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Let E be a normed (not neces-

sarily complete) linear space and

E* 1its conjugate space. Then the
regularly convex sets in E¥ are
def'ined by M, Krein and V. Smulian
as follows: a set K¥ ¢ E* will be
called regularly convex if for
every f ¢ E* not belonging to K*
there exists an element x ¢ E
such that

1
anp Fexp & fex P
fe K*

This conception was studied in de-
tail in their paper, but as they
did not consider it on the stand-
point of weak topology, thelr be-
autiful results were mainly re-
stricted in separable case. There-
fore we shall intend to simplify
some of their results in general
case. After that we shall give
the proof of M. Krein and D.
Milman's theorem on the existence
of extreme points by means of
Zorn's lemma,2

Theorem 1, Every regularly
convex set K* in E* is convex
and weakly closed.

Let § , %+ € K¥ ana « ,
p satlsfy the condition
A>e0, p>0, L+p=1,
If «9 +p4 were not contained
in ,» there should exist an'
element x, ¢ E such that

aup F(x,)
“‘-1'(‘ o) < d}(x.;+ln{(x,).

On the other hand #(x,) and
fix,) £ aup f(x,) and hence
fe 'K*

of 3(:.) +f{(z.)
< ) pup §ix) = aup f,
£ (a+p f":lt' f:‘lf(’

This is a contradiction, and it
means K* 1is convex.

Next we shall show that K* 1is
weakly closed. Let §, ¢ E* be a
limiting point of K* 1in the weak
topology and not contained in K* .
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Then we can select an element

x, ¢ E such that

A FiX) < 4, (2,
f:t; ’

and hence if we choose a positive
number & > o satisfying the con-
dition

(
=) - ;e“;txf x> g,

Then the weak neighbourhood

UCf; x,; ¢) contains no elements
of K* . Therefore K¥ rmust
be weakly closed.

The next theorem which we shall
prove in this paper is the inverse
ot the theorem 1, and as we men-
tioned above it has already been
proved by M. Krein and V. Smulian
when E 1is a separable space.®

For this purpose we shall state
the next two lemmas.

Lemma 1, Let F,(f) be a
weakly continuous linear tunctional

on E* . Then there exist an
element x, € E such that
F¢f) = fix
for all § € E*
This lemma has been proved by
Banach 4 meking use of regularly

closed set when E 1is separable,
and that proor is also applied to
general case 1t we notice to the
f'act that a linear subspace in

E* is regularly closed ir and
only it it is weakly closed. But
we shall give here a direct proof
without use oI regularly closed
set,

From the assumption { f ;
$€¢E* |IFt)< 1} is an open
set in the weak topology contain-
ing the zero functional 0 , hen-
ce there exist a finite number of
elements x, , X , X,
of E such that

U(o; X, %yenny X5 1)

C {#: 4¢€” IRpl<a}),

000y



and furthermore without loss of
generality we may assume x, ,

Xy 5 eeoy x, are linearly
independent.

If we denote by [° the set of

all f € E* which satisfy the
conditions .
f(x)= 0
(i=1,2,...,m)

)

then obviously I’ 1s a weakly
closed linear subspace, and fur-
ther if we consider the factor
space E*/ T and denote by f
the class which contains fe g*
then to every element x,e¢ E cor-
responds a linear functional F,,
continuous on E*/ ' by the

formulae
F = $00
.
(i=1,2,...,m),
Since X, , X3 , eeey Xy
are linearly independent, there
exists a positive number ) o
such that
Mv;{l‘:', 4 s l""}

g Y“'(:"/" o Xy 4 -0t ‘nxu"

for any real numbers «, , o,

vee, &y , and hence we can find
f .f ceocy .f,‘ € E’ satis=-
fying the conditfons

fi('a)={ t (i=p

o (i* §)
for <, 4§ =1,2,
Then § , £, coo, §, cOD-
stitute a base of E*/ T , namely
ror any § ¢ E*/ T we have

P L

i=1

ces, D

where
f(’;)

o).

and therefore for any linear func-
tional T on E¥/ r

Fh =2 = Z‘ A E
w3y (%4 ¢

(¢= 1,2,

where
A = ?‘?:)

("1¢zl v ?1).

Thus we have proved that every
linear functional on E*/ T is a
linear combination of F, ,

Fx, -

X, ?
ceey
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Next if we suppose f(x)= o0 (¢
=1,2,...,n), then we have F(f) =0 .
Indeed if we have F,(fr» # o , We
can choose a positive number § > o
such that | F,(§ §)]2 1 , then

§ f does not contained in y(o

;x,’x,,...,l.;1), namely

| sfex] 2 4 [ fexo| 24
tor some x; (i = LZ,...,*). This
contradicts to the assumption.
From this fact if we define

F.(f)

E(p)
ror any class F 1in E'/ T, then
we have a linear functional F,
on E*/ [" , and thererore _ F
is & linear combination of ¥y, °,

..., F, , namely we can
fina P S S A. such
that

eo ey

From this relation we obtain

b

Z A; f(x)
i1

<

F ) =

and hence if we put

we have

E¢ = f(x,)

ror all fe E*

Lemma 2. If a convex set K¥
in E¥ is weakly closed, then for
every £ € E* not belonging to

K* there exists a weakly conti-
nuous linear functicnal F. on
E* such that

L) < R o,
;:tj: f f

We can prove this lemma almost "
similarly as the analogous theorem
with respect to the strongly clo-
sed convex set in E , but for
completeness we shall state the
proof.

Without loss of generallty we
can suppose that K¥* ccntains ¢ .
From our assumptions there exists
a weak neighbourhood V ( £, ; x,,

X2 , seesey Xm 3 & ) oOf

f, which is disjoint with K* .
Then ir we denote the union of all



weak neighbourhcods v {f, x,, x4, ...,
Xn; €&74%) for f e K¥ by
K& we can essily see that K{
is alsc convex and has a boundary
point f, € K, sucn that f
= Bf, 0< @< 1 . Nowfor
any § € E¥ there exist a posi-
tive rumber P >0 sucr that
Yo f € K ancd hence putting

pepr= g s r>°,-'-f6Kj‘}’

we have a convex lunctional PF)

on E* . From this definition
it is easy to see that ph € 1
ror every f ¢ K} and

bty =S40 =5 > 1

Denote by E:
generated by f; ,
linear subspace EJF

the linear subspace
then for this
ir we def'ine

a linear functional F, on Ef
by

F p = 7
where f = ¥f , we have 1ior

every e EF
F ¢ £ p(Hr,
Therefore by Hahn-Banach's exten-

sion theorem there exists a linear
functional F, on [E* such that

F.ap g pip
§€ E* and
E¢ = EFEh

in E: o
I'unctional F.

for every

For this linear
clearly

asp Eif) £ oup F(f)
fe K* fe Ko
< f‘:’,(tk(j, = {

< ptfy = R,

On the other hand since K]
contains the weak neighbourhcod
Vo ; x4, Xz seee, =y ;8/2),
we have pesr s 1 lor any f§f
in U ( o ; x4, % ,
xe ; t/2 ) and thererlore

£ 1 . From this we can easily
conclude that E ) is weakly
continuous at o0 , and hence
weskly continuous everywhere since
it is linear.

cee ey

| Fothr }

Combining these two lemmas we
have immediately
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Theorer: 2. Il a convex set K*
in E* 1is weaxkly closed, then K*
is regularly convex,

Theorem 1 and 2 give an impor-
tant and simple criterion ror re-
gularly convex set, and irom the
well known result of L. Alaoglu &
we obtain the next corollary.

(V. Gantmacher
and V., Smulian) A bounded convex
set K*¥ C E* 1is regularly convex
ir and only i1 it is weakly com-
pact.?

Gorollary 1.

Ii we say a set K* C E* local-
ly weakly com when the inter-
section of K* with any sphere in

E* 1is always weakly compact,
then we have

Corollary <. In order that a
convex set K* ¢ E* 1is regular-
ly convex it is necessary and
sufficient that it is locally
weakly compact. ®’

The necessity of this corollary
is almost obvious. Indeed tor any
sphere in E* the intersec-
tion K*A S* 1is bounded regularly
convex set and hence it is weakly
compact by the corollary 1.

for
inter-
com~-
regu-

Inversely let us suppose
any sphere S* in E* the
section K* S* 1is weakly
pact., Then 1ror any bounded
larly convex set K[ the inter-
section of K* with KF is
clearly convex and further notin%
to the tact that K*.K! = K*\S$*\ K}
for any sphere S§* > KI it is
weakly compact.. Theretore it is
regularly convex and this means
that K* 1s itself regularly con-
vex by the Theorem § in M. Krein
and V., Smulian's paper.?

On the end of this paper we
shall prove M. Krein and D.
Milman's theorem on the existence
of extreme points by use of Zorn's
lemma in place of the transfinite
induction.

A point ot a set K* in E¥
is called an extreme point if it
is not an inner point of any seg-
ment joining two points in K*
The importance of this notion
has been recognized in the repre-
sentation theory of group of vec-
tor lattice by many authors and
hence the next theorem has become
to have a great significance.

Theorem 3. (M.Krein and D.
Milman) Let K*  E* be weakly



compact, then the set [(1* or
extreme points of K* is not
empty. In particular if K* is

a convex set and hence pboundec
regularly convex, then the rezular-
1y convex envelope of {2*¥ coin-
cides with K*

We consider the totality §
of all pair ( A , B%* ) where
, B* are those subsets of
E K* respectively which
satisiy the following two condi-
tions:

1) B* is not empty and weakly
compact, and

2) 1t f ¢ B* are written in

the torm
§ = « i*rp 4
where § , 4 belong to K*
and 4+ g = L, &£>0 , f >0
then 3y, 4 must belong toc
g* and

g(xy = £ (x)

for all x € A .

To any point X, € £ corres-
ponds a finite continfious function

ff, fy = Fixp on the compact
set K* . If we detine A as a
set composed only one point x,
and B* as a set ol those §{ ¢ K*
on which the function 9, (> rea-
ches its maximum, then tne pair
( A , B* ) obviously fulfil the
two conditions 1) 2), and hence £
is non-empty.

Next we introduce a semi-order
in € . For any two pairs ( A,,
B! ), ( A, , ) we define
( A, Bt ) f ( A, B8} )
ifr anﬁ only if A, ¢ A, and B}
> B} . Then it is easily seen
that any linearly ordered system
( An, B} ) (re A ) in
has an upper bound ( \/J A,
B: ), and hence there exists
g maximal pair ( A, , B} ) in

We now prove that A, coin-
cides with E . Assuming that
A, does not coincide with E
we take an element X, ¢ E - A, .
Then if Je cenote the set of those

fe B on which the function
P, () restricted on B8}

reaches its maximum, we have ( A,
BX )< ( AV ix} , * ), and

this contradicts to the maximality
of the pair ( A, , BF ). Then

it 1s easy to verify that every
peint in  B* 1is an extreme point

oi K* .

The latter half ot this theorem
is proved by the same procedure as
the Krein and Milman's original
proof.
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