NOTE ON GROUPS OF AUTOMORPHISMS.

By Noboru ITÔ and Masayoshi NAGATA

(Communicated by S. Ikehara)

In this paper, we shall denote by e the identity element of a group, while we denote by E the identity group. And we shall denote by A(G) the group of automorphisms of a group G.

Definition 1. Let ${\tt G}_o$ be a group whose center is E. Consider the chain

 $G_n \leq G_1 < \cdots < G_n < \cdots$

satisfying the following conditions;

- (1) if there exists G_i $(i \ge 1)$, $G_i = A(G_{i-1})$;
- (2) when G_i exists and G_{i+1} does not exist, A(G_i) = G_i.

Then we shall call this chain the tower of G_{\bullet} . If there exists a last term, say G_{n} , of this chain, we shall say that the length of this tower is n, and denote G_{n} by $\overline{G_{\bullet}}$. Otherwise we shall say that the length of this tower is infinite.

Remark: Wielandt has proved that a tower of any finite group has a finite length (cf. Math. Zeitschr. 45 (1939)).

Definition 2. We shall say that a group G is complete if (i) the center of G is E and (ii) $\overline{G} = G$ (i.e. A(G) = G).

31. Groups of dihedral type.

Definition 3. We shall say that G is of dihedral type, if (i) G has a normal subgroup U such that (G : U) = 2, (ii) G has an element x of order 2 such that $xax = a^{-1}$ for every $a \in$ U and (iii) $G = U_{\cdot}\{x\}_{\cdot}$

Remark: From this definition, it follows easily that U is an abelian group.

Lemma 1. Let G be a group of dihedral type. Then the center of G is E if and only if U (with the notation introduced in definition 3) has no element of order even.

Proof. If U has an element a of order 2, a is contained in the center of G. In the other case, it is clear that the center of G is E_{\bullet}

Lerma 2. Let G be a group of dihedral type with minimal condition on normal subgroups. Then the order of G is finite.

Proof. This follows readily from that every subgroup of U (in definition 3) is a normal subgroup of G_{\bullet}

From now on we shall consider only groups with minimal condition on normal subgroups if contrary is not expressed.

Proposition 1. Let G be a group of dihedral type. Then G is complete if and only if G is the symmetric group of degree 3 (we shall denote this by S_3). (Cf. example 2, §4)

Proof. If U (with notation in definition 3) has an element of order k (k > 3) then G has an outer automorphism σ such as a^{σ} = a² for every a \in U and x^{σ} = x (with notations in definition 3). Therefore, if (U : E)> 3, U is of the type (3, 3, ..., 3). Then G has outer automorphisms; for instance, those which permute the basis of U and leave x fixed. So G must be S₃. On the other hand, it is clear that S₃ is complete.

 \S 2. On A(G X G).

Proposition 2. Let G be a complete, directly indecompisable group. Then $A(G \times G) = (G \times G) \{ y \}$ where $y^{2} = e$, y(a, b)y = (b, a) for every $(a, b) \in$ $G \times G$. Furthermore $A(G \times G)$ is directly indecomposable.

Proof. Let σ be an automorphism of G X G. We set H₁ = {(a, e); (ab, c) = (ba, c) for every (b,c) \in (G X E) and H_g = {(e, a); (b, ac) = (b, ca) for every (b, c) \in (G X E) \rightarrow Then we have (E X G) = H₁ X H₂. This implies that (E X G) = E X G or G X E, because G is directly indecomposable. If we observe that G is complete, we have the first part of proposition 2.

Assume now that $A(G \times G) = M \times N$ where $M \neq E$ N $\neq E$, and set

 $\begin{array}{l} K_q = M \land (G \mid X G), \ K_{2} = N \land (G \mid X G). \\ \text{Then we have } (M : K_{1}) = 2 \ \text{or } M = K_{1}, \\ (N : K_{2}) = 2 \ \text{or } N = K_{2}. \ \text{If } K_{2} = E, \end{array}$

then N would be contained in the center of A(G \times G). Therefore K₂ \neq E, and similarly K₁ \neq E. We can assume without loss of generality that M \neq K₁, whence M contains at least one element of the type (g₁, g₂) \neq . Then we have

$$(g_1, g_2) y (h_1, h_2) = (h_1, h_2)(g_1, g_2)y$$

for every $(h_1, h_2) \in K_2$,

This shows that each pair (h_1, h_2) in Kg is already determined by one of its components. Let $(h_1, h_2) \neq e$, (h_1, h_2) \in Hg. Then we have $h_1 \neq e$. We choose an element (l, e) such that $h_1 l \neq lh_1$, then we have $(l, e)^{-1}$. $(h_1, h_2) \cdot (l, e) =$ $(l^{-1}, h_1, h_2) \in K_2$. This contradicts with the fact just observed.

Proposition 3. Under the same assumptions in propositions 2, $A(G \times G)$ is not complete if and only if $G = S_3$.

Proof. If $A(G \times G)$ is not complete, $A(G \times G)$ has at least one outer automorphism σ , whence $(G \times G)^{\sigma} \neq G \times G$. We shall set $(G \times G)^{\sigma} \wedge (G \times G) = H_1$ and $(E \times G)^{\sigma}$ $\wedge (G \times G) = H_2$ Then we have $((G \times G) : H_1) = ((E \times G)^{\sigma}$: $H_2)_{\sigma} = 2$ because $(A(G \times G) : (G \times G)) = 2$ and at least one, whence both, of G_2 's contain some elements which are not contained in $G \times G$. And we have that each pair (h_1, h_2) in H_1 is uniquely determined by one component and the same for each pair (g_1, g_2) in H_2 (cf. the proof of proposition 2).

If we set

 $N_{1} \times E^{\bullet} = \{(a, e) \in G \times G; (a, b) \in H_{1}\}, \\ N_{2} \times E = \{(a, e) \in G \times G; (a, b) \in H_{2}\}, \}$

we have $(G : N_1) = (G : N_2) = 2$, and $U = N_1 \land N_2$ is abelian. If $N_1 \neq N_2$, we have $G = N_1 \cdot N_2$, whence U is in the center of G. This means (G : E) = 4and G is abelian. So we have $U = N_1 = N_2$: Therefore, proposition 3 follows from proposition 1 if we observe that $A(S_3 \times S_3)$ is not complete.

§ 3. Groups of a special type.

We define K_n (n = 1, 2,) by induction on n. Let K_i be a complete and directly indecomposable group other than S₃. If K_n is already defined, we set $K_{n+1} = K_n \times K_n = A(K_n \times K_n)$

Lemma 3. Let $G = H \times K_n$, where $K_1 \times K_1 \times K_2 \times \cdots \times K_{n-1} \subseteq H \subset K_n$. Then both H and K_n are invariant by every automorphism of G.

Proof. Let 5 be an automorphism of G. We set

Then we have $K_{n} = H_{4} \times H_{2}$. If we observe that K_{n} is directly indecomposable and $(H : E) < (K_{n} : E)$, we find that K_{n} is invariant by σ . Therefore H is also invariant by σ .

Proposition 4. The tower of $K_1 \times K_1$ $\times K_2 \times K_3 \times \cdots \times K_n$ is given by $K_1 \times K_1 \times K_2 \times \cdots \times K_n < K_2 \times K_2$ $\times K_3 \times \cdots \times K_n < \cdots < K_n \times$ $\times K_n < K_{n+1}$ -f is evident.

§ 4. Remarks and examples.

(1) In order to show that "for an arbitrary integer n, there exists a group whose length of tower is larger than n" we need not use our above result. Simpler methods exist.

(2) We can not conclude the directly indecomposability of A(G) from that of G.

Example 1. Let A_{me} , S_{me} be respectively the alternating and symmetric group of degree m_*

For m_1 and m_2 , where $m_1 \neq 6$, $m_2 \neq 6$, $m_1 > 3$, $m_2 > 3$ and $m_1 \neq m_2$, we take x, y from S_{m_1} and S_{m_2} , respectively, such as $x \notin A_{m_1}$, y $\notin A_{m_2}$ and $x^2 = e$, $y^2 = e$. If we set $G = (A_{m_1} \times A_{m_2})(x,y)$, then G is directly indecomposable and $A(G) = S_{m_1} \times S_{m_2}$.

(3) A group with infinite tower length.

Remark: The group in this example is of dihedral type and satisfies maximal condition but not minimal condition on normal subgroups. Example 2. Let U be a cyclic group of infinite order and let x be an element such that $x^2 = e$, $xax = a^{-1}$ where $U = \{a\}$. And we set G = U[x]. A(G)is generated by G and w where $w^{-1}aw =$ a and $wxw^{-1} = ax$. Then we have $w^2 = a$, and $A(G) \cong G$.

(*) Received August 28, 1949.

Nagoya University.