in \mathfrak{A}$. Let Ω and Ω , be character spaces of \mathcal{R}^{δ} and \mathcal{R}^{δ}_i , and putting $\omega(A) =$ $\omega(A^{\delta})$ for all $A \in \mathcal{R}$ (or \mathcal{R}_i), ω are G -stationary traces of \mathcal{R} (or \mathcal{R}_i) is locally compact (resp. Ω_i) Hausdorff space; and there exists a Radon measure $d\mu$ on Ω such that

(9) $(SA\xi,\xi) = \int_{\Omega} S(\omega) \omega(A) d\mu(\omega)$ for $s \in \mathcal{R}^{\delta}$ and $A \in \mathcal{R}$

The (9) follows from that $\mu(A^{\delta}) = \mu(A)$, $\mu(SA^{\delta}) = \mu(SA)$ and $\omega(SA) = \omega((SA)^{\delta}) = \omega(SA^{\delta})$ $\simeq \omega(S)\omega(A)$ for all $A \in \mathbb{R}$, $S \in \mathbb{R}^{\delta}$ and $\omega \in \Omega$, where $\mu(A) = (A \in \mathbb{R}, \mathbb{R})$.

Denote \mathcal{R} the C^* -algebra generated by $\{\times^*; \times \in \mathcal{O}\}$.

THEOREM 2. Let τ be G-stationary semi-trace on Ω and Ω the character space of $\mathcal{R}^{\frac{1}{2}}$. Then there exists a positive Radon measure ν on Ω such that

(10) $\tau(xy) = \int_{\Omega} \pi_{\omega}(xy) dv(\omega)$ for all x, y i of and π_{ω} are $dv(\omega)$ almost all G-ergodic traces on of.

Proof. By a method of Segal which is done under the resolution of identity (cf. p.284-5 in [6]), for any s.a. $v \in Z_{\mathcal{F}}$ there exists a sequence $\{\mathbf{1}_n\}$ of linear combinations of orthogonal s.a. idempotents in $Z_{\mathcal{F}}$ such that

(11) $\|q_n - v\| \rightarrow 0$, and $\|\eta_n^* - v^*\| \rightarrow 0 \quad (n \rightarrow \infty)$. For any $v \in \mathbb{Z}_{\mathcal{F}}$, taking $v = v_1 + v_2$ (: $v_1^* = v_1$ and $v_2^* = v_2$), (11) also holds for v. Denote \mathcal{L}_p and \mathcal{L}_q be the sets of all s.a. idempotents in $\mathbb{Z}_{\mathcal{F}}$ and linear extension of \mathcal{L}_p respectively. Let \mathcal{R}_p^i be the set of all projections in \mathcal{R}^i , then $\mathcal{R}_p^i = \mathcal{L}_p^i$ (= $ip^*; p \in \mathcal{L}_p$) (cf. (40), p.25 of [9], I). This follows from, that for $\mathfrak{P} \in \mathcal{R}_p^i$ taking $\{q_n\} \in \mathcal{L}_q$ such that $\|q_{n-}^* - \mathbb{P}\| \rightarrow 0$ (which is possible by (11) and the fact that the uniform closure of \mathcal{L}^{*i} is \mathcal{R}^i), $\{q_n^*(\omega) \rightarrow \mathbb{P}(\omega)$ uniformly on Ω , and that \mathcal{L}^{*i} is an ideal in \mathcal{R}^i , Let $(\circ(\Omega)$ be the set of all continuous functions on Ω with compact supports. Then $C_{\circ}(\Omega_{-}) < \mathcal{L}^{*i}$ (\mathcal{L}^{*i} being an ideal in \mathcal{R}^i).

Putting $v_o(p^*) = \| \phi \|^2$ for any $\phi \in \mathcal{L}_{\phi}$, $v_o(\cdot)$ define a complete additive gage on \mathcal{L}_p which can be considered as a complete additive set function on the collection K. of all compact-open sets in Ω (considering $v_o(\mathcal{K}_p) = v_o(p^*)$) where \mathcal{K}_{ϕ} is compact-open set corresponding to $\phi \in \mathcal{L}_{\phi}$), and it can be uniquely extended to a complete additive measure v on the family of Borel sets generated by \mathcal{K}_o .

Then for any v, $w \in \mathbb{ZL}$, $v^{(\cdot)}$ and $w^{(\cdot)}$ are in $L_2(\Omega, v)$ and

(12)
$$(v, w) = \int_{\Omega} v^{\alpha} w^{*\alpha}(\omega) dv(\omega).$$

For, by (11) we can take $\{q_n\}$ and $\{r_n\}$ in $\mathcal{L}r_q: \|q_n - v\| \to 0, \|r_n - v\| \to 0, \|q_{n-1}^* - v^*\| \to 0, \|q_{n-2}^* - v^*\| \to 0 \text{ (} n \to 0.\text{)}.$ Since $\|q_{n-2} - q_m\|^2 = \int |q_n^*(\omega) - q_m^*(\omega)|^2 dv(\omega) \to 0 \quad (m, n \to \infty),$ there exists a $v'(\cdot)$ in $L_f(\Omega, v)$ such that $q_n^*(\omega) \to v'(\omega)$ in measure, and $\|q_n^*(\omega) \to v'(\omega)$ in measure, and $\|q_n^*(\omega) \to v^*(\omega)$ uniformly on Ω , $v'(\omega) = v^*(\omega) a.e.$, and hence $\|q_n - v\|^2 = \int |q_n^*(\omega) - v^*(\omega)|^2 dv(\omega) \to 0$. Since $q_n^*(\omega) \to v^*(\omega)$ uniformly on Ω , $v'(\omega) = v^*(\omega) a.e.$, and hence $\|q_n - v\|^2 = \int |q_n^*(\omega) - v^*(\omega)|^2 dv(\omega) \to 0$. Hence (v, w) $= \lim_{n \to \infty} (q_n, r_n) = \lim_{n \to \infty} \int q_n^*(\omega) r_n^{**}(\omega) dv(\omega)$ $= \int v^*(\omega) w^{**}(w) dw(\omega).$ For any $v \in \mathcal{L}$ and $w \in \mathbb{Z}\mathcal{L}_{p}(v, w) = (\mathbb{Z}v, w) = \int (\mathbb{Z}v)^*(\omega) w^{**}(\omega) dv(\omega),$ (since $w(v^*w^{**}) = w(v^*) w(w^{**}) =$ $\begin{aligned} (\overline{z}v)^{*}(\omega)w^{**}(\omega) &= \int \omega (v^{a}w^{+a}) dv(\omega). \\ \text{For any } v, w \in \mathcal{L}_{\sigma} \text{ and } u \in \mathbb{Z}\mathcal{L}_{\sigma}, (u^{a}v, w) = \\ (v^{a}u, w) = (u, v^{*a}w) = \int_{\Omega} \omega (u^{a}v^{a}w^{*a}) dv(\omega). \\ \text{Letting } \{u_{n}\} \in \mathbb{Z}\mathcal{L}_{\sigma} \text{ such that, } u^{a}_{n} \geq 0, \\ &u^{a}_{n}u^{k} \leq 1 \text{ and } 0 \leq \omega (u^{a}_{n}v^{a}v^{+a}) \rightarrow \omega (v^{a}w^{*a}) \\ (\text{the existence of } \{u_{n}\} \text{ is possible by that } v^{a}v^{*a}(\omega) (= \omega ((v^{a}v^{*a}v^{*a})) \text{ vanishes at infinite on } \Omega), \omega (u^{a}_{n}v^{a}v^{*a}) \leq \omega (v^{*}v^{*a}) \\ &and \int \omega (u^{a}_{n}v^{a}v^{*a}) dv (\omega) = (u^{a}_{n}v, v) \leq (v, v) \\ &\text{Hence by Fatou's lemma } \omega (v^{a}v^{*a}) \text{ is } \\ & \forall -\text{integrable and} \end{aligned}$

 $(\omega(v^*v^{**})dv(\omega) \leq (v, v).$

Let $|A_n| \in (ZL)^{4}$ such that $||A_n|| \leq 1, A_n \geq 0$ and $A_n \rightarrow I$ strongly on A_r . Since $\omega(A_n v^{a_n} v^{*a_n}) \leq \omega(v^{a_n} v^{*a_n}) \operatorname{and} \int_{\omega} ((A_n v^{a_n} v^{*a_n}) \operatorname{d} v(\omega))$ = $(A_n, v, v) \rightarrow (v, v) \leq \int_{\omega} (v^{a_n} v^{*a_n}) \operatorname{d} v(\omega)$. Hence

 $\int \omega(v^{\alpha}v^{*\alpha}) dv(\omega) = (v, v)$

for all veb.

For any $v, w \in \mathcal{L}, vw^*$ is complex finite linear combinations of the form $v_{\mathbb{R}}v_{\mathbb{R}}^*$ (i.e. $vw^* = \sum_{i}^{n} \lambda_{\mathbb{R}} v_{\mathbb{R}} v_{\mathbb{R}}^* \in \mathcal{L}_{\mathcal{T}}$). Then, taking $\{A_n\}$ in $(\mathcal{I}\mathcal{L})^*$ as above it can be shown that $(v,w) = \sum_{\lambda_{\mathbb{R}}} (v_{\mathbb{R}}, v_{\mathbb{R}})$. This implies that $\omega(v^*w^{**})(=\sum \omega(v_{\mathbb{R}}^*v_{\mathbb{R}}^{**}))$ is v-integrable and $\int \omega(v^*w^{**}) dv(\omega) =$ $\sum_{\lambda_{\mathbb{R}}} \int \omega(v_{\mathbb{R}}^*v_{\mathbb{R}}^{**}) dv(\omega) = \sum \lambda_{\mathbb{R}} (v_{\mathbb{R}}, v_{\mathbb{R}}) = (v, w)$.

Since $v_{0}(\cdot)$ determines a unique positive linear functional $v_{1}(\cdot)$ on $C_{0}(\Omega)$ which is the contraction of $v(\cdot)$ onto $C_{0}(\Omega)$ and $v(p^{*}) = v_{1}(p^{*})$ $= v_{0}(p^{*})$ for all $p \in \mathcal{L}_{p}$, dv is a regular measure on Ω . Since for any $p \in \mathcal{L}_{p}$, $W^{\dagger}p^{*}$ is contained in $\mathcal{L}_{p}^{\bullet}p^{\dagger}$ and weakly closed, (K, v) is perfect measure space (cf. Lem. 1.4. of (7)). Hence any non-dense set in K_{p} or more general any non-dense set in Ω is V-null set by the regularity of dv.

Let Γ be the character space of w^{i} , then w^{i} is *isomorphic with $C(\Gamma)$ by $S \rightarrow S(\cdot)$, and there exists a continuous mapping ϕ from Γ on Ω_{i} such that $S(\phi(\delta)) = S(\delta)$ for all $S \in \mathbb{R}^{\delta}$ and $\delta \in \Gamma$. We prove that $\phi(\Gamma) = \Omega$: Since $\phi(\Gamma)$ is compact in Ω_{i} , if $\Omega_{i} - \phi(\Gamma)$ is non-empty, then there exists a $0 \neq S \in \mathbb{R}^{\delta}$ such that $S(\phi(\delta)) = 0$ for all $\delta \in \Gamma$. Since $S \in W^{\delta}$ and $S(\delta) = 0$ for all $\delta \in \Gamma$, S is zero operator on f_{δ} . This is a contradiction. Let $d\mu'$ be regular measure on Γ such that

 $(ASE,E) = (Y(A)S(Y)d\mu'(Y))$

for all A ϵ W^a and S ϵ W s

where $\mathscr{Y}(A)$ are traces on W° defined by $\mathscr{Y}(A) = \mathscr{Y}(A^{\frac{1}{2}})$ for all $\mathscr{Y} \in \Gamma$ and $A \in W^{\circ}$.

We shall prove now that, putting $m_{f}(A) = \{(A) \text{ for all } A \in \mathbb{R} \text{ and } A \in \mathbb{W}^{a}, \$ m_{f} are G-ergodic traces excepting a μ' -null set in \sqcap^{g} . Let $\{\varphi_{i}^{a}, \varphi_{j}^{b}, j, f_{j}\}$ ($i \in \Gamma - N'$) be the two-sided representations of \mathbb{R} and let $\{\varphi_{i}(u_{s}), f_{j}\}$ be the dual unitary representation of G with normalizing vector $\xi_{i} \in f_{i}$ such that $\varphi_{i}^{a}(A)\xi_{i} = \varphi_{i}^{a}(A)\xi_{i}$, $q_{i}(u_{s})\xi_{i} = \xi_{i'}$, $f_{i}^{a}(A)\xi_{i} = q_{i}(u_{s})q_{i}^{a}(A)\xi_{i}$ and $m_{i}(A) = (\varphi_{i}^{a}(A)\xi_{i}, \xi_{i})$ and $W_{G}(\delta)$ be \mathbb{W}^{*} -algebras generated by $\{\varphi_{i}^{a}(A)\}_{A \in \mathbb{R}}$, $\{\varphi_{i}^{a}(A)\}_{A \in \mathbb{R}}$ and $\{q_{i}(U_{s})\}_{G}$. As in the proof of Lem. 4.2 in [7] (cf. p.31), if $2m_{j} = f_{j} + \sigma_{j}$ for G-stationary traces f_{j} and $\sigma_{j}(A)$ are μ' -measurable for all $A \in \mathbb{R}$ where $T_{j} \in \mathbb{W}^{a(S)} \cap \mathbb{W}$

$$\begin{split} & \int (T_{\delta} \, \varphi_{\delta}^{*}(A) \, \xi_{\delta} \, , \varphi_{\delta}^{*}(B) \, \xi_{\delta} \,) \, d\mu'(\delta') \\ & \geq \left(\int \| \Psi_{\delta}^{*}(A) \, \xi_{\delta} \|^{2} d\mu'(\delta') \int \| \varphi_{\delta}^{*}(B) \, \xi_{\delta} \|^{2} d\mu'(\delta') \right)^{1/2} \\ & = \| A \, \xi \, \| \cdot \| B \, \xi \, \| \, . \end{split}$$

Since $\{A \xi \}$ Ascent is dense in β_{f} , there exists a bounded operator T on β_{f} such that

(13) $(TA\xi, B\xi) = \int (T_{\xi} \varphi_{\delta}^{*}(A)\xi_{\delta} \varphi_{\delta}^{*}(B)\xi_{\delta}) d\mu'(\delta)$ for all A, $B \in \mathbb{R}$. From (13) and $T_{\xi} \in W^{\alpha(\chi)} \setminus W^{(\chi)} \cap W_{G}(\delta)'$ it implies $T \in W^{\alpha} \cap W^{\beta} \cap W_{G}'$, and $(TSA\xi, B\xi) = \int T(\chi)S(\chi)(\varphi_{\delta}^{*}(A)\xi_{\delta} - \varphi_{\delta}^{*}(B)\xi_{\delta}) d\mu'(\delta)$ for all $S \in W^{\delta'}$ and A, $B \in \mathbb{R}$

Hence $T_{X} = T(X) T_{Y}$ a.e. where T_{0} is unit operator on T_{Y} . Thus we have Lem. 4.2 of Segal for G-stationary trace by the similar way. The proof of theorem of Segal (p.32-4 in (7)) is applicable for G-stationary traces in the place of state, and T_{Y} are Gergodic traces on R (i.e. extrem points in the space of all G-stationary traces of R) excepting a F'null set in Γ . For $\omega \in \Omega$ putting $\omega'(A + \lambda I) = \omega(A) + \lambda$ (for all $A \in R$ and λ), $\omega' \in \Omega_{1}$ (cf. p.32 of [7]) and the correspondence $\omega \rightarrow \omega'$ is one-one (form Ω into Ω_{1}). For such a ω' we denote ω under identification. The inverse ϕ^{-1} of ϕ induces on Ω :

 $\phi^{-1}(\omega) = \phi^{-1}(\omega')$ for all $\omega \in \Omega$. Let Ω' be a set of all ω in Ω such that mp-'(w) are G -ergodic traces. $(m_{\phi^{-1}(\omega)})$ is well defined as a Gstationary traces on R excepting a μ' -null set set N' by the fact that $m_{\chi}(A) = m_{\chi'}(A)$ for all $A \in \mathbb{R}$ and all $\eta', \chi' \in \phi^{-1}(\omega)$. If $\Omega - \Omega'$ contains a non-null open set Ω_{\circ} , $\phi^{-1}(\Omega_{\circ})$ is non-null open set in **r** and for all $f \in \phi^{-1}(\Omega_0)$ my are not G-ergodic on \mathbb{R}_{\bullet} This is a contradiction. Putting $m_{\omega}(A) = m_{\varphi^{-1}(\omega,A)}$, there exists a \vee -null set N in Ω such that m_{ω} are Gergodic for all $\omega \in \Omega - N$. Putting $\pi_{\omega}(x) = m_{\omega}(x^{\alpha}) \text{ for all } x \in \mathcal{OL},$ π_{ω} ($\omega \in \Omega - N$) are G-ergodic traces on on. Indeed, if $\pi_{\omega} = \lambda \tau_1 + (1-\lambda) \tau_2$ for some G-stationary traces τ_1 and τ_2 on **OI** and $0 \le x \le 1$, then $|\tau_i(xy)|^2$ $\le \tau_i(x^*x) - \tau_i(y^*y) \le \pi_{\omega}(x^*x) \pi_{\omega}(y^*y)$ $= m_{\omega}(x^{a^{*}}x^{a})m_{\omega}(y^{a^{*}})^{a}) \leq \|x^{a}\|^{2}\|y^{a}\|^{2}$ and hence (t.(1e)) & "x" Heart Surmand t. (xe) $\rightarrow \tau_{i}(x)$ implies $|\tau_{i}(x)| \leq ||x^{\alpha}||$. Putting $P_{i}(x^{*}) = \tau_{i}(x)$ for all $x \in OL P_{i}$ is well defined as a positive linear functional on $\{x^{*}\} \times \{\sigma\}$ and $P_{(x^{*})} =$ $P_{i}(x^{s}) = T_{i}(x^{s}) = T_{i}(x) = P_{i}(x^{s})$, Hence P_{i}

(i = 1, 2) are extended to Gstationary traces p'_i (i = 1, 2) on R such that $m_{\omega} = x p'_i + (1-x) p'_{\omega}$. Therefore τ_1 and τ_2 are linearly dependent. Since $\pi_{\omega}(x) = m_{\omega}(x^*) = \omega(x^*)$, $\pi_{\omega}(x^*)$ is ν -integrable for all x, $\gamma \in \mathbb{O}$ and $\tau(x\gamma^*) = \int \pi_{\omega}(x\gamma^*) d\nu(\omega)$. The proof is complete.

The decomposition of finite semitrace onto pure traces follows as a special case (: G consists of only the identity automorphism) of Th.2, because (7) is always satisfied for finite semi-traces (cf. Prop. 1 of [8]); and we have Th.1 and 2 of [9], I as special cases, since for nonseparable case the present proof remains valid for the type of [9].

As an application, we can prove an ergodic decomposition (to finite ergodic measures) of invariant (not ergodic) regular measure $d\tau$ on separable locally compact space E with a group of homeomorphisms under a condition that if there exists a family of finite invariant regular measures $\{d \mu_0\}$ such that $d\tau$ and $\{d\mu_0\}$ are absolutely continuous with respect to each other in the sense that for a Borel set B in E is $d\tau$ -null set

if and only if ${}_{d\,\mu_\beta}-null$ set for all β .

As another application, we have \mathcal{T} -ergodic decomposition of H_{Rat} measure of a locally compact group with a complete compact mbd system invariant under \mathcal{T} where \mathcal{T} is the group of all inner-automorphims.

BIBLIOGRAPHY

- J. Dixmier; Les anneaux d'opérateures de classe finie, Ann. Sci. de L'Ecole Norm. Sup. Paris 66 (1949) pp.209-261.
- [2] R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948) pp.1-84.
- [3] _____, Sur la théorie des représentations unitaires, Ann. of Math. 53 (1951) pp. 68-124.
- [4] I. Kaplansky; A theorem on rings of operators, Pacific Journ. of Math. 1 (1951) pp.227-232.
- [5] J. von Neumann; Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1929) pp.371-427.
- [6] I. E. Segal; An extension of Plancherel's formula to separable unimodular groups, Ann. Math. 52 (1950) pp.272-292.
- [7] _____; Decompositions of operator algebras. I, Memoirs of Amer. Math. Soc. 1951.
- [8] H. Umegaki; Decomposition theorems of operator algebra and their applications, Jap. Journ. of Math. 22 (1952) pp.27-50.
- [9] ______; Operator algebra of finite class. I, Kodai Math. Semi. Rep., (1952) pp.123-129; II, ibid, (1953) pp.61-63.

FOOTNOTES

0) The natural mapping § in this section will be introduced by a similar method with Godement for algebra of a representation of a unimodular locally compact group corresponding to a positive Radon measure (cf. Jour. de Math. pure et appl. 30 (1951)).

1) A stationary trace (resp. semitrace) τ on σ is called G -ergodic, if τ is not convex combinations of

two other linearly independent G stationary traces (resp. semi-traces) on σ where the trace τ satisfies $\sup \{\tau(x^*x); x \in \mathcal{O}, \forall x \forall \leq 1\} = 1$ 2) In general, $jA_j \in W^b$ if $A \in W^a$ and $jB_j \in W^a$ if $B \in W^b$. For $jA_jx^ay^a = jA_x^{b*}y^{a*a} = jx^{b*a}A^{a*a} = jx^{b*a} = jx^{b*a} = jx^{b*a} = jx^{b*a}$ jAj E W^b. The latter similarly follows. 3) (4) implies that v°S = v°S for all v & L and $\xi \in G$. For $(v^{\alpha}\xi, x^{\theta}) = (jv^{b*}j\xi, x^{\theta}) = (x^{*0}, v^{b*}j\xi) = (v^{*x^{*0}}, j\xi) = (x^{*av}, j\xi)$ $\begin{array}{l} \approx \left(\,\xi\,,j\,x^{k\,\circ}\,j\,v\right) = \left(\,\xi\,,x^{b}\,j\,v\right) = \left(\,\xi\,,x^{\circ}\,j\,v\right) = \left(\,\xi\,,v^{b\,\prime}\,x^{\circ}\right) \\ = \left(\,v^{b}\,\xi\,,x^{\circ}\,\right) \quad \text{for all } x \in \mathcal{O}L. \end{array}$ 4) J. von Neumann's theorem ([5]) stated for separable Hilbert space, but both the theorem and the cited proof remain valid for arbitrary Hilbert space. 5) For any $\varepsilon > 0$ there exists β_{ε} such that $\|(A^*A - v_p^{**}v_p^{*})\xi\| \le \|(A^* - v_p^{**})A\xi\| + \|v_p^{**}(A - v_p^{**})\xi\| + \|v_p^{**}(v_p^{**} - v_p^{**})\xi\| \le \|(A^* - v_p^{**})A\xi\| + \|v_p^{**}(A - v_p^{**})\xi\| + \|v_p^{**}(v_p^{**} - v_p^{**})\xi\| \le \|(A^* - v_p^{**})A\xi\| + \|v_p^{**}(v_p^{**} - v_p^{**})\xi\| \le \|v_p^{**}(v_p^{**} - v_p^{**})\| \le \|v_p^{**} - v_p^{**} \| \le \|v_p^{**} - v_p^{**} \| \|v_p^{**} \| \le \|v_p^{**} - v_p^{**} \| \|v_p^{**} \|$ MILA - vp) 31 + MIL (vp - vp) 511 < 5 for all p, p' >p. 6) Let m be closed linear manifold generated by {x*3; x = oi} and let \mathfrak{M}_{i} be the othogonal manifold of \mathfrak{M} (i.e. $m_1 = m^{\perp}$). Since $j x^{4} \xi = j x^{4} j \xi =$ $x^{**}\xi = x^{**}\xi$ and $U_5x^*\xi = U_5x^*U_{5''}\xi = x^{5*}\xi$ for all $x \in OI$, \mathcal{M} and \mathcal{M}_i are invariant under j and Z. If $Z\mathcal{M}_i$ $(g \land m) \neq 0$, then there exists 5 in Zm, (such as $j\zeta = \zeta \neq 0$) and $\zeta \in \mathcal{M}_1$. This is a contradiction of the maximality of $\{\xi_n\}$. Hence $Z \mathfrak{M}_i$ = 0 For any $\zeta \in \mathfrak{M}_1$, $x \in \mathcal{O}$ and $\forall \in \mathcal{A}_{\mathcal{F}}$, $(\zeta, x^* Zv) = (x^* \zeta, Zv) = (Zx^* \zeta, v)$ (since $x^* \zeta \in \mathfrak{M}_1$, $Zx^* \zeta \in \mathfrak{M}_1$) = 0 Hence $\zeta = 0$ or $\mathfrak{M}_1 = 0$, i.e. $\mathfrak{M} = \mathfrak{H}_2$. 7) For a locally compact space E, we denote $C_{\infty}(E)$ (resp. C(E)) be G*-algebras of all continuous functions on E vanishing at infinite (resp. all bounded continuous functions) with norm #f# = sup (f(P)) and *involution f*(p) = f(p) (:complex conjugate). Then R' and R! are *isomorphic (i.e. *preserving isomorph) with $C_{\omega}(\Omega)$ and $C(\Omega_{1})$ by the isomorphisms $A \rightarrow A(\cdot)$ and $A(\omega) = \omega(A)$ for all $A \in \mathbb{R}^{4}$, $\omega \in \Omega$ and $A \in \mathbb{R}^{4}_{1}$, $\omega \in \Omega_{1}$ respectively. 8) Because $\{K_p; p \in \mathcal{L}_p\}$ form a complete basis of open sets in Ω . 9) We can prove by the same proof of Segal (cf. p.14 of [7]) that sup

18(A*A); AER, ||A||≤1} = 1 ex-

cepting a μ' -null set N' in Γ .

Tokyo Institute of Technology.

(*) Received Feb. 8, 1954.