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POLAR INVARIANTS OF PLANE CURVES AND THE

NEWTON POLYGON

ANDRZEJ LENARCIK AND ARKADIUSZ PLOSKI*

Abstract

We prove a factorization theorem for the polars of plane singularities with respect

to the Newton diagram and calculate the polar quotients of nondegenerated singularities.

Introduction

Let/ = f(X, Y) e C{X, Y} be a convergent power series in two variables X,
Y. In all this note we assume that / has an isolated singularity at (0,0) e
C2. The polar of/with respect to the direction (a : b) e Pι(C) of the line t =
bX-aY is the power series df = d(t,f)/d{X, Y) = a(df/dX) + b(df/dY). If
the line bX — a Y = 0 is not tangent to the curve / = 0 then the polar quotients

—'-Γ-Γ, h runs over irreducible divisors of df
ord/ϊ

(where (/, h)0 is C codimension of the ideal generated by /, h in C{X, Y} and
ordh is the order of h) are topological invariants of the singularity / = 0 (see
[LMW2]).

According to Teissier [Tel] the Lojasiewicz exponent J£?o(/) defined to be
the smallest θ > 0 such that

|grad/(x,y)| > Cmax{\x\,\y\)θ near (0,0) e C2,

is given by the formula:

j£?o(/) — (the greatest polar quotient of / = 0) — 1.

Merle in [M] proved a theorem on a factorization of the generic polar of an
algebroid irreducible curve and calculated its polar quotients in terms of the
characteristic. His result was generalized by different authors (see [Ab.A], [C],
[D], [G]). The aim of this note is to calculate the polar quotients of a curve/ =
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0 nondegenerate in the sense of Kouchnirenko [Kou] in terms of the Newton
polygon of/. Our main result gives a factorization of the generic polar curve
and is parallel to Merle's theorem (see [M], Theoreme 3.1). As an application
we give a proof of the formula for the Lojasiewicz exponent obtained recently by
the first author [Len]. The formula is an improvement of an earlier result due to
Lichtin [Li].

1. Main result

Let / G C{X, Y} be a nonzero power series without constant term. Write
/ = Σ caβX

aYβ and supp/ = {(<x,β) e N2 : c^ Φ 0}. The Newton polygon
Jί{f) — Jίf is the set of the compact faces of the boundary of the convex hull
Δ(/) of supp/ + N1. For any segment S e Jίf we let in(/, S) — the sum of all
monomials c^X^Y^ such that (α,j5)eS. According to Kouchnirenko [Kou],
the series / is nondegenerate on S e Jίf if the polynomial in(/, S) has no critical
points in the set C* x C*, where C* = C\{0}. The series in nondegenerate
if it is nondegenerate on every segment of its Newton polygon. For every
segment S of the Newton polygon Jίf we denote by \S\X and | 5 | 2 the lengths of
the projections of S on the horizontal and vertical axes. We call IS^/IS^ the
inclination of S.

A segment S e Jίf is exceptional if 1 = \S\X < \S\2 (resp. 1 = \S\2 < \S\{) and
S has a vertex on the vertical (resp. horizontal) axis. Let Jίf be the set of
segments of Jίf which are not exceptional. For every S e Jίf we consider the
number ε(S) e {-1,0,1} defined as follows: ε(S) = - 1 if 1 < \S\{ < \S\2 (resp.
1 < \S\2 < l^lj) and S has a vertex on the vertical (resp. horizontal) axis, ε(S) =
1 — (the number of vertices of S lying on the axes) if \S\{ = \S\2

m, ε(S) = 0 for all
remaining cases. Let α/α(5) + β/β(S) — 1 be the equation of the line containing
S. Obviously oc(S),β(S) > 0 are rational numbers and a(S)/β(S) = ISd/IS^.

Now we can state our main result

THEOREM 1.1. Let f =f(X, Y) e C{X, Y} be a power series with an isolated
singularity at (0,0) e C 2 . Then for every line bX — aY = 0 not tangent to the
curve / = 0 there is a factorization of the polar df — a(df/dX) + b(df/dY):

s in C{X, Y}
SeJTf*

such that

(i) ordflf, = mindSl!, |S| 2) + e(5) for S e JTf\

(ii) if h is an irreducible factor of gs, then

ovdh

the equality holding if f is nondegenerated on S.

(iii) if ordt; > 0 then oxάv = 1 and (/, υ)0 = ord/.
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The proof of the above theorem we give in Section 3 of this paper. Now, we
state corollaries.

COROLLARY 1.2. Let f —f{X, Y) e C{X, Y} be a power series with an
isolated singularity at (0,0) e C2 nondegenerate in Kouchnirenko's sense. Then

(i) the numbers max(aι(S),β(S)) where S e Jff are polar quotients of f = 0,
(ii) if qΦovdf is a polar quotient off then q = max(α(S),/?(£)) for a

segment S e Jff.

The above corollary follows immediately from Theorem 1.1. One can
complete (1.2) by noting that with the assumptions of (1.2) the number ord/ is a
polar quotient of / = 0 if and only if the line α + β = ord/ intersects supp/ at a
point not lying on the axes.

Using (1.2) and Teissier's formula for the Lojasiewicz exponent mentioned
above we get the following corollary (see [Li], [F], [Len]):

COROLLARY 1.3. If f e C{X, Y} has an isolated singularity and is non-
degenerate in Kouchnirenko''s sense, then

o(/) { ( ( ) , β ( ) ) : S e JT/} - 1

if jγ Φ 0.

Note that JS?O(/) = ord/ - 2 if Jff = 0.

COROLLARY 1.4. Let f = Σ*Wι+βW2>w c«βX« Yβ where f0 =
Ί2awι+βw2=wcκβXcίY^ nas an Elated singularity of order > 2. Then the number
max(w/wi, w/wi) is a polar quotient off = 0 and there are no polar quotients of
f = 0 different from ord/ and max(w/wi, w/wi).

Proof We have Jίf = {S}, where S is a segment lying on the line ocw\ +
βw2 = w. It is easy to check that S is not exceptional. Hence df = vgs and
max(α(S),jff(S)) =max(w/wuw/w2). Then we use (1.2).

Examples. 1. If / = Xa + Yb where α, b > 1 are integers, then there is the
unique polar quotient and it is equal to max(#, b).

2. If / = XaY+ XYb where a,b > 1, a φ b are integers, then there are two
polar quotients: mm(a,b) + 1 and (ab - l)/(min(α,ό) - 1).

3. If / = F 8 + XY5 + X3 Y2 + X6 then Jίf - {A, B, CJ where A is excep-
tional, B is of the first kind and C is of the second kind. Here ε(B) = 0,
ε(C) = — 1 and ovdgs = 2, ordgc = l From df = υgsgc we get ordu = 1.
Hence there are three polar quotients: o r d / = 5, max(a(B),β(B)) = β(B) =
13/2, max(α(C),j8(C)) = α(C) = 6. Moreover ifo(/) - (13/2) - 1 = 11/2.
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2. Newton polygon of the polar curves

Let feC{X,Y} be a nonzero power series such that o r d / > l . We
assume that the distances d\,d2 from supp/ to the axes are less or equal to
1. Every series with an isolated singularity satisfies the above conditions.

Let 3 = a(d/dX) + b{d/dY) be such that ab φ 0 and d(in/) Φ 0 (note that
δ(in/) = 0 if and only if i n / = const.(bX — aY)oτd^). To avoid a trivial case
we assume that/is not generic with respect to X, Y that is ordf(X,0) φ ord/ or
ord/(0, Y) / o r d / .

Our purpose is to compare the Newton polygons of the series / and df. We
divide the nonexceptional segments of Jίf into two classes. A segment S e Jίf is
of the first kind if 1) \S\ι < \S\2 and S has no vertex on the vertical axis or 2)
\S\2 < \S\1 and S has no vertex on the horizontal axis or 3) \S\1 = \S\2 and S has
no vertices on the axes. Clearly, every segment of the first kind is not ex-
ceptional. A segment S e Jίf is of the second kind if it is neither of the first kind
nor exceptional.

Let S be a segment of the first kind with vertices (αi,/?i) and (oc2,β2) where
oc\ < a2 (then βx > β2). We denote by dS the segment with vertices (αi — l,/?i)
and (oc2 — l,/?2) if \S\ί < \S\2, the segment with vertices (cc\,βι — 1) and
(θL2,β2 — \) if \S\2 < \S\X and the segment with vertices (αi — 1,/̂ ) and
(<x2,y?2 — 1) if Î Sij = |SΊ2. Clearly S and dS are parallel.

A vertex of the Newton diagram Δ(/) is principal if it is lying on the line
α + β = ord/. If there is exactly one principal vertex (αo,/?o)

 a n d it is not lying
on the axes (that is αo > 0 and β0 > 0) then we denote by V the segment with
vertices (α0 - 1,β0) and (ao,βo ~ 1) Clearly | V\x = \ V\2 = 1. We set TT = { V}
if V exists and Ψ° — 0, otherwise.

The first (last) segment of Jίf is the segment nearest to the vertical (hori-
zontal) axis. Every segment of the second kind is the first or is the last.

Let δ\,δι > 0 be the distances from supp(3/) to the axes. We can state now
the main result of this section.

THEOREM 2.1. With the assumptions and definitions introduced above, we have
(1) If SeJίf is of the first kind then dS e Jί[df). If Δ(/) has exactly one

principal vertex and it is not lying on the axes then V e Jr(df). The segments dS
(S e Jίf of the first kind) and the segment V form the sequence of succesive
segments when ordered in such a way that the sequence of their inclinations is
increased. If the first segment (the last) is of the first kind or it is exceptional,
then δι=Q (δ2 = 0).

(2) Suppose that the first segment F e Jίf is of inclination < 1 and F has a
vertex on the vertical axis. There is a set $~\ of segments of Jr(df) such that

(0,

(i) ifTe3Γλ then |Γ |,/ |Γ| 2 < \F\J\F\2,

(«)*+Σ Γ 6 *mi = ι*Ίi+e(n
(iii) a line supporting Δ(/) parallel to a segment Γ e J Ί passes through
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If the first segment is of inclination > 1 or has no vertex on the vertical axis
we put ZΓ\ = 0.

(3) Suppose that the last segment L e Jίf is of inclination > 1 and L has a
vertex on the horizontal axis. There is a set 3~2 of segments of Jί{df) such that

(i') ifTef2 then \L\X/\L\2 < |Γ | ,/ |Γ | 2 ,

(in') a line supporting Δ(/) parallel to a segment T e £Γ2 passes through
( Λlί T \ f\\
I OCl LJJ , U ) .

If the last segment is of inclination < 1 or has no vertex on the horizontal axis
we put 3~2 — 0

(4) Jί{df) = {δS:SeJίf is of the first kind} U'
(5) Let Se Jίf and T e J^{df) be parallel. Then

d
ι — in(f,S) if \S\{ < \S\2

^in(/,S) if |S| 2<|5| 1

In order to prove theorem 2.1 we need some preliminary notions. An
application v : C{X, Γ}\{0} —• N is a weight of C{X, Y} if for every nonzero
/ = ΣCθίβX«γβ E C{X, Y) we have v(f) = inf{ocv(X) + βυ(Y) : (ocj) e supp/},
where v(X) > 0,v(Y) > 0 are integers. We put v(0) = +oo where the symbol
+ oo has usual properties. Moreover we put

invf= Σ caβX
aYβ.

zυ{X)+βv{Y)=v(f)

For every S e Jίf we consider the weight vs associated to S by putting vs(X) =
| 5 | 2 and vs(Y) = \Sχ\. Clearly α|5| 2 + β\S\{ = vs{f) is the equation of the line
Is containing the segment S, therefore vs(f) = |SΊ2α(5) = ^1^(5). A line / c
R2 is a barrier of Δ(/) if it has equation V\OL-\- viβ = w where v\, v2, w > 0 are
integers and satisfies two conditions: 1. if (α,/?) e Δ(/), then v\a + V2β > w, 2.
Δ(/) Π / / 0. We call υi/vγ the inclination of /. Clearly, the inclination of Is is
equal to the inclination of S.

In the sequel we use the following simple facts:
1) p e supp/ is a vertex of Δ(/) if and only if there is a barrier / of Δ(/)

such that Δ ( / ) Π / = {/>}.
2) vertices /?,/?' of Δ(/) are succesive if and only if the line passing through

p and p' is a barrier of Δ(/).
If i; is a weight of C{Z, 7}, then the line /, : v{X)a + υ(Y)β = v(f) is a

barrier of Δ(/) and Δ(/) Π4 = conv(suppinι;/). If / is a barrier of Δ(/), then
I = lv for a weight v. We omit the easy proof of the following lemma.

LEMMA 2.2. Let d = a(d/dX) +b{d/dY) with (a,b) Φ (0,0).
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(i) If a Φ 0 and v is a weight such that υ(Y) < υ{X) and mvf φ const.Yq

then v(df) = υ(f) - υ(X) and inΌ(df) = a(d/dX)invf,
(ii) If b φ 0 and v is a weight such that υ(X) < v( Y) and mυ f φ const.Xp

then v(df) = υ(f) - v{Y) and mv{df) = b(d/dY)inυf,
(iii) If in/ Φ const.(bY - aX)m and ab Φ 0 then ord(δ/) = ord/ - 1 and

in(df) = d(mf).

For every Z c R2 we denote by Z - (1,0) resp. Z - (0,1) the image of Z by
the translation (α,/?) »-> ( α - I,j8) resp. (α,/?) ι-> (α,j8- 1). Using the notion of
barrier we can rewrite lemma 2.2 as follows.

LEMMA 2.3. (i) Let d = a{d/dX) + b(d/dY) with aφO and let I be a barrier
of Δ(/) of inclination < 1 such that /(Ίsupp/ contains a point not lying on the
vertical axis. Then I— (1,0) is a barrier of Δ(df) and

( / - ( l , 0 ) ) Π s u p p ( < 9 / ) = { ( α - l,β)eN2 : α > 0 and (μ,β) e / Π s u p p / } .

(ii) Let d = a(d/dX) + b(d/dY) with bφO and let I be a barrier of Δ(/) of
inclination > 1 such that /Πsupp/ contains a point not lying on the horizontal
axis. Then I — (0,1) is a barrier of Δ(δ/) and

(/ - (0,1)) Πsuμp(3/) = {{a,β - I) e N2 : β > 0 and (α,j») e /Πsupp/}.

(iii) ί^ί 3 = α(δ/3X)+έ(δ/δ7) fe ŵcA that mf Φ const.(bX - aY)m.
Then the line k : α + β = ord/ — 1 w β barrier of Δ(δ/)

c {(α - I,j8) e TV2 : α > 0, (α,j8) e supp/ ίwirf α + ̂  = ord/}

U{(α,£- l)e7V2 : ^ > 0 , ( α , ^ ) e s u p p / and oc +β = ordf}

Now we can prove Theorem 2.1.

Proof of (1). Let S e Jίf be a segment of the first kind. Assume that
IS]! < \S\2 (the cases |S| 2 < 15^ and \S\{ = \S\2 are treated similarly). Then
dS = S - (1,0). By Lemma 2.3 (i) the line fe - (1,0) is a barrier of supp(<3/)
and ls - (1,0) = /^. Therefore 5S is a segment of ^Γ(3/).

To check the second part of (1) consider two succesive segments 5, Sf of
Jίf. It suffices to observe that

1. If 5, Sf are both of inclination^ 1 or > 1, then dS,dS' are succesive
segments of Jf(df),

2. If |S|i/|S|2 < 1 < IS'h/IS'lj, t h e n t h e common vertex of S and Sf is
principal and dS, V,dSf are succesive segments of J^(df).

3. If \S\{ < \S\2, the lower vertex of S does not lie on the horizontal axis and
is principal (resp. \S\2 < \S\X and the upper vertex of S does not lie on the vertical
axis), then dS, V (resp. V,dS) are successive segments of Jί{jdf). To end the
proof of (1) let us observe that if F is of the first kind then the segment dF has a
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vertex on the vertical axis. If F is exceptional with the lower vertex (1,/?), then
the point (0,/?) is a vertex of jV(df). Therefore δ\ = 0. Analogously we treat
the case of the last segment.

Proof of (2). Let F be the first segment of Jίf. Suppose that F is not
exceptional, \F\X < \F\2 and F has a vertex on the vertical axis. Let (αo,/?o) =
(0,j80) = (0,j8(F)) and ( α i , ^ ) = ( l^ l i^ i ) be vertices of F. Let (a[,β[) =
(αi - \J{) if \F\{ < \F\2 and (a[J[) = {μuβx - 1) if \F\X = \F\2. We claim that
{oc[J[) is a vertex od A(df).

Indeed, there is a barrier / of Δ(/) such that /Πsupp/ = {(αi,/^)} and
the inclination of / is <1 if IF^ < \F\2 and >1 if \F\X = \F\2. Therefore

(/- (i,o))nsupp(δ/) = {(«;,/?;)} i f l^li < I*Ί2, ( ' - (o. i))nsupp(δ/) - {«(,#)}
if | F | ! - | F | 2 and {af

vβ[) is a vertex of Δ(3/) by Lemma 2.3. Let ^ ί be the
set of all segments T e Jf(df) lying above the vertex (αJ,/?(). We will check
properties (i), (ii), (iii) when \F\X < \F\2 (the proofs when \F\X = \F\2 are similar).
By Lemma 2.3 the line //- — (1,0) is a barrier of Δ(<9/) passing through the vertex
(αi - l,y?i). Let Γ e f i and consider the barrier //r of Δ(δ/). Clearly
I^lj/IΓ^ = inclination of / r < inclination of //• - (1,0) = \F\{/\F\2, that is (i)
holds.

Property (ii) follows from the calculation:

To check (iii) take a barrier of Δ(/) parallel to a segment of Γ e ^ ί . It is of
inclination |^li/|^Γ|2 ^ \F\\/\F\i Therefore it passes through (O,ySo) = (0,j5(F)).

Proof of (3). The proof of (3) is analogous to that of (2).

Proof of (4). (4) follows easily from (1), (2) and (3).

Proof of (5). Consider two parallel segments SeJr(f) and TeJ^(df).
Let vs be the weight defined by putting vs(X) = \S\2 and vs(Y) = \S\X. Assume
\S\X < \S\2. Clearly inϋ s / = in(/, S) φ a monomial and by Lemma 2.2 (i):
111^(3/) = a(d/dX)m(f, S). On the other hand in^(3/) - mVτ(df) for S and T
are parallel and we get

d_

If | S | 2 < \S\X or \S\2 = \S\X, then the proof is similar.

in(δ/, T) = mvτ{df) = ^vs(df) - * — in(/, S).

3. Proof of the main result

We need some preliminary facts. The following is well-known (see [Te2]).

LEMMA 3.1. Let f =f(X,Y) be a nonzero power series without constant
term. Then there is a factorization
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/ = uXd> Y* J ] fs
SeJj-

in C{X, Y} where u is a unit such that
(i) JT{fs) = {S'} where S' is the segment with vertices (\S\u0) and (0, |S|2),
(ii) in(/,5) = {a monomial)'m(fs,S') in C{X, Y}.

Recall that a pair of power series /, g without constant term is nondegenerate
if for every pair of parallel segments S e Jίf and T e Jίg the system of equations
in(/, S) = in(#, T) = 0 has no solution in C* x C*. Let

' + β = 1

be the equation of the barrier of Δ(/) parallel to the segment T of (possibly)
another Newton polygon. Clearly, if S e JTfi then α(S, Jίf) - α(S), β(S, Jίf) =

LEMMA 3.2. Lei / e C{X, Y} be a nonzero power series without constant
term and let h e C{X, Y} be a power series such that Jfh = {T} where T is a
segment with vertices on the axes. Then

ordh

the equality holding if the pair / , h is nondegenerate.

Recall the following (see, for example [P12]):

PROPERTY. Let /, g be nonzero power series without constant term. Then
for every weight v:

the equality holding if the system of equations in^ / = in^ g — 0 has no solution
#(0,0).

To check Lemma 3.2 we apply the above property of/, h and to the weight
vτ given by vτ(X) = \T\2 and vτ{Y) = \T\{. It is easy to see that vτ{h) =
\T\i\T\2, vτ(f) = \T\2*(T,jrf) = \T\λβ{T^f) and απlA =
Therefore

W,h)o> »τ(f) =mΛJ»τ(f) vτ(f)\
ordh ~ minQTUTl,) m&X{ |Γ|, ' \T\2 )

the equality holding if the pair / , h is nondegenerate.
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LEMMA 3.3. Every polar quotient of the curve f = 0 is greater than or equal
to o rd/ . If the curve f = 0 has o r d / tangents paiwise different, then there is only
one polar quotient of f — 0 and it is equal to ord/ .

Proof Suppose that the line bX - aY = 0 is not tangent to / = 0. The
first part follows from the inequality (f,h)0 > (ord/)(ordh). It is easy to check
that if/has ord/ tangents, then the curves/ = 0 and df = adf/dX + bdf/dY =
0 have no common tangent. Therefore for every irreducible factor h of df we
get

= ord/.
ordh

Proof of Theorem 1.1. Let / = f(X, Y) e C{X, Y} be a power series with
an isolated singularity at (0,0) e C2. If Jίf = {S}, {S^ = \S\2 or Jίf = 0 then
the theorem follows easily from Lemma 3.3. Therefore we assume in the sequel
that Jίf contains a segment of inclination φ 1.

Let d = ad/dX + bd/dY with abin f(a,b) Φ 0. Then δ(in/) φ 0. By
Lemma 3.1 we may write

(1) df = uX

For every nonexceptional segment S e Jίf we define the series gs as follows. If
S is a segment of the first kind, then gs = (df)ds. If F is the first segment of
inclination < 1 and with a vertex on the horizontal axis, then we put

gF = Xδ ~~

Similarly, if L is the last segment of inclination > 1 and it is of the second kind,
then

ΰL = YS2 Π (df)τ-

Moreover, we put v = u(df)v if Ψ' — {V} and v = u if if — 0. By Theorem 2.1
and (1) we get

(2) df = υ

SeJff

To check Theorem 1.1 we have to verify three cases.

CASE 1. S is a segment of the first kind. Recall that for every segment of
the first kind, ε(S) - 0 if \S\λ Φ \S\2 and ε(S) = 1 if \S\{ = | 5 | 2 . Therefore

o r d ^ = ovά(df)ds = mind^lj, \dS\2) = mm(\S\u \S\2)+ε(S).

This proves part (i) of the theorem.
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Let h be an irreducible factor of gs = (df)ds. Then JΓh = {T}, T is parallel
to dS and consequently to S. By Lemma 3.2 we get

^ - ^ > max(α(Γ, JΓ/),β{T, Jίf)) = πmx(a{S, JTf),β{S, Jff))

= max(α(S),/?(S)).

If / is nondegenerate on S, then by part (5) of Theorem 2.1 the pair / , h is
nondegenerate and we get

t/\Λ)o.
orάh

= max(α(5),/?(S)).

CASE 2. The first segment F, l^lj < \F\2 of J ^ is of the second kind. We
get by the second part of Theorem 2.1:

= ordUrf [J (df)T) =
)

Let A be an irreducible factor of gF. If h divides (df)τ, then J ^ = {Tf}
where r is parallel to T. Thus α ( r , ^ ) = oc(T,JTf), β(Tf,JTf) = β(T,JTf)
and we get

ord A

by the second part of Theorem 2.1. The equality for / nondegenerate on S we
check like in Case 1. If h = X, then

{{^ = or* f(0, Y)=β(F)

since the first segment F has a vertex on the vertical axis.

CASE 3. The last segment L of Jff, \L\2 < \L\X is of the second kind. The
proof is analogous to the proof above.

To finish the proof it suffices to remark that if ord v > 0, then ord v =
max(|K|1,|K|2) = l and

since \V\λ = \V\2 and the pair f,v is nondegenerate.
We have proved our theorem for polars df = ad/dX + bd/dY in the di-

rection (a : b) such that ab in /\a, b) ^ 0 . If a = 0 or b = 0 and in/(α,fe) # 0
then the theorem is still true but the proof needs some modification: instead of
using Theorem 2.1 we use the description of the polygons Jί(δf/dX), Jί{df/dY)
given in [Len] (Theorems 5.3 and 5.5).
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Remark. One can also prove factorization theorems similar to our main
result for special polars df/dX and df/dY.
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