By Noboru ITÔ and Masayoshi Nigata
(Comunicated by S.Ikehara)

In this paper, we shall denote by e the identity element of a group, while we denote by E the identity group. And we shall denote by $A(G)$ the group of automorphisms of a group G.

Definition 1. Let G_{0} be a sroup whose center is E. Consider the chain

$$
G_{0}<G_{1}<\ldots<G_{n}<\cdots
$$

satisfying the following conditions;
(f) if there exists $G_{i}(1 \geq 1)$, $G_{i}=A\left(G_{i-1}\right) ;$
(2) When G_{i} exists and \mathcal{G}_{i+1} does not exist, $A\left(G_{i}\right)=G_{i}$.

Then we shall call this chain the tower of ${ }^{\prime}$ o. If there exists a last term, say \hat{G}_{n}, of this chain, we shall say that the length of this tower is n, and denote G_{n} by \bar{G}_{0}. Otherwise we shall say that the length of this tower is infinite.

Remark: Wielandt has proved that a tower of any finite group has a finite length (cf. Math. Zeitschr. 45 (1939)).

Definition 2. Ne shall say that a group G is complete if (i) the center of G is E and (ii) $\bar{G}=G$ (i.e. $A(G)=G)$.
§1. Groups of dihedral type.
Definition 3. We shall say that G is of dinedral type, if (i) G has a normal subgroup U such that $(G: U)=$ 2, (ii) G has an element x of order 2 such that $\mathrm{xax}=a^{-1}$ for every $a \in$ U and (iii) $G=U_{0}\{x\}$.

Remark: From this definition, it follows easily that U is an abelian group.

Lemma 1. Let G be a group of dihedral type. Then the center of G is E if and only if U (with the notation introduced in definition 3) has no element of order even.

Proof. If U has an element a of order 2, 2 is contained in the center of G. In the other case, it is clear that the center of G is E.

Lemma 2. Let G be a छroup of cithea dral type with minimal condition on normal subgroups. Then the order of G is finite.

Proof. This follows readily from that every subgroup of U (in definition 3) is a normal subgroup of G.

From now on we shall consider only groups with minimal condition on normal subgroups if contrary is not expressed.

Proposition 1, Let G be a group of dihedral type Then G is complete if and only if G is the symmetric group of degree 3 (we shall denote this by S_{3}). (Cf。 Example 2, §4)

Proof. If U (with notation in definition 3) has an element of order k ($k>3$) then G has on outer automorphism σ such as $a^{\sigma}=a^{2}$ for every $a \in U$ and $x^{\sigma}=x$ (with notations in definition 3). Therefore, if ($U: E$) $>$ $3, \mathrm{U}$ is of the type $(3,3, \ldots, 3)$. Then G has outer automorphisms; for instance, those which permute the basis of U and leave x fixed. So G must be S_{3}. On the other hand, it is clear that S_{3} is complete。
§2. On $A(G X G)$.
Proposition 2. Let G be a complete, directly indecompisable group. Then $A(G \times G)=(G X G) \quad\{y\}$ where $y^{2}=e$; $y(a, b) y=(b, a)$ for every $(a, b) \in$ $G \times G$. Furthermore $A(C X G)$ is directly indecomposable.

Proof. Let σ be an automorphism of $G X G . W e ~ s e t$
$H_{1}=\{(a, e) ;(a b, c)=(b a, c)$ for every $\left.(b, c) \in(G X E)^{-}\right\}$and $H_{2}=$ $\{(e, a) ;(b, a c)=(b, c a)$ for every $\left.(b, c) \in(G \times E)^{\sigma}\right\}$, Then we have
 is directly indecomposable. If we observe that G is complete, we have the first part of proposition 2 .

Assume now that $A(G \times G)=M \times N$
where $\mathrm{M} \neq \mathrm{E} \quad \mathbb{N} \neq \mathrm{E}$, and set
$K_{1}=N \cap\left(G X(G), K_{\boldsymbol{2}}=N \cap(G X G)\right.$. Then we have (if: K_{1}) $=2$ or $M=K_{1}$, $\left(N: K_{2}\right)=2$ or $N=K_{2}$. if $K_{2}=E_{1}$
then N would be contained in the center of $A(G X G)$ ．Therefore $K_{2} \neq E$ ，and similarly $K_{i} \neq E$ ．We can assume without loss of generality that $M \neq \mathrm{K}_{1}$ ，whence M contains at least one element of the type $\left(g_{1}, g_{e}\right) y$ ．Then we have

$$
\left.\left(g_{1}, g_{2}\right) \underset{\text { for every }}{ }\left(h_{1}, h_{2}\right)=\left(h_{1}, h_{2}\right)\left(g_{1}, g_{2}\right) \underset{h_{2}}{ }\right) \in \mathrm{K}_{2},
$$

This shows that each pair $\left(h_{1}, h_{2}\right)$ in K_{2} is already determined jy one of its components．Let $\left(h_{1}, h_{2}\right) \neq e,\left(h_{1}, h_{2}\right)$
$\in H_{2}$ ．Then we have $h_{1} \neq$ e。 We choose an element（ $1, e$ ）such that $h_{1} 1 \neq 1 h_{1,}$ then we have $(1, e)^{-1} \cdot\left(h_{1}, h_{2}\right) \cdot(1, e)=$ $\left(l^{-1} \cdot h_{i} l, h_{2}\right) \in K_{2}$ ．This contradicts with the fact just observed．

Proposition 3．Under the same assump－ tions in propositions 2，$A(G \times G)$ is not complete if and only if $G=3_{3}$ ．

Proof．If $\dot{A}(G X G)$ is not complete， $A(G X G)$ has at least one outer automor－ phism σ ，whence $(G \times G)^{\sigma} \neq G \times G$ 。 We ahall set $(G X E)^{\sigma} \wedge(G X G)=H_{1}$ and $(B \times G)^{\sigma}$ $\wedge(G \times G)=H_{2}$ Then we have（ $\left.(G \times E): H\right)=\left(\left(E X_{G}\right)^{\sigma}\right.$ $\left.: H_{\infty}\right)_{0}=2$ because $(A(G \times G):(G \times G))=$ 2 and at least one，whence both，of G_{i}＇s contain some elements which are not contalned in $G X G$ ．And we have that eact pair $\left(h_{1}, h_{2}\right)$ in H_{1} is uniquely determined by one component and the same for each pair（ $\mathrm{g}_{1}, \mathrm{~g}_{2}$ ）in H_{2}（cf．the proof of proposition 2）．

If we set
$N_{1} \times E^{*}=\left\{(a, a) \in G X G ;(a, b) \in H_{1}\right\}$ ， $N_{2} \times E=\left\{(a, e) \in G \times G ;(a, b) \in H_{2}\right\}$ ，
we have $\left(G: N_{1}\right)=\left(G: N_{2}\right)=2$ ，and $U=N_{1} \cap N_{2}$ is abolian．If $N_{1} \neq N_{2}$ ， we have $G=N_{1} \cdot N_{2}$ ，whence U is in the center of G ．This means（ $G: E$ ）$=4$ and G is abelian．So we have $U=N_{1}=$ N_{2} ：Therefore，proposition 3 follows from proposition 1 if we observe that $\mathrm{A}\left(\mathrm{S}_{3} X \mathrm{~S}_{3}\right)$ is not complete．
§3．Groups of a special type．
We define $K_{\mu}(n=1,2, \ldots .$.$) by$ induction on $n_{\text {．}}$ Let K_{i} be a complete and directly indecomposable group other than S_{3} ．If K_{2} is already defined， we set ${ }^{\circ}{ }_{n+1}=\bar{K}_{n} \times \bar{K}_{n}=A\left(K_{n} \times K_{n}\right)$

$$
=\overline{\ldots(n)} \overline{\bar{K}_{i} X K X K_{2} X \ldots . \ldots X_{n}}
$$

Lemma 3．Let $G=H X K_{n}$ ．where $\mathrm{K}_{1} \times \mathrm{K}_{1} \times \mathrm{K}_{2} \times \ldots \times \mathrm{K}_{n-1} \leq \quad \cdot \mathrm{HC}$ K_{∞} ．Then both H and K are invari． ant by every automorphism of G ．

Proof．Let σ be an automorphism of G．We set

$H_{4}=\left\{h \in H ; h a=\begin{array}{l}\text { ah for every } \\ (a, b) \in H \sigma\end{array}\right\}$
$H_{g}=\left\{\varepsilon \in K_{n} ; g b=b g\right.$ for every

$$
(a, b) \in H \sigma\}
$$

Then we have $k \boldsymbol{\sigma}=H_{1} \times H_{2}$ ．If we observe that K_{x} is directiy indecom－ posable and（ $H: E$ ）$<\left(K_{n}: E\right)$ ，we find that $\mathrm{K} n$ is invariant by σ ．There－ fore H is also invariant by σ ．

Proposition 4．The tower of $K_{1} \times K_{1}$ $\times \mathrm{K}_{2} \times \mathrm{K}_{3} \times \ldots \times \mathrm{K}_{n}$ is given by

$$
\begin{aligned}
& K_{1} \times K_{1} \times K_{z} \times \ldots \times K_{n}<K_{2} \times K_{2} \\
& \times K_{3} \times \ldots \times K_{n}<\ldots<K_{n} \times \\
& \times K_{n}<K_{n+1} \\
& \quad \text { if is evident. }
\end{aligned}
$$

§4．Remarks and examples．
（1）In order to show that for an arbitrary integer n ，there exists a group whose length of tower is larger than n^{n} we need not use our above re－ sult．Simpler methods exist．
（2）We can not conclude the directly indecomposability of $A(G)$ from that of G。

Example lo Let A_{m}, S_{m} be respecti－ vely the alternating and symmetric group of degree m ．

For m_{1} and m_{2} ，where $m_{1} \neq 6$ ， $m_{2} \neq 6, m_{1}>3, m_{2}>3$ and $m_{1} \neq m_{2}$ ， we take x, y from $S m_{1}$ and $S_{m_{2}}$ ，
respectively，such as $X \& A m_{1}$ ， y \＆$A m_{2}$ and $x^{2}=0, y^{2}=e$ ．If we set $G=\left(A_{1}, A_{\text {ma }}\right)(x, y)$ ，then G is directly indecomposable and $A(G)=$ $S_{m_{1}} \times S_{m_{2}}$ 。
（3）A group with infinite tower length．
Remark：The group in this example is of dihedral type and satisfies maximal condition but not minimal condition on normal subgroups．

Example 2. Lot U be a cyclic group of infinite order ana let x be an element such that $x^{2}=e, \quad x a x=2^{-1}$ where $\mathrm{U}=\{\mathrm{a}\}$. And we set $G=U \mathrm{X}$, $\mathrm{A}(\mathrm{G})$ is genersted by G and w mere W^{-1} aw $=$ a and $w X w^{-1}=a x$. Then we have $w^{2}=a$, and $A(G) \cong G$.
(法) Received August 28,1049 . Nagoya University.

