NOTE ON IRREDUCIBLE DECOMPOSITION OF A POSITIVE

LINEAR FUNCTIONAL

By Hisaharu LMEGAKI

In this paper we shall introduce a stationary natural mapping in W^{*} algebra generated by a two-sided representation of a D^{*}-algebra ol with a motion G (e.g. cf. [8]) - a D^{*} algebra O is mean by a normed*-algebra with an approximate identity and a motion G is mean by a group of *auto morphisms on (the motion has been introduced by Segal for C^{*}-algebra). Next, applying the stationary natural mapping and the decomposition theorem of Segal (cf. Th. 4 and its proof of [7]) we shall prove an ergodic decomposition of a G-stationary semitrace of separable a under a restriction which generalizes an irreducible decomposition of finite semitrace (cf. Th. 1 of [9], I), ergodic decomposition of G-stationary trace (cf. Th. 6 of [8]) and ergodic decomposition of invariant regular measure on a compact metric space with a group of homeamorphisms (cf. Th. in App. II of [3] and Th. 7 of [7]).

1. ${ }^{0)}$ Let π be a D^{*}-algebra with an approximate identity $\left\{e_{\alpha}\right\}_{\alpha \varepsilon D}$ and with a motion $G(=\{s\})$ i.e. D is a directed set and $e_{\alpha}^{*}=e_{\alpha}$, $\left\|e_{\alpha}\right\| \leq 1$ for all $\alpha \varepsilon D,\left\|e_{\alpha} x-x\right\| \rightarrow 0$ for all $x \varepsilon O$, and any $s, t \varepsilon G$ are automorphisms on or such that $\left\|^{s}\right\|=\|x\|, x^{s *}=x^{* s}$ and $\left(x^{s}\right)^{t}=x^{s t}$ for all $x \varepsilon$ ol . Let τ be a Gstationary semi-trace of Ω, i.e. τ is a linear functional on the selfadjoint subalgebra generated by $\{x y ; x, y \in \pi\}$ (i.e. σ^{2}) such that $\tau\left(x^{*} x\right) \geqq 0$ $\tau(y x)=\tau(x y)=\tau\left(y^{*} x^{*}\right), \tau\left(\left(e_{\alpha} x\right)^{*} e_{\alpha} x\right) \underset{\alpha}{\longrightarrow} \tau\left(x^{*} x\right)$, $\tau\left((x y)^{*}(x y)\right) \leqq \| x u^{2} \tau\left(y^{*} y\right)$
and $\tau\left(x^{s} y^{s}\right)=\tau(x y)$ for all $x, y \varepsilon \pi$ and $s \varepsilon G$.

Putting $\Omega=\left\{x \varepsilon \Omega ; \tau\left(x^{*} x\right)=0\right\}, \Omega$ is a two-sided ideal in σ. Let a° be qoutient algebra of $\Omega(=\Omega / \Omega)$ and for any $x \varepsilon \circlearrowleft$ let x^{θ} be the class containing x. Letting (x^{θ}, y^{θ}) $=\tau\left(y^{*} x\right)$ for all $x, y \varepsilon \pi, \sigma^{\theta}$ is an incomplete Hilbert space. Let
fy be competion of π^{θ}. Putting $x^{a} y^{\theta}=(x y)^{\theta}, x^{b} y^{\theta}=(y x)^{\theta}$ and $j y^{\theta}=y^{* \theta}$ for all $x, y \in a, \quad\left\{x^{a}, ~\right.$
$\left.x^{b}, j, f\right\}$ defines a two-sided represeritation of π. Noreover putting $u_{s} y^{\theta}=\left(y^{s}\right)^{\theta}$ for all $s \varepsilon G$ and $y \varepsilon a$, $\left\{u_{s}\right.$, fy $\} \quad$ is a dual unitary representation of G. For, $\left(u_{s} y^{\theta}, x^{\theta}\right)=$ $\left(y^{s}, x^{\theta}\right)=\tau\left(x^{*} y^{5}\right)=\tau\left(x^{s^{-1} *} y\right)=\left(y^{\theta}, u_{s^{-1}} x^{\theta}\right)$ and $u_{s t} y^{\theta}=\left(y^{s t}\right)^{\theta}=u_{t} y^{s \theta}=u_{t} u_{s} y^{\theta}$. Then we have:
(1) $\left(x^{5}\right)^{a}=u_{5} x^{a} u_{5}-1$ and $\left(x^{5}\right)^{b}=u_{5} x^{b} u_{5}-1$ for all $x_{\varepsilon} \in \Omega$ and $s \in G$ 。

For, $u_{s} x^{a} u_{s-1} y^{\theta}=u_{s} x^{a}\left(y^{5-1}\right)^{\theta}=u_{5}\left(x y^{5-1}\right)^{\theta}$
$=\left(x^{s} y\right)^{\theta}=x^{s a} y^{\theta}$ and similarly for the latter. Putting W^{a}, W^{b} and W_{G} $w^{*}-a l g e b r a s ~ g e n e r a t e d ~ b y ~\left\{x^{a}, x \in \Omega\right\}$, $\left\{x^{6} ; x \varepsilon O L\right\}$ and $\left\{u_{s}, s \in G\right\}$ respectively, $W^{a}=W^{b}, W^{a}=W^{b}, j A j=A^{*}$ for ${ }_{1}$) all $A \varepsilon W^{a} \cap W^{b}$ and the τ is G-ergodic if and only if $W^{a} \cap W^{b} \cap W_{G}^{\prime}=\{\lambda I\}$ (cf. Th. 2 and Th. 5 of [8]) where for any set F of bounded operators on h_{y} F^{\prime} is the commutor of F.

Let \mathcal{L} be the family of all bounded elements v in of (i.e. v belongs to \mathcal{L} if and only if $\left\|x^{b}\right\|\|M\| x^{\boldsymbol{\theta}} \|$ for all cf. [8] and [9]) whose corresponding bounded operators on b be v^{a} and v^{b} such that $v^{a} x^{\theta}=x^{b} v^{\theta}, v^{b} x^{\theta}=x^{a} v$. Then $\left.\left\{x^{\theta} ; x \varepsilon 0\right\}\right\} \subset \mathcal{L}$ and $x^{\theta \varepsilon}=x^{a}$ for all $x \varepsilon$ or , and the following relations are equivalent each other : for any v_{1} and v_{2} in $\mathcal{L} v_{1}{ }^{a}=v_{2}{ }^{a}$, $v_{1}^{b}=v_{2}^{b}$ (both as operator) and $v_{1}=v_{2}$ (as point in b_{y}). Now we can define in $\mathcal{L} a *$-involution and a ring product : v^{*} and $v_{1} v_{2}\left(=v_{1}^{a} v_{2}=v_{2}^{b} v_{1}\right)$ for all $v, v_{1}, v_{2} \varepsilon \mathscr{L}$ satisfying that $v^{*}=j v, v^{* a}=v^{a *}, v^{* b}=v^{b *}\left(v^{a *}\right.$, $v^{\text {b* }}$ are adjoint operators of v^{a} and $\left.v^{b}\right), j v^{a} j=v^{b *},\left(v_{1} v_{2}\right)^{a}=$ $v_{1}^{a} v_{2}^{a},\left(v_{1} v_{2}\right)^{b}=v_{2}^{b} v_{1}^{b}$ and $\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right)^{d}=$ $\lambda_{1} v_{1}^{d}+\lambda_{2} v_{2}^{d}$ (for $d=a$ or b) (cf. $p .35$ of [8], p. 61 of [9], II).
(2) $u_{s} v \varepsilon \dot{L}$ and $\left(u_{s} v\right)^{a}=u_{s} v^{2} u_{s-1}$,
$\left(u_{s} v\right)^{b}=u_{s} v^{b} u_{s-1}$ for all $s \varepsilon G$ and $v \varepsilon \mathcal{G}$ ．

$$
\text { For, } x^{b} u_{s} v=u_{s} u_{s}-1 x^{b} u_{s} v=u_{s} x^{s^{-1} b} v
$$ and $\left\|x^{b} u_{s} v\right\|=\left\|\left(x^{-1}\right)^{b} v\right\|=\left\|v^{a} u_{5}-x^{b}\right\|$ $\leqq\left\|v^{a}\right\| u x^{\theta} \|$ ．

Next $u_{p} v^{a} u_{s-1} x^{\theta}=u_{s} v^{a}\left(x^{s^{-1}}\right)^{\theta}=u_{s}\left(x^{s-1}\right)^{b} v$ $=u_{s} u_{s}-1 x^{b} u_{s} v=x^{b} u_{s} v=\left(u_{s} v\right)^{a} x^{\theta}$ ． The latter follows from the similar method．

Let $W^{a(u)}$ and $W^{b(u)}$ be the sets of all unitary operators in W^{a} and W^{b} respectively，and put $u^{*}=u_{j} u_{j}$ for all $u^{1} W^{a(u)}$ ．Then $\left(u^{*} v\right)^{a}=\left(u_{j} u_{j v}\right)^{a}$ $=U_{v a l l}{ }^{-1}$ for all $v \varepsilon \mathcal{L}$（cf．Lem 3 of ［8］）．It is evident that for any $u \varepsilon W^{a(u)} j u_{j} \varepsilon W^{b(u)}$ and $(u j u j)^{-1}=$ $j u^{-1} j u^{-1}=u^{-1} j u^{-1} j$ ．

Put $G=$ unitary group generated by $\left\{u^{*} ; u_{\varepsilon} W^{\text {a（u）}}\right\}$ and $\left\{u_{s} ; s \in G\right\}$ ．

Lemma 1 ．For any $u^{\prime} \in G$ and $\checkmark \varepsilon \mathcal{L}, u^{\prime} v \varepsilon \mathcal{L}$ and there exists a unitary operator u on such that $\left(u^{\prime} v\right)^{a}=u v^{a} u^{2}$ for all v \＆L．．

Proof．For $u^{\prime}=u_{s} u^{\#}$（for some s£G and $\left.u \varepsilon W^{a(u)}\right)$ ，$u^{\prime} v \varepsilon \mathcal{L}$ follows from（2）and the fact that \mathcal{S}^{a} is ideal in W^{a} ，and $\left(u^{\prime} v\right)^{a}$ $=\left(u_{s} u^{*} v\right)^{a}=\left(u_{s} u_{j} u_{j v}\right)^{a}=u_{s}\left(u_{j} u j v\right)^{a} u_{s}-1$ $=u_{s} u v^{a} u^{-1} u_{s-1}=\left(u_{s} u\right) v^{a}\left(u_{s} u\right)^{-1}$ ． For $u^{\prime \prime}=u^{*} u_{s}$ ，similarly $u^{\prime \prime} v \varepsilon \mathscr{L}$ and $\left(u^{\prime \prime} v\right)^{a}=\left(u^{\prime \prime} u_{s} v\right)^{a}=\left(u_{j} u_{j} u_{s} v\right)^{a}$ $=u\left(u_{s} v\right)^{a} u^{-1}=u u_{s} v^{a} u_{s}^{-1} u^{-1}=\left(u u_{s}\right) v^{a}\left(u u_{s}\right)^{-1}$ ． Since general element in G has product form of a finite number of the above forms u^{\prime} and $u^{\prime \prime}$ ，we can prove for any u^{\prime} in G 。

Let Z be the closed linear mani－ fold of all the vectors ξ in f such that $u^{\prime} \xi=\xi$ for all $u^{\prime} \varepsilon \xi$ ，and let Z_{Q} be the projection from h onto \mathcal{g} ．For any $\xi \& f$ ，put $K_{\xi}=$ closed convex hujl of $\left\{u^{\prime} \xi ; u^{\prime} \varepsilon G^{\xi}\right\}$ ． Then

Lemma 2．（Godement＇s lemma；cf． ［2］）．（i）$K_{\xi} \cap 3$ consists of only one point $\xi_{0},(i i)\left\|\xi_{0}\right\|=\inf \{15 \|$ $\left.; \zeta \in K_{\xi}\right\}$ ，（iii）$Z \xi=\xi_{0}$ 。
（3）$j u=u j$ for all $u \in G$ and $j Z=Z j$

$$
\begin{aligned}
& \text { For, } j u_{s} x^{\theta}=j\left(x^{s}\right)^{\theta}=x^{5 * \theta} \\
& =x^{\star s \theta}=u_{s j} x^{\theta} \text { and } j u^{*} x^{\theta}=j u_{j} u_{j} x^{\theta}
\end{aligned}
$$

$=j j u_{j} u_{x^{\theta}}=u_{j} u x^{\theta}=u_{j} u_{j j} x^{\theta}=u^{*} j x^{\theta}$ for all $s \in G$ and $u \varepsilon W^{a(u)}$ ．For any $\xi \varepsilon \log _{y}$ taking $\xi_{n}=\sum x_{i}^{(n)} u_{i}^{(n)} \xi \varepsilon K_{\xi}$ $\left(u_{i}^{(n)} \in \mathcal{G}\right)$ and $\xi_{n} \rightarrow \xi_{0}(=Z \xi), j Z \xi=j \xi$ 。 $=j \lim \xi_{n}=\lim j \xi_{n}=\lim \sum \lambda_{2}^{(n)} u_{i}^{(n)} j \xi \varepsilon K_{j}$. While $u^{n} j \xi_{0}=j u^{\prime} \xi_{0}=j \xi_{0}$ for all $u^{\prime} \varepsilon G$ and $j \xi_{0} \varepsilon K_{j \xi} \cap \mathcal{Z}$ ．
（4）$x^{a} \xi=x^{b} \xi$ for all $x_{\varepsilon} \pi$ and $\xi \varepsilon g^{3}$ ）
For，$u_{j} u_{j} \xi=\xi$ implies $j u_{j} \xi=$ $u^{-1} \xi$ ．Let $x \in \sigma$ be $x^{*}=x$ and $\left\|x^{a}\right\| \leq 1$ 。 Putting $u_{1}=x^{a}+i\left(I-x^{a^{2}}\right)^{1 / 2}$ and $u_{2}=x^{a}-i\left(I-x^{a 2}\right)^{1 / 2}, u_{1}$ and u_{2} belong to $w^{a(u)}$ ．Hence

$$
\begin{aligned}
& \left(j x^{a} j-i j\left(I-x^{a^{2}}\right)^{1 / 2} j\right) \xi=\left(x^{a}-i\left(I-x^{a^{2}}\right)^{1 / 2}\right) \xi \\
& \left(j x^{a} j+i j\left(I-x^{a^{2}}\right)^{1 / 2} j\right) \xi=\left(x^{a}+i\left(I-x^{a^{2}}\right)^{1 / 2}\right) \xi
\end{aligned}
$$

and $j x^{a} j \xi=x^{a} \xi, x^{b} \xi=x^{a} \xi$ ．
This holds for all s．a，$x \in$ Ol．Since any $x \in \sigma$ can be represented as $y+1 z \quad(y$ and z being self adjoint in $\Omega), x^{a} \xi=\left(y^{a}+i z^{a}\right) \xi=\left(y^{b}+i z^{b}\right) \xi=x^{b} \xi$ for all $\times \varepsilon$ 水。
（5）$K_{v} \subset \mathcal{L}$ for any $v \varepsilon \mathcal{L}$ and $Z \mathscr{L} \subset \mathcal{L}$
For，let $\left\{\xi_{n}\right\}<K_{v}$ such that $\xi_{n}=$ $\sum_{i=1}^{m(n)} \lambda_{i}^{(n)} u_{i}^{(n)} v\left(u_{i}^{(n)} \varepsilon W^{a(u)}, \sum_{i=1}^{m(n)} \lambda_{i}^{(n)}=1\right.$
and $\lambda_{i}^{(n)} \geq 0$ ）and $\xi_{n} \rightarrow \xi$ ．Then

$$
=\left\|\sum \sum_{i, 1}^{n} x_{i}^{n} u_{i}^{(m)} u^{(t)} v^{a} u_{i}^{(n)-1} x^{\theta}\right\| \leqq\left\|v^{a}\right\| \cdot\left\|x^{\theta}\right\|
$$

and $\left\|x^{6} \xi_{n \|} \longrightarrow n x^{b} \xi\right\| \leqq x$ wa\｜－\｜$x^{\theta} \|$
for all $\times \varepsilon \Omega$ ．Hence $\xi \varepsilon \mathcal{G}$ and we have the former．The latter is evi－ dent by the former．

Putting $\left(v^{a}\right)^{\xi}=(Z v)^{a}$ for all $v \varepsilon \mathcal{L}$ ， by the proof of（5）u（va）$x^{\theta_{\|}}=$ $\left\|\left(Z_{v}\right)^{a} x^{0}\right\|=\left\|x^{b} Z \cup\right\| \leq v^{a}\left\|\cdot x^{9}\right\|$ for all $x \in \Omega$ and we have

$$
\begin{equation*}
\text { val } \leqq v^{-a} \| \text { for all } v \varepsilon \mathcal{S} \tag{6}
\end{equation*}
$$

Let R and R^{ξ} be the uniform closures of \mathcal{L}^{a} and $\mathscr{L}^{a} \xi$ respective－ ly，then

Proposition 1．The mapping \oint is uniquely extended to a linear mapping on \mathbb{R} onto \mathbb{R}^{\prime} such that ：
（i）$A \in R^{f}$ implies $A^{f}=A$ 。
（ii）$A^{* S}=A^{f *}$ and $\left(A^{*} A\right) S \geqq 0$ ．
（iii）$\left(U A U^{-1}\right)^{f}=A^{f}$ for all $u \varepsilon W^{\text {a（u）}}$ and all $u=u_{s}(s \in G)$ ．
（iv）$(A B)^{\xi}=(B A)^{\xi}$ and $\left(A\{B)^{\}}=\left(A B^{\}}\right)^{\xi}\right.$ $=A^{\prime} B^{\prime}$ for all $A, B \in R$ ．
（v）$\quad(A \xi, \xi)=\left(A^{\xi} \xi, \xi\right) \quad$ for all $A \varepsilon R$ and $\xi \varepsilon Z$ 。

Proot．（i）follows immediately
from（6）．（ii）：$v^{a k t}=(Z j v)^{a}=(j Z v)^{a}$ $($ by $(3))=(Z v)^{a *}=v^{a f *}$ ．Thile $\left(\left(v^{*} v\right)^{a b} x^{\theta}, x^{\theta}\right)=\left(x^{b} Z v^{*} v, x^{\theta}\right)$ $=\lim \left(\Sigma \lambda_{i}^{(+)} x^{b} u_{i}^{(n)} v^{*} v, x^{0}\right)$ ． Since $\left(x^{b} u^{\prime} v^{*} v, x^{\theta}\right)=\left(u v^{* a} v^{a} u^{-1} x^{\theta}, x^{\theta}\right)$ $=\| v^{a} u^{-1} x^{0} u^{2} \geq 0$（where u is as in lemma 1），（（w＊w $\left.)^{a \xi} x^{\theta}, x^{8}\right) \geq 0$ ． Taking $v_{n} \& \mathcal{L}$ such that $\left\|v_{n}^{a}-A\right\|=$ $\left\|v_{n}^{a *}-A^{*}\right\| \rightarrow 0^{\circ}(n \rightarrow \infty)$ we have（ii）． （iii）：Since for any $u \varepsilon w^{a(u)} K_{u^{\mathbf{z}} v}$ $c K_{v}, Z U^{*} v \varepsilon K_{v}$ and $Z U^{*} v \varepsilon K_{v} \cap g$ 。 Hence by lemma $2 Z U^{\#} v=Z v$ and $\left(u v^{a} u^{-1}\right)^{\xi}$ $=\left(u^{*} v\right)^{a \&}=\left(Z u^{*} v\right)^{a}=(Z v)^{a}=v^{a \xi}$ for all $U \varepsilon W^{a(u)}$ and $v \varepsilon \mathscr{L}$ 。 While for $s \in G$ ，similarly $Z U_{s} v=Z v$ and $\left(u_{s} v^{a} u_{s}-1\right)^{g}=\left(u_{s} v\right)^{a \xi}=\left(Z u_{s v}\right)^{a}=(Z v)^{a}=v^{a \xi}$ 。 Taking $v \in \mathcal{L}$ as the previous we have （ii）．（iv）：For any $v, w \in \mathscr{L}$ and $x, y \varepsilon \pi,\left(Z v^{a} w, x^{\theta}\right)=\left(v^{a} w, Z x^{\theta}\right)$ $=\left(w, w^{* a} Z x^{\theta}\right)=\left(w, v^{* b} Z x^{\theta}\right)^{3}=\left(v^{b} w, Z x^{\theta}\right)=\left(Z w^{a} v x^{\theta}\right)$, hence $\left(v^{a} w^{a}\right)^{\}}=(Z v w)^{a}=(Z w v)^{a}=\left(w^{a} v^{a}\right)^{\}}$． $\left(\left(v^{+\{ } w^{a}\right)^{\xi} x^{\theta}, y^{\theta}\right)=\left(x^{b} Z v^{a \xi} w, y^{\theta}\right)=\left(Z v^{a} w,\left(y x^{*}\right)^{\theta}\right)$
$=\left(w, w^{A} \oint * Z\left(y x^{*}\right)^{\theta}\right)=\left(Z w\right.$ ，va $\left.{ }^{*} \#\left(y x^{*}\right)^{\theta}\right)$ （because vaf＊$\left.Z\left(y x^{*}\right)^{\theta} \varepsilon Z\right)=\left(\operatorname{vas}^{\beta} Z w,\left(y x^{*}\right)^{\theta}\right)=$ $\left(x^{\theta} v^{\alpha \beta} Z w, y^{\theta}\right)=\left(v^{\alpha \phi}(Z w)^{a} x^{\theta}, y^{\theta}\right)=\left(v^{\alpha \beta} w^{\alpha \beta} x^{\theta}, y^{\theta}\right)$ ． For any $A, B \in R$ ，taking $\left\{v_{n}\right\},\left\{w_{n}\right\} \subset \mathcal{L}$ ： $\left\|v_{n}^{a}-A\right\| \rightarrow 0$ and $A w_{n}^{a}-B \| \rightarrow 0$ we can prove $(A B)^{\xi}=(B A)^{\xi},\left(A^{\xi} B\right)^{\xi}=$ $A^{\{ } B^{\prime}$ and clearly $=\left(A B^{6}\right)^{\xi}$ ．（V）： For $v, w \in \mathscr{L},\left(v^{a} Z w, Z w\right)=\left(w^{a} \xi_{v}, Z_{w}\right)$ $=\left(Z v, w^{\alpha} \oint * Z w\right)=\left(w^{a s} Z v, Z w\right)=\left(v^{a} \xi Z w, Z w\right)$ ． Since $Z \mathcal{L}$ is dense in Z and $\left\|v_{n}^{*}-A\right\|$ $\rightarrow 0$ implies $\left\|v_{n}^{a \xi}-A^{\xi}\right\| \rightarrow 0$ ， （v）holds．

Lemma 3．If \mathcal{O} has the following properties：
（7）$\left\{x^{\circ} G ; x \varepsilon \sigma\right\}$ is dense in $f y$ ．
Then the mapping $v^{a} \rightarrow v^{a} \S$ is strongly continuous on a sphere of \mathcal{G}^{a} ．

Proof．Since $Z \mathscr{L}$ is dense in g ． （7）is equivalent to that $\left\{x^{a} Z v\right.$ ； $x: \pi, v \varepsilon \mathcal{L}\}$ is dense in fy．If $v_{\gamma}^{a} \rightarrow v^{a}$ strongly and $\left\|v_{\gamma}^{a}\right\| \leqq M$ then $\left\|\left(v_{\gamma}^{a}-v^{a}\right)^{\beta} w^{a} x^{0}\right\|=\left\|x^{b}\left(v_{\gamma}^{a}-v^{a}\right)^{\natural} Z w\right\|$ ， （since $\left.\left(\left(v_{\gamma}^{a}-v^{a}\right)\right\} z, x^{\theta}\right)=\left((Z w)^{a} Z\left(v_{\gamma}-v\right), Z x^{\theta}\right)$ $=\left(v_{\gamma}-v,(Z w)^{a *} Z x^{\theta}\right)=\left(Z\left(v_{\gamma}^{0}-v^{0}\right) Z w, x^{0}\right)$ for all $x \varepsilon$ ol，$\left.\left(v a-v^{a}\right)!Z w=Z\left(w_{\gamma}^{a}-v^{a}\right) Z w\right)$ $=\left\|x^{b} Z\left(v_{\gamma}^{a}-v^{a}\right) Z w\right\| \vec{\gamma} 0$ and $v_{\gamma}^{a \xi} \vec{\gamma} v^{a} \xi$ strongly．
（8）The approximate identity $\left\{e_{\alpha}\right\}$ in
ol satisfies that e_{α} belongs to the center of Ω and $e_{\alpha}^{s}=e_{\alpha}$ for all
$s \in G$ and $\alpha \varepsilon D$ 。
If $\left\{e_{\alpha}\right\}$ satisfy（ 8 ），then（7）is
always satisfied．For，clearly $e_{\alpha}^{\theta} \varepsilon g$ and $e_{\alpha}^{a} x^{\theta} \longrightarrow x^{\theta}$ strongly in h ，and $\left\{x^{a} e_{\alpha}^{\theta} ; x \in \pi, \alpha \in D\right\}$ is dense in of．

THEORFM 1．Under the assumption （7）or（8），the mapping $\}$（on $\mathcal{L}^{\prime \prime}$ ）is uniquely extended to a linear mapping on W^{a} onto $W^{s}\left(=w^{a} \cap W^{a} \cap W^{\prime}\right)$ satisfying the conditions（i）－（v）in the Prop． 1 ，where we take W^{a} and $w \oint$ in the place of R and R^{\S} respectively which coincides with δ on R introduced in Prop． 1 ，and moreover
（vi）$I^{\oint}=I$ ，and $\left(A^{*} A\right)^{\}}=0$ for A εW^{A} implies $A=0$ 。

Proof．Since \mathscr{L}^{a} is dense in W^{a} under the bounded strong topology （cf．［4］），by lemma 3 and its proof $\$$（on \mathcal{L}^{a} ）can be uniquely extended onto $W^{\text {a }}$ ．Since the uniform con－ vergence in \mathscr{L}^{a} implies boundedly strong convergenc（in the operator topology），the introduced mapping $\}$ （on W^{Q} ）coincides with \oint（on R ）． If $v_{p} \leqslant \mathcal{L} y$ and $\left\|v_{p}^{\alpha}\right\|_{\infty} M$ ，then $v_{\beta}^{\alpha} \rightarrow A$ （strongly）if and only if $v_{\beta}^{a} \rightarrow A^{*}$ 。 For，$w_{2}^{a} v_{1}^{a} Z w_{1}=w_{2}^{a} v_{\beta}^{b} Z w_{1}=v_{\beta}^{b} w_{2}^{a} Z w_{1}$ and $\left\{v_{\beta}^{b} w_{2}^{a} Z w_{1}\right\}_{\beta}$ is Cauchy directed set for all $w_{1}, w_{2} \& \mathcal{L} r$ ；since $\left\{x^{a} Z v\right.$ ； $x \in \pi, v \in \mathcal{L}\}$ is dense in f and $\left\|v_{p}^{b}\right\|=\| j v_{p}^{a * j}$ $=\left\|v_{\beta}^{a}\right\| \leqq M$ ，there exists a strongly limit B of v_{β}^{b} ．Since for any $\xi, \zeta \varepsilon f(j B j \xi, \zeta)=\lim \left(j v_{\beta}^{b} j \xi, \zeta\right)=$ $\lim \left(v_{3}^{a *} \xi, \zeta\right)=\lim \left(\xi, v_{\beta}^{a} \zeta\right)=(\xi, A \zeta)=\left(A^{*} \xi, \zeta\right)$, $j B j=A^{*}$ and hence $v_{p}^{a *}=j v_{p}^{b} j \rightarrow j B j=A^{*}$ The converse is clear．If $\left(Z_{v}\right)^{a} \xi=0$ for all ve \mathcal{L} ，then $\left(v^{a * \xi} \xi, x^{\theta}\right)=\left(\left(Z_{v}\right)^{a *} \xi, x^{0}\right)$ $=\left(\xi, x^{a} Z v\right)=0$ for all $x \varepsilon$ or，$v \varepsilon \delta$ ， and $\xi=0$ ．Hence there exists $\left\{u_{\gamma}\right\}$ $\subset Z \mathcal{L}$ such that $u_{\gamma}^{n} \leqq 1$ and $u_{\gamma}^{a} \rightarrow I$ （strongly）by Satz 5 in［5］ard Thol in［4］．For any $u s Z \mathcal{L}, A \in W \nmid$ and $u^{\prime} \in g, u^{\prime} A=A u^{\prime}$ ，and hence $u^{\prime} A u=$ $A U^{\prime} u=A u$ or $A u \varepsilon Z Z$ ．By the con－ struction of \oint on $W^{a}, A \oint$ is boundedly strong limit of a $\left\{v_{\beta}^{\delta\}}\right\}$ $\left(\begin{array}{ll}v_{p} & \mathcal{L}\end{array}\right)$ and hence $A^{\prime} u_{\gamma}^{\alpha}=\left(A_{\gamma}^{\beta}\right)^{f}=$ $\left(Z A u_{\gamma}\right)^{a}=A u_{\gamma}^{\alpha}$ ．Since $u_{i}^{2} \rightarrow I$ strong－ ly，$A^{i}=A$ ．The fact $A A^{\prime}$ for any A εW^{a} follows from that \mathcal{L}^{a} is dense in w^{a} under the bounded strong topolo by．Since for any $A \varepsilon W^{*}$ we can take $\left\{v_{p}\right\} \subset \mathcal{L}$ such that $\left\|v_{p}^{a}\right\| \leq M, v_{p}^{a} \rightarrow A$
and $v_{\beta}^{a *} \rightarrow A^{*}$ strongly，for any $\xi \in f$ $\|\left(A^{*} A-v_{p}^{a *} v_{\beta}^{a} \xi\|\leqq\|\left(A^{*}-v_{\beta}^{A *}\right) A \xi \|\right.$
$\left.-M\left\|\left(A-v_{\beta}^{\alpha}\right) \xi A+M\right\|\left(v_{\beta}^{a}-v_{\beta}^{a}\right) \xi \|^{4}\right) ~$
hence $v_{\beta}^{a *} v_{p}^{a} \rightarrow A^{*} A$ strongly and $\|_{p}^{* *} v_{\beta}^{a}{ }^{n}$ $=\left\|v_{p}^{a}\right\|^{2} M^{2}$ ．Since（i）－（v）fold in \mathcal{L}^{a}（ cf ．Proof of Prop．1），we have also（i）－（v）for $A \& W^{a}$ ．
（vi）：Since $I \in W^{\xi}, I^{\xi}=I$ is evident．Let $A \& W^{a}$ satisfies $\left(A^{*} A\right)^{\prime}$ $=0$ ，then $\left(\left(A^{*} A\right)^{\{ } Z_{v,} Z_{v}\right)=\left(A^{*} A Z_{v} Z_{v}\right)$
$(b y(v))=\|A Z v\|^{2}=0$ and $x^{b} A Z v=A x^{b} Z v=A x^{a} Z v=0$ for all $x \in a$ and $v \varepsilon \npreceq . ~ H e n c e ~ A=0$ 。

Now we have following

Corollary 1．Let τ be arbitrary G－stationary trace of a D^{*}－algebra or with a motion G and let w^{a}, w^{b} and W_{G} be the W^{*}－algebras generated by the representations $\left\{x^{a}, f\right\},\left\{x^{b}, f\right\}$ and $\left\{u_{s}, 7\right\}$ ．Then there exists a $G-$ stationary natural mapping on W^{a} onto $W^{a}{ }^{\prime} W^{b} \cap W_{G}^{\prime}$ satisfying the properties （i）－（vi）on w^{a} ．

Proof．There exists a strictly normalizing vector $\xi \in f$ such that $j \xi=\xi, x^{\theta}=x^{a} \xi=x^{6} \xi, \tau(x)=\left(x^{a} \xi, \xi\right)$ for all $x \varepsilon$ OL and $\left\{x^{*} \xi ; x \varepsilon \sigma\right\}$ is dense in fo（e．g．cf．Th．I in［8］）． we now prove $u_{p}^{*} \rightarrow \xi$ strongly in f for any approximate identity $\left\{u_{\beta}\right\}$ in風。 $\left(u_{p}^{\rho}, x^{\theta}\right)=\left(u_{p}^{*} \xi, x^{\alpha} \xi\right)=\tau\left(u_{p} x^{*}\right) \rightarrow$ $\tau\left(x^{*}\right)=(\xi, x \xi)$ and $\left\|u_{p}^{\theta}\right\|=\left\|u_{\beta}^{a} \xi\right\| \leq x \xi \|$ for all β ．Herice $u_{\beta}^{\theta} \rightarrow \xi$ weakly，and u_{A}^{θ} being uniformly bounded，con－ verges strongly．Clearly e_{d} is also approximate identity in a for all $s \in G$ Hence $\left(e_{\alpha}^{s}\right)^{\theta}=u_{s} e_{\alpha}^{\theta} \rightarrow u_{s} \xi,\left(e_{\alpha}^{s}\right)^{\theta} \rightarrow \xi$ and hence $u_{s} \xi=\xi$ for all $s \varepsilon G$ ． Therefore ξ belongs to the manifold 3 ，and the condition（7）is always satisfied and by Th．l we have Cor．1．

2．In this section，we shall prove an ergodic decomposition of a G－ stationary semi－trace τ of a sepa－ rable D^{*}－algebra o with a motion G ． We shall use the same notations in $\oint 1$ ，and assume the condition（7）or （8）．Since ol is separable，the Hilbert space of is also separable （cf．Lem． 5 of［8］）．

Lenma 4．There exists a nonzero vector ξ in ξ such that $j \xi=\xi$ and $\left\{x^{a} \xi ; x \in \pi\right\}$ is dense in fy ．

The proof follows from the similar proof of a theorem of Segal（cf．the last paragraph of the proof of Th．9， p． 49 of［7］）：Let $\left\{\xi_{n}\right\}$ be a countable family of nonzero elements of z which is maximal with respect to the proper－ ties：1）$\left.\left.j \xi_{n}=\xi_{n}, 2\right) 30 \pi^{\wedge} \xi_{n}\right\}_{n}$ are orthogonal with respect to each other． Putting $\xi=\sum \xi_{n} / 2^{n} \cap \xi_{n} \|$ is the re－ quired one．This follows from the proof of Segal adjoining the facts， that the closure m_{n} of $\sigma^{a} \xi_{n}$ and projection P_{n}（onto m_{n} ）satisfy that $a^{a} m_{n}<m_{n}, \sigma a^{b} m_{n}<m_{n}$ ，jomnc $<m_{n}$ ，
 $\left(=w_{1} w_{n}^{\prime} w_{G}^{\prime}\right)$ ，and that $\left\{x^{a} \zeta ; x \varepsilon \sigma, \zeta \varepsilon g\right\}$ spans ofy ${ }^{5)}$

Let R_{1}（resp．$Q_{1}^{\}}$）be（＊－algebras generated by R（resp．R^{ξ} ）and I ． Then the natural mapping \oint on R is uniquely extended on R_{1} onto $R_{1}{ }^{j}$ which coincides with the contraction of the mapping ξ on w^{a} ．For any $s \varepsilon G$ and $A \in R$（or R_{1} ）putting $A^{s}=U_{s} A U_{5}^{-1}, A^{s} \in R\left(\right.$ or $\left.R_{1}\right), G$ defines a motion on R（or R_{1} ）such that $x^{a s}=x^{s a}$ for all $s \varepsilon G$ and $x \in \pi$ ． Let Ω and Ω ，be character spaces of $R^{\}}$and $Q_{1}^{\}}$，and plitting $\omega(A)=$ $\omega\left(A^{\delta}\right)$ for $a l l A \in R$（or R_{1} ），ω are G－stationary traces of R（or R_{1} respectively）。 Then Ω（resp．Ω_{1} ） is locally compact（resp，compact） Hausdorff space，${ }^{6)}$ and there exists a Radon measure $d \mu$ on Ω such that

$$
\begin{align*}
& (S A \xi, \xi)=\int_{\Omega} S(\omega) \omega(A) d \mu(\omega) \tag{9}\\
& \text { for } S \varepsilon R^{\xi} \text { and } A \varepsilon R
\end{align*}
$$

The（9）follows from that $\mu\left(A^{\rho}\right)=\mu(A)$ ， $\mu\left(S A^{\xi}\right)=\mu(S A)$ and $\omega(S A)=\omega\left((S A)^{\xi}\right)=\omega\left(S A^{\xi}\right)$ $=\omega(S) \omega(A)$ for all $A \varepsilon R, S \varepsilon \mathbb{R}^{S}$ and $\omega \varepsilon \Omega$ ，where $\mu(A)=(A \xi, \xi)$ ．

Denote R the C^{*}－algebra generated by $\left\{x^{a} ; x \in \Omega\right\}$ ．

THEORHM 2．Let τ be G－stationary semi－trace on O and Ω the character space of R^{\S} ．Then there exists a positive Radon measure ν on Ω such that
（10）$\tau(x y)=\int_{\Omega} \pi_{\omega}(x y) d \nu(\omega)$ for all $x, y \& O$ and $^{\Omega} \pi_{\omega}$ are $d \nu(\omega)-$ almost all G－ergodic traces on 0 ．

Proof．By a method of Segal which is done under the resolution of identity（cf．p．284－5 in［6］），for
any s．a．v ε Z \mathcal{L} there exists a sequ－ ence $\left\{q_{n}\right\}$ of linear combinations of orthogonal s．a．idempotents in $2 \mathcal{L}$ such that

$$
\begin{align*}
\left\|q_{n}-v\right\| & \rightarrow 0, \text { and } \tag{11}\\
& \left\|q_{n}^{2}-v^{2}\right\|
\end{align*}
$$

For any $v \in Z \mathcal{L}$, taking $v=v_{1}+\varepsilon v_{2}$ （：$v_{1}^{*}=v_{1}$ and $v_{2}^{*}=v_{2}$ ），（1l）also holds for v ．Denote \mathcal{L}_{p} and \mathcal{L}_{q} be the sets of all s．a．idempotents in Z\＆and linear extension of \mathcal{L}_{p} respectively，Let $R_{p}^{!}$be the set of all projections in \mathbb{R}^{s} ，then $\mathbb{R}_{p}^{\delta}=\mathscr{L}_{p}^{a}$ （ $=\left\{p^{2} ; p \varepsilon \mathcal{L}_{p}\right\}$ ）（cf．（40），p． 25 of［9］， I）．This follows from，that for $\left.P \varepsilon R_{p}\right\}$ taking $\left\{q_{n}\right\} \subset \mathcal{L}_{q}$ such that $\| q^{a}{ }_{n}-$ $P \sharp \rightarrow O$（which is possible by（1l）and the fact that the uniform closure of \mathcal{L}^{a}（is R^{ξ} ），$q_{n}^{:}(\omega) \rightarrow P(\omega)$ uniformly on Ω ，and that $\mathcal{L}^{a} \oint$ is an ideal in R^{\oint} ， Let $C_{0}(\Omega)$ be the set of all continuous functions on Ω with compact supports． Then $C_{0}(\Omega)<\mathscr{L}^{\circ}\left(\mathscr{S}^{\oint}\right.$ being an ideal in $R \S)$ ；

Putting $\nu_{0}\left(p^{a}\right)=\|p\|^{2}$ for any $p \varepsilon \mathcal{L}_{p}$ ， $\nu_{0}(\cdot)$ define a complete additive gage on \mathcal{L}_{p} which can be considered as a complete additive set function on the collection K_{0} of all compact－open sets in Ω（considering $\nu_{0}\left(k_{p}\right)=\nu_{0}\left(p^{2}\right)$ where K_{p} is compact－open set corre－ sponding to p e \mathcal{F}_{p} ），and it can be uniquely extended to a complete ad－ ditive measure ν on the family of Borel sets generated by K。．

Then for any $v, w \in Z \mathcal{L}, v a(\cdot)$ and war．）are in $L_{2}(\Omega, v)$ and

$$
\begin{equation*}
(v, w)=\int_{\Omega} v^{a} w^{* a}(w) d v(\omega) \tag{12}
\end{equation*}
$$

For，by（II）we can take $\left\{q_{n}\right\}$ and $\left\{r_{n}\right\}$ in $\mathcal{L}_{q}:\left\|q_{n}-v\right\| \rightarrow 0,\left\|r_{n}-w\right\| \rightarrow 0$ ， $\left\|q_{n}^{2}-v^{a}\right\| \rightarrow 0$ and $\left\|r_{n}^{a}-w^{a}\right\| \rightarrow p(n \rightarrow 0)$ ．
Since $\left\|q_{n}-q_{m}\right\|^{2}=\int^{n}\left|q_{n}^{n}(\omega)-q_{m}^{a}(\omega)\right|^{2} d v(\omega)$
$\rightarrow 0(m, n \rightarrow \infty)$ ，
there exists a $v^{\prime}(\cdot)$ in $L_{f}(\Omega, v)$ such that $q_{n}^{a}(\omega) \rightarrow v^{\prime}(\omega)$ in measure，and $\left\|q_{n}-v^{\prime}\right\|_{2} \rightarrow 0 \quad\left(\|\cdot\|_{2}\right.$ being $L_{2}(v)$－norm）． Since $q_{n}^{a}(\omega) \rightarrow v^{a}(\omega)$ uniformly on Ω ， $v^{\prime}(\omega)=v^{a}(\omega)$ a．e．，and hence $k q_{n}-v u^{2}=$
$\int\left(q_{n}^{a}(\omega)-v^{a}(\omega) \|^{2} d v(\omega) \rightarrow 0\right.$ ．Similarly
$\left\|r_{n}-w\right\|^{2}=\int \mid r_{n}^{2}(\omega)-w^{*}(\omega) \|^{2} d v(\omega) \longrightarrow 0$
Hence（ v, w ）
$=\lim _{n, m \rightarrow \infty}\left(q_{n}, r_{m}\right)=\lim \int q_{n}^{a}(\omega) r_{m}^{+a}(\omega) d v(\omega)$
$=\int v^{a}\left(\mathcal{L}_{(}\right) \omega^{\omega *}(\omega) d v(v)$ ．For any $v \varepsilon \mathcal{L}$ and
$w \varepsilon Z G,(v, w)=(Z v . w)=\int(Z v)^{a}(w) w^{*}(w) d v(w)$ ， （since $\omega\left(v^{a} w^{* a}\right)=\omega\left(v^{a}\right) \omega\left(w^{* a}\right)=$
$\left.(Z v)^{4}(\omega) \omega^{* *}(\omega)\right),=\int \omega\left(v^{a} \omega^{* a}\right) d \nu(\omega)$ ．
For any $v, w \in \mathscr{L}$ and $u \in Z \mathscr{L}$ ，$(u a v, w)=$ $\left(v^{a} u, w\right)=\left(u, v^{* a} w\right)=\int_{\Omega} \omega\left(u^{a} v^{a} w^{* a}\right) d v(w)$ ． Letting $\left\{u_{n}\right\}<Z \&$ such that，$u_{n}^{a} \geq 0$ ， $\forall u_{n}^{2} \sharp \leqq 1$ and $0 \leqq \omega\left(u_{n}^{\&} v^{a} v^{+a}\right) \rightarrow \omega\left(v^{a} v^{* a}\right)$ （the existence of $\left\{u_{n}\right\}$ is possible by that． $v^{a} v^{* *}(\omega)\left(=\omega\left(\left(v^{a} v^{*}\right)(y)\right)\right.$ vanishes at infi－ nite on $\Omega), \omega\left(u_{n}^{a} v^{a} v^{* a}\right) \leqq \omega\left(v^{a} v^{* a}\right)$ and $\int \omega\left(u_{n}^{a} v^{a} v^{* a}\right) d v(\omega)=\left(u_{n}^{a} v, v\right) \leqq(v, v)$ 。 Hence by Fatou＇s lemma $w^{\left(v^{a} v^{* a}\right)}$ is ν－integrable and

$$
\int \omega\left(v^{a} v^{* a}\right) d v(\omega) \leqq(v, v) .
$$

Let $\left\{A_{n}\right\} \subset(Z W)^{a}$ such that $\left\|A_{n}\right\| \leqq 1, A_{n} \geq 0$ and $A_{n} \rightarrow I$ strongly on $h_{\text {．Since }}$ $\omega\left(A_{n} v^{a} v^{* a}\right) \leqq \omega\left(v^{a} v^{* a}\right)$ and $\int \omega\left(A_{n} v^{a} v^{* a}\right) d v(\omega)$ $=\left(A_{n} v, v\right) \rightarrow(v, v) \leqq \int \omega\left(v^{*} v^{*} a\right) d v(\omega)$ ． Hence

$$
\int \omega\left(v^{a} v * a\right) d v(\omega)=(v, v)
$$

for all vede．
For any $v, w \varepsilon \mathscr{L}, v w^{*}$ is complex finite linear combinations of the form $v_{k} v_{k}^{*}$ （i．e．$v w^{*}=\sum_{1}^{4} \lambda_{k} v_{k} v_{k}^{*} \varepsilon \mathcal{L} y$ ）．Then， taking $\left\{A_{n}\right\}$ in $(Z ふ)^{*}$ as above it can be shown that $(v, w)=\sum \lambda_{k}\left(v_{k}, v_{k}\right)$ ．This implies that $\omega\left(v^{a} w^{* *}\right)\left(=\sum \omega\left(v_{k}^{*} v_{k}^{* a}\right)\right)$ is ν－integrable and $\int \omega\left(v^{0} \omega^{* a}\right) d v(\omega)=$ $\sum \lambda_{k} \int \omega\left(v_{k}^{0} v_{k}^{*}{ }^{*}\right) d v(\omega)=\sum \lambda_{k}\left(v_{k}, v_{k}\right)=(v, \omega)$.

Since $V_{0}(\cdot)$ determines a unique positive linear functional $\nu_{1}(\cdot)$ on $C_{0}(\Omega)$ which is the contraction of $\nu(\cdot)$ onto $C_{0}(\Omega)$ and $\nu\left(p^{a}\right)=\nu_{1}\left(p^{a}\right)$ $=v_{0}\left(p^{\alpha}\right)$ for all $p \& \mathcal{L}_{p}, d \nu$ is a regular measure on Ω ．Since for any $p \in \mathcal{L}_{p} W^{5} p^{a}$ is contained in $\mathcal{L a} \oint$ and weakly closed，(K, v) is perfect measure space（cf．Lem．1．4．of（7））． Hence any non－dense set in K_{p} or more general any non－dense set in Ω is v－null set by the regularity of $d v$ ．

Let Γ be the character space of $W^{\$}$ ，then $W^{\$}$ is \％isomorphic with $C(\Gamma)$ by $S \rightarrow S(\cdot)$ ，and there exists a continuous mapping ϕ from Γ on Ω_{1} such that $S(\phi(\gamma))=S(\gamma)$ for all $S \varepsilon R^{\S}$ and $\gamma \varepsilon \Gamma$ ．We prove that $\phi(\Gamma)=\Omega$ ：Since $\phi(\Gamma)$ is compact in Ω_{1} ，if $\Omega_{1}-\phi(\Gamma)$ is non－empty， then there exists a $0 \neq S \varepsilon R_{1}{ }^{\text {a }}$ such that $S(\phi(\gamma))=0$ for all $\gamma \varepsilon \Gamma$ 。 Since $S \varepsilon W\}$ and $S(\gamma)=0$ for all $\gamma \varepsilon \Gamma$ ， S is zero operator on fy．This is a contradiction．Let $d \mu$＇be regular measure on ．Γ such that

$$
(A S \xi, \xi)=\int \gamma(A) S(\gamma) d \mu^{\prime}(\gamma)
$$

$$
\text { for all } A \varepsilon W^{a} \text { and } S \varepsilon W^{\xi}
$$

where $\gamma(A)$ are traces on W^{a} defined by $\gamma(A)=\gamma\left(A^{\S}\right)$ for all $\gamma \varepsilon \Gamma$ and $A \varepsilon W^{\circ}$ ．

We shall prove now that，putting $m_{\gamma}(A)=\gamma(A)$ for all $A \varepsilon R$ and $A \varepsilon W^{a}$ ， $m y$ are G－ergodic traces excepting a μ^{\prime}－null set in $\Gamma^{8}{ }^{8}$ Let $\left\{\varphi_{\gamma}^{a}, \varphi_{\gamma}^{b}, j, f\right\}$ $\left(\gamma \varepsilon \Gamma-N^{\prime}\right)$ be the two－sided represen－ tations of R and let $\left\{\varphi_{\gamma}\left(u_{s}\right), f_{y}\right\}$ be the dual unitary representation of G with normalizing vector $\xi_{\gamma} \varepsilon f_{y}$ such that $\varphi_{\gamma}^{a}(A) \xi_{\gamma}=\varphi_{\gamma}^{b}(A) \xi_{\gamma}, \varphi_{\gamma}\left(u_{s}\right) \xi_{\gamma}=\xi_{\gamma}$, $\phi_{\gamma}^{a}\left(A^{s}\right) \xi_{\gamma}=\phi_{\gamma}\left(u_{s}\right) \phi_{\gamma}^{a}(A) \xi_{\gamma}$ and $m_{\gamma}(A)=\left(\phi_{\gamma}^{a}(A) \xi_{\gamma}\right.$ ， ξ_{γ} ）for all $A \varepsilon R$ ．Let $W^{a(\gamma)}, W^{b(\gamma)}$ and $W_{G}(\gamma)$ be W^{*}－algebras generated by $\left\{\varphi_{\gamma}^{a}(A)\right\}_{A \varepsilon R},\left\{\varphi_{\gamma}^{b}(A)\right\}_{A \varepsilon R}$ and $\left\{\psi_{\gamma}\left(u_{s}\right)\right\}_{G} 0$ As in the proof of Lem． 4.2 in［7］（cf．$p_{0} 31$ ），if $2 m_{\gamma}=p_{\gamma}+\sigma_{\gamma}$ for G－stationary traces P_{γ} and σ_{γ} of R such that $P_{\gamma}(A)$ and $\sigma_{\gamma}(A)$ are μ^{\prime}－measurable for all $A \varepsilon R$ ，then $P_{\gamma}(A)=\left(T_{\gamma} \varphi_{\gamma}^{a}(A) \xi_{\gamma}, \xi_{\gamma}\right)$ for all $A \varepsilon R$ where $T_{\gamma} \varepsilon W^{a(\gamma)} \cap W^{b(\gamma)} \cap W_{G}(\gamma)$ and $\left\|T_{\gamma}\right\| \leqq 2$ （cf．Proof of Th． 5 of［73）．For any $A, B \in R, P_{\gamma}\left(B^{*} A\right)\left(=\left(T_{\gamma} \varphi_{\gamma}^{a}(A) \xi_{\gamma}, \varphi_{\gamma}^{b}(B) \xi_{\gamma}\right)\right)$
is μ^{\prime}－integrable and

$$
\begin{aligned}
&\left|\int\left(T_{\gamma} \varphi_{\gamma}^{q}(A) \xi_{\gamma}, \varphi_{\gamma}^{q}(B) \xi_{\gamma}\right) d \mu^{\prime}(\gamma)\right| \\
& \equiv\left(\int \varphi_{\gamma}^{\alpha}(A) \xi_{y}\left\|^{2} d \mu^{\prime}(\gamma) \int \varphi \varphi_{\gamma}^{(B)}(\beta)\right\|^{2} d \mu^{\prime}(\gamma)\right)^{1 / 2} \\
&\|A \xi \xi\| B \xi \| .
\end{aligned}
$$

Since $\{A \xi ; A \& R\}$ is dense in ${ }^{\prime}$,
there exists a bounded operator $;$ on there exists a

$$
\begin{equation*}
(T A \xi, B \xi)=\int_{\text {for }}\left(T_{\gamma} q_{\gamma}^{\gamma}(A) \xi_{\gamma}, \varphi_{i}^{\prime}(B) \xi_{\gamma}\right) d \mu^{\prime}(\gamma) \tag{13}
\end{equation*}
$$

From（13）and $T_{y} \varepsilon W^{(r)} W^{k x}{ }_{n} W_{G}(x)^{\prime}$
it implies $T_{\varepsilon} W^{a} \cap W^{b} \cap W_{G}^{\prime}$ ，and $(T S A \xi, B \xi)=\int T(\gamma) S(\gamma)\left(\varphi_{\gamma}^{q}(A) \xi_{\gamma} \varphi_{\gamma}^{q}(B) \xi_{\gamma}\right) d \mu^{\prime}(\gamma)$

$$
\text { for all } S \varepsilon W^{\prime} \text { and } A, B \varepsilon R
$$

Hence $T_{\gamma}=T(\gamma) I_{\gamma}$ a．e．γ where I_{γ} is unit operator on fy．Thus we have Lem． 4.2 of Segal for G－stationary trace by the similar way．The proof of theorem of Segal（p．32－4 in（7））is applicable for G－stationary traces in the place of state，and $m \gamma$ are G－ ergodic traces on R（i．e．extrem points in the space of all G－station－ ary traces of R ）excepting a μ^{\prime}－ null set in Γ 。 For $\omega \varepsilon \Omega$ putting $\omega^{\prime}(A+\lambda I)=\omega(A)+\lambda$（for all $A \varepsilon R$ and λ ），$\omega^{\prime} \varepsilon \Omega_{1}$（cfopo 32 of［7］）and the correspondence $\omega \rightarrow \omega^{*}$ is one－one （form Ω into Ω_{1} ）．For such a ω^{\prime} we denote ω under identification． The inverse ϕ^{-1} of ϕ induces on Ω ：
$\phi^{-1}(\omega)=\phi^{-1}\left(\omega^{\prime}\right)$ for all $\omega \varepsilon \Omega$ ．Let Ω^{\prime} be a set of all ω in Ω such that $m_{\phi^{\prime}(\omega)}$ are G－ergodic traces． （ $m_{\phi-1}{ }^{-1}(\omega)$ is well．defined as a G－ stationary traces on R excepting a μ^{\prime}－null set set N^{\prime} by the fact that $m_{\gamma}(A)=m_{\gamma}(A)$ for all $A \in R$ and all $\left.\gamma, \gamma^{\prime} \varepsilon \phi^{-1}(\omega)\right)$ ．If $\Omega-\Omega^{\prime}$ contains a non－null open set $\Omega_{0}, \phi^{-1}\left(\Omega_{\sigma}\right)$ is non－null open set in Γ and for all $\gamma \varepsilon \phi^{-1}\left(\Omega_{0}\right) m_{\gamma}$ are not G－ergodic on R ． This is a contradiction．Putting $m_{\omega}(A)=m_{\phi-\cos _{\omega}}(A)$ ，there exists a ν－null set N in Ω such that m_{ω} are G－ ergodic for all $\omega \in \Omega-N$ 。 Putting $\pi_{\omega}(x)=m_{\omega}\left(x^{a}\right)$ for all $x \in \Omega$ ， $\pi_{\omega}(\omega \varepsilon \Omega-N)$ are G－ergodic traces on
$\sigma_{\text {．Indeed，if }} \pi_{\omega}=\lambda \tau_{1}+(1-\lambda) \tau_{2}$ for some G－stationary traces τ_{1} and τ_{2} on σ and $0 \leqq \lambda \leqq 1$ ，then $\left|\tau_{i}(x y)\right|^{2}$ $\leqq \tau_{i}\left(x^{*} x\right) \tau_{i}\left(y^{*} y\right) \leqq \pi_{\omega}\left(x^{*} x\right) \pi_{\omega}\left(y^{*} y\right)$
$\left.=m_{\omega}\left(x^{a+} x^{a}\right) m_{\omega}\left(y^{a+}\right)^{y}\right) \leqq\left\|x^{a}\right\|^{2}\left\|y^{a}\right\|^{2}$ ， and hence $\left|\tau_{c}\left(x e_{\alpha}\right)\right| \leq\left\|x \omega_{1}\right\| \tau_{\alpha}^{\alpha} \|$ ！$\| x$ wand $\tau_{i}\left(x e_{\alpha}\right)$ $\rightarrow \tau_{i}(x)$ implies $\left|\tau_{i}(x)\right| \leqq x x^{a_{1}}$ ．Put－ ting $p_{i}\left(x^{*}\right)=\tau_{i}(x)$ for all $\times \varepsilon$ or p_{i} is well defined as a positive linear functional on $\left\{x^{\alpha} ; \times s, a\right\}$ and $p_{1}\left(x^{a 5}\right)=$ $\rho_{i}\left(x^{\circ}{ }^{\circ}\right)=\tau_{i}\left(x^{5}\right)=\tau_{i}(x)=\rho_{i}\left(x^{a}\right)$ 。Hence P_{i} （ $i=1,2$ ）are extended to $G-$ stationary traces $\rho_{i}^{\prime}(i=1,2)$ on R such that $m_{L}=\lambda \rho_{1}^{\prime}+(1-\lambda) \rho_{2}^{\prime}$ 。 There－ fore τ_{1} and τ_{2} are linearly de－ pendent．Since $\pi_{\omega}(x)=m_{\omega}\left(x^{*}\right)=\omega\left(\alpha^{a}\right)$ ， $\pi_{\omega}(x y)$ is ν－integrable for all x ， y\＆σ and $\tau\left(x y^{*}\right)=\int_{\Omega} \pi_{\omega}\left(x y^{*}\right) \alpha \nu(\omega)$ ．
The proof is complete

The decomposition of finite semi－ trace onto pure traces follows as a special case（：G consists of only the identity automorphism）of Th．2，be－ cause（7）is always satisfied for finite semi－traces（cf．Prop． 1 of ［8］）；and we have Th．1 and 2 of［9］，I as special cases，since for non－ separable case the present proof re－ mains valid for the type of［9］．

As an application，we can prove an ergodic decomposition（to finite ergodic measures）of invariant（not ergodic）regular measure $d \tau$ on sepa－ rable locally compact space E with a group of homeomorphisms under a con－ dition that if there exists a family of finite invariant regular measures $\left\{\alpha \mu_{0}\right\}$ such that $d \tau$ and $\left\{d \mu_{\mathrm{s}}\right\}$ are absolutely continuous with respect to each other in the sense that for a Borel set B in E is d τ－null set
if and only if $d \mu_{\beta}$－null set for all β ．

As another application，we have J－ergodic decomposition of Haal measure of a locally compact group with a complete compact nbd system invariant under \mathcal{J} where \mathcal{F} is the group of all inner－automorphims．

BIBLIOGRAPHY

［1］J．Dixmier；Les anneaux d＇opé rateures de classe finie，Ann．Sci． de L＇Ecole Norm．Sup．Paris 66 （1949）pp．209－261．
［2］R．Godement，Les fonctions de type positif et la théorie des groupes，Trans．Amer．Math．Soc． 63 （1948）pp．1－84．
［3］ －，Sur la théorie des représentations unitaires，Ann．of Math． 53 （1951）pp．68－124．
［4］I．Kaplansky；A theorem on rings of operators，Pacific Journ，of Math． 1 （1951）pp．227－232．
［5］J．von Neumann；Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren，Math．Ann． 102 （1929）pp．371－427．
［6］I．E．Segal；An extension of Plancherel＇s formula to separable unimodular groups，Ann．Math． 52 （1950）pp．272－292．
［7］ operator algebras．I，Memoirs of Amer．Math．Soc． 1951.
［8］H．Umegaki；Decomposition theorems of operator algebra and their applications，Jap．Journ．of Math。 22 （2952）pp．27－50．
［9］；Operator algebra of finite class．I，Kōdai Math．Semi． Rep．，（1952）pp．123－129；II，ibid， （1953）pp．61－63．

FOOTNOTES

0 ）The natural mapping \oint in this section will be introduced by a similar method with Godement for algebra of a representation of a unimodular locally compact group corresponding to a posi－ tive Radon measure（cf．Jour．de Math． pure et appl． 30 （1951））．

1）A stationary trace（resp．semi－ trace）τ on σ is called G－ergodic， if τ is not convex combinations of
two other linearly independent $G-$ stationary traces（resp．semi－traces） on a where the trace τ satisfies $\sup \left\{\tau\left(x^{*} x\right) ; x \in \mathcal{A}, \| x u \leq 1\right\}=1$

2）In general，$j A j \varepsilon W^{b}$ if $A \varepsilon W^{a}$ ， and $j B j \varepsilon W^{a}$ if $B \varepsilon W^{b}$ ．For $j A j x^{a} y^{\theta}=$ $j A x^{b *} y^{* \theta}=j x^{b *} A y^{* \theta}=j x^{b+} j j A j y^{\theta}=x^{a} j A j y^{\theta}$ and $j A j \varepsilon W^{b}$ 。 The latter similarly follows．

3）（4）implies that $v^{\bullet} \xi=v^{b} \xi$ for allv\＆ \mathcal{L} and $\xi \varepsilon g$ ．For $\left(v^{a} \xi, x^{0}\right)=$ $\left(j v^{b *} j \xi, x^{\theta}\right)=\left(x^{*}, v^{b *} j \xi\right)=\left(v^{b} x^{*}, j \xi\right)=\left(x^{x^{a}} v, j \xi\right)$ $=\left(\xi, j x^{* a} j j v\right)=\left(\xi, x^{b} j v\right)=\left(\xi, x^{a} j v\right)=\left(\xi, v^{b *} x^{\theta}\right)$ $=\left(v^{0} \xi, x^{\theta}\right)$ for $a l l \times \in \pi$ ．

4）J．von Neumann＇s theorem（［5］） stated for separable Hilbert space， but both the theorem and the cited proof remain valid for arbitrary Hilbert space．

5）For any $\varepsilon>0$ there exists β_{0} such that $\left\|\left(A^{*} A-v_{\beta}^{a *} v_{p}^{0}\right) \xi\right\| \leq\left\|\left(A^{*}-v_{p}^{a *}\right) A \xi\right\|+$ $\left\|v_{p}^{a *}\left(A-v_{p^{\prime}}^{a}\right) \xi\right\|+\left\|v_{p}^{a *}\left(v_{p}^{a}{ }^{\circ}-v_{p}^{a}\right) \xi\right\| \leq\left\|\left(A^{*}-v_{p}^{\alpha *}\right) A \xi\right\|+$ $\left\|v_{p}^{a *}\left(A-v_{p}^{*}\right) \xi X+H v_{p}^{a *}\left(v_{p^{\prime}}^{a}-v_{p}^{a}\right) \xi\right\| \leq n\left(A^{*}-v_{p}^{a *}\right) A \|+$ $M A\left(A-v_{p^{\prime}}^{a}\right) \xi A+M\left\|\left(v_{p^{\prime}}^{a}-v_{p}^{a}\right) \xi\right\|<\varepsilon$ for all $\beta, \beta^{\prime}>\beta_{0}$ ．
6）Let r be closed linear mani－ fold generated by $\left\{x^{*} \xi ; x=a\right\}$ and let m_{1} be the othogonal manifold of m （i．e．$m_{1}=m^{\perp}$ ）．Since $j x^{a} \xi=j x^{a} j \xi=$ $x^{* 6} \xi=x^{* *} \xi$ and $u_{5} x^{a} \xi=u_{5} x^{a} u_{s}-\xi=x^{s}{ }^{a} \xi$ for all $\times \varepsilon \sigma$ ，m and m_{1} are in－ variant under j and Z ．If $2 \mathrm{~m}_{1}$ $\left(z \cap m_{1}\right) \neq 0$ ，then there exists ζ in Zm，（such as $j \zeta=\zeta \neq 0$ ）and $\zeta \varepsilon \mathrm{m}_{1}$ ．This is a contradiction of the maximality of $\left\{\xi_{n}\right\}$ ．Hence $Z \gamma_{1}$ $=0$ ．For any $\zeta \varepsilon m_{1}, x \in \Omega$ and $v \in \mathcal{L},\left(\zeta, x^{a} Z v\right)=\left(x^{a} \zeta, Z v\right)=\left(Z x^{a} \zeta, v\right)$ （since $x^{a} \zeta \varepsilon \varkappa_{1}, Z x^{a} \zeta \varepsilon$ 剈 $)=0$ 。 Hence $\zeta=0$ or $m_{1}=0$, i．e．$m_{2}=f$ ．

7）For a locally compact space E ， we denote $C_{\infty}(E)$（resp．$C(E)$ ）be B＊*－algebras of all continuous functions on E vanishing at infinite （resp．all bounded continuous functions） with norm $\|f\|=\sup |f(p)|$ and＊in－ volution $f^{*}(p)=\overline{f(p)}$（：complex conju－ gate）．Then R^{\oint} and R_{1}^{ℓ} are＊iso－ morphic（i．e．＊preserving isomorph） with $C_{0}(\Omega)$ and $c\left(\Omega_{1}\right)$ by the iso－ morphisms $A \rightarrow A(\cdot)$ and $A(\omega)=\omega(A)$ for all $A \varepsilon Q^{\xi}, \omega \varepsilon \Omega$ and $A \varepsilon R_{1}^{\}}, \omega \varepsilon \Omega$ ， respectively．

8）Because $\left\{K_{p} ; p \in \mathcal{L}_{p}\right\}$ form a complete basis of open sets in Ω ．

9）We can prove by the same proof of Segal（cf．p． 14 of［7］）that sup $\left\{\gamma\left(A^{*} A\right) ; A \varepsilon R,\|A\| \leqslant 1\right\}=1$ ex－ cepting a μ^{\prime}－null set N^{\prime} in Γ ．
(*) Received Feb. 8, 1954.

