ON A CERTAIN SEQUENCE OF CHANCE VARIABLES.

By Tadasi UGAHERI

1. Let {x} bve a sequence of chance

variables, each of which has an expec- Putting
zggégxgios;(&n s satisfying the following e (ﬁ)_____ zzhl E?
(3] Ey ()= Xim (mgm) m= 2y '
with probability 1, where Ew(xx)  de- from (1) end (2), we obtain
notes the conditional expectation of x, _ k é"
T e L R [ o o maMpz o2k B2

‘conditions for the strong law of  the
large number and the central limit theo- and, a posteriori,
rem In such a sequence of chance variables,

E( I —%el) 2¢ 2*p {E®

Hence the assumption of the theorem im-
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2+ Here we shall consider the central
limit theorem.
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It 1a here obuerved that the condi-
tio probability () could be
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We have aumd t tov fixea, but

since is a characteristic rnnc-
tion, 'l we have the theorem,
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