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ON THE ZEROS OF SYMMETRIC SQUARE L-FUNCTIONS
Takumti NobpA

1. Introduction

Let k be a positive even integer and Sj be the space of cusp forms of weight
k on SLy(Z). Let f(z) € Sk be a normalized Hecke eigenform with the Fourier
expansion f(z) = 5.2, a(n)e?. The symmetric square L-function attached to
f(z) is defined by

Lo(s,f) = H(l o2p™) " (1= oB,p7") " (1 = B2p*)~!

with «, + B, = a(p) and ocpﬂp = p¥=1. Here the product is taken over all rational
primes. We denote L(s, f,st) := Ly(s+ k — 1, f) and call L(s, f,st) the standard
L-function attached to f(z) on SLy(Z).

In an application of the projection operator on the space of C*-automorphic
forms introduced by Sturm [St] and the holomorphy of L(s, f,st) by Shimura
[Sh 1], we gave one formula which connects the zeros of zeta-functions with the
eigenvalues of the Hecke operators on SL;(Z) (cf. [Nd]); and we saw the
distributions of the zeros of the Riemann zeta-function and of symmetric square
L-functions are explicitly connected with the distribution of the Hecke eigen-
values. Therefore it is natural to ask the relation of the zeros of automorphic L-
functions to the Fourier coefficients of automorphic forms when the L-function
has a “good” integral representation.

In this paper we consider the zeros of symmetric square L-functions again.
Regarding the symmetric square L-functions as the standard L-functions in the
sense of [An], we are able to apply some results of Siegel modular forms by
[B6, Mi]; and we shall derive one formula as Theorem 1 which connects the
zeros of L(s, f,st) with the Fourier coefficients of non-holomorphic Eisenstein
series for Siegel modular group Sp(2,Z).

2. Statements of results

For ne Z.y, let I'" := Sp(n, Z) be the Siegel modular group of degree n and
let H, be the Siegel upper half space of degree n. If a is an m x n-matrix, then
we write it also as a(”™", and as a™ if m = n. We denote by ‘a the transpose of
a, and by a; the (i, j)-entry of a. For two matrices a and b, we put a[b] := 'bab
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if the right-hand side is defined. The identity matrix (resp. zero matrix) of size m
is denoted by 1,, (resp. 0,,). For a commutative ring R, we denote by R"™") the
R-module of all m x n-matrices with entries in R. We put R := R(™7)

Vi = {x e R™ |'x = x},

Py :={xe Vy|x >0},

K(v) := %1 for ve Z>y.
For square matrices ay,...,a,, we write
ai 0
diag(ay,...,a,) = )
0 a,

The set of symmetric half-integral matrices of size m is denoted by A,,, and we
put
A, = {he A, |det(h) #0}.

Let o the trace for matrices and e(x) := exp(2nix). For he A, and se C, the
singular series (Siegel series) is defined by

(2.1) S(hys):= Y n(r)e(a(hr)),

re VvﬂQ(‘” mod 1

where n(r) is the product of reduced positive denominators of the elementary
divisors of r. Especially

oo k-1 Ji
Si(h,s)=>_ Y exp (2nih X E) =dy_s(h) - L(s)”"

and by [B6 1, Ki] (cf. [Mi, (5.1)]),
S h 0 A {(2s = 3) - dr_s(h)
\No 0] " Ttes-2) Uy
Here d;(h) is the sum of the s-th powers of positive divisors of . For m > 0, we

put
m—1 .
r = m(m—1)/4 r _l
m(s) == ;I;([) K 7))

and Ty(s) :=1. For ge Py, he Vy, and («,f) € C?, we put

(2.2) N9y s o, B) = J L e det(x + h)* ) det(x — h)P T dx

xth>0
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with dx =[], ;dx;, which is convergent for Re(a) > x(m) — 1 and Re(f) > m.

Concerning confluent hypergeometric function, we also use the following ones
defined in [Sh 2]: For ge P, heV,, and (a,p) € Cc?,

(2.3) Enlg, by o, pB) = J e(—a(hx)) det(x + ig) ™" det(x — ig)_ﬂdx

m

which satisfies

(24) &g hya,p) := Dm0 pmume(n T (0)7 T, (B) ' 1, (29, wh; t, ).

Our main purpose is to prove the following theorem:

THEOREM 1. Let Ar(z) € Sy be the unique normalized Hecke eigenform for
k=12, 16, 18, 20, 22, and 26. Let p be a zero of L(s,Ax,st) in the critical strip
0 < Re(s) < 1, with p ¢ R and {(2p) #0. Then for each positive integer n and for
any t >0,

_ _ -1
(—1) k/2+19—5, . (P"‘k— 1) r (P+k+ 1) d_ﬁ(h)p—ﬁ+k—lq—ﬁ—k+1e—2nthp2
h,p,geZo 2 2

hq*=n (p,q)=1

(e 0]
=J ST Up+1)Sa(h,p+ 1)y 2em2my
0 heAz'h=(: )

t 0 7] 5 —
prk+1p—k+1
X62<<0 y))h, 2 ’ 2 dy

3. C%-Siegel modular forms

For k € Z >, we denote by S the set of cusp forms of weight k£ on Sp(n, Z)
and by M} the set of functions F which satisfy the following conditions:

(3-A) F is a C* function from H, to C,
(3-B) F((az +b)(cz +d)™") = det(cz + d)*F(z) for all (gf:i gi:;) er”.

The function F is called a C*-modular form on I'"of weight k, and called of
bounded growth if for every ¢ > 0

JX JY | F(z) |det(»)* ™" 0 dy dx < o,
where
X={x|xeV,(modl)} and Y ={y|ye P}

In this paper we denote dx =]][,. dx; and dy =[], ,dy;. For Fe M and
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f €Sz, the Petersson inner product is defined by
Fof>=]| PTG ) vy,
T"\H,

Here z = x+ iy with real matrices x and y; we also denote Re(z) =x and
Im(z) = y.
We shall quote the following theorem:

THEOREM A ([St], Theorem 1). Let F € M be of bounded growth with the
Fourier expansion F(z) =3 r.a a(T,y)e*™ ™) Assume k >2n. Let

o(T)=T, (k — (n;zl)) B g k—(n+1)/2) det(4T)(k—(n+l)/2)

X J a(T, y)e ) det(y)* 1" ay.
Then h(z) =3 7 150 ¢(T)e?™ ™) € St and {g,F) = {g,h) for all g€ S}.

We shall also use the following properties of the function L(s, f,st). We put

AGs, f,5t) = Ta(s+&) [ [ Tels+ & — )LGs, £,s1)
J=1

with
Cr(s) = n’s/21"<%), Cc(s) :==2(2r)~°T(s),

and
{ 0 for n even
& =

1 for n odd.

Let k£ be an even integer, then the function A(s, f,st) has the following integral
representation ([B6 2], Satz 5):

(3.1)
n—1 5 K
_ () . (2n) -z 0 A k + 1
Als, fy8) - f(2) = o (s)<:(s+n>g'€<2s+2f><f’5k (( 0 *)’——2
with
)(S) — (= 1)K/ 2(m =302 Vs (/2 s )~ (1/2)(s+k)r<s-;£)rn (#)rn(“‘];"'").

Here E\"(z,s) is the Eisenstein series

E{(z,5) = det(Im(2))* Y det(cz + d) *|det(cz + d)|
{cd}
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*

for ne Z.y and ze H,. The summation is taken over (* ), a complete

g
system of representation of {( 0:‘”) :) e r"}\rn.

4. [Eisenstein series

The purpose of this section is to prepare some properties of the Eisenstein
series. For Siegel modular group, the explicit Fourier expansion and growth of
the Eisenstein series were studied by Mizumoto [Mi]. We shall write down the
expansion in the case of degree 2 and show the FEisenstein series is of bounded
growth in our case.

First, we introduce some notations. For ve Z with 1 <v<m,

Z;'Z;,f) .= {a e Z"™V)|q is primitive}.

For 1 <v<m and ye Py, let

4.1) {(g,s):= Y det(gla)”.

aeZ™" /GL,(Z)

prim

The right-hand side of (4.1) converges locally uniformly for Re(s) > m/2. By
[Ma], the function Cﬁ'") (9,5) has a meromorphic continuation to the whole s-
plane. By definition,

L7 (g,5) = det(g) ™.

We also put C(()m)(*,s) =1 for all me Zy3,.
We also use

M (g, h; 0, ) = det(g) ="y, (9, b, B).

Here 7#,,(g,h;a,p) is defined by (2.2).
For 1 £4<m and ye P,, we use the notation as defined in [Mi]:

] = ding O o) | ¢ |

or
g(y,u) = yln] = (i) " ['ryr]

if u, = (rr) € GL,(Z) and re Z™").

. prm . . . .
Now we quote the Fourier expansion of Eisenstein series:

THEOREM B ([Mi], Theorem 1.8). (1) For me Z~, k € 2Z ¢, and Re(s) >
m, the Eisenstein series E,(cm)(z, s) has the following expression:

m v
(4.2) EM(z,5) =Y ST F") (2,9),

v=0 =0
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where

(25 + k —x(v))
L) (s + k)

(4.3) F (z,5) = (=1)*722220)

- 8,(0,,25 + k) det(»)* ™ (2, 25 + k — k(v))

for 0 =v=m, and

(4.4) F@e=3" 3 b (', y,s)e(s(h]'r]x))

heAj rez" 9 1GL,(Z)

prim
for 1 <A <v<m with

((v—/l)/2) rv_}'(zs + k - K(V))
Is)Ty(s + k)

(4.3) b/(:,nv),/l(h[trL »,8) == (_l)kv/szn,vx(v).u

S, (diag(h,0,-7), 2s + k) det(y)* det(2y[r]) ")+

A — _
-n/’{(2y[r],nh;s+k+—23, s+&2—v>

im- D(Zg(y, u), 25 + k — x(v)).

(2) Above (4.2)- (4 5) give the analytic continuation of E,(cm)(z, s) to the whole

s-plane. Moreover E )(z ) is termwise dj erentlable up to any order in the
entries of x and y except on the poles of E (z,9).

We use the Theorem B in the case of m = 2:

- 2 v -
V) -z 0\ §s—k+ -z 0\ §—k+1
25 =) -2 () =)

where

_ - (§—k+1)/2
@) -z 0\ 5§—k+1) z 0
(4.0.0) Fioo (( 0 w) — ) = det| Im 0 w ,

) -z 0\ s-k+1
(4.1.0) F,E’i,()((o w)——2—>

_ (~1)*2z L)

IN(s—k+1)/2)T((5+k+1)/2)

20\ 6k+D2 , I
-S1(01,§+1)det<lm > C§)<21m< )s)
0 w 0 w
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rG)
G-kt D)2T(G+k+1)/2)

(G—k+1)/2
~C(§)C(§+1)_1det(lm<z 0)) c§2><21m<z 0),5),
0w 0w
-z 0\ 5—k+1
F’g*"((oz w)’s 2 )

o 1\k/292_2
=(-1) 27tr

— (_1\k2
(-1 27:1_

I - (1/2)rE-1)
(5—k+1)/2T(G - k)/DT(G + k + 1)/2)[((5+k)/2)

) Z 0\ \6K+D/2 , z 0\ _ 1
~S2(02,s+1)det<lm<0 w)) cg)<2lm<0 w>’s—§)

I'G—(1/2)TG—-1)
(G-k+1D)/2T(G-k)/2T(G+k+1)/2T(G+k)/2)

L(25—-1)¢(5—-1) z  0\\$ kD2 2 0\ 172
e (g ) eafm(G )
and

2.((5 )5
-3 2 stafenm(G ) S5 (ome( )

heAj rez? /GLy(Z)

o 1\K/292_2
=(-1) 2nr

for 1 £15v L2
Here

2 z 0\ 5—k+1
(4.1.1) b}cfl,l(h[’r],lm<0 W)—3—>

1
(G—k+1)/2)T(5+k+1)/2)

z 0\ \E kD2
- det (Im ( ) )
0w

z 0 S+k+1 5—k+1
o (2m (] ) s L D)

= (-2 Si(h,5+1)
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2 0\ G-kD/2
=S1(h,§+1)det<lm( ))
0 w

'Q(m(o )]hs+k+ls §+1)

2 z 0\ s—-k+1
a5 (i 1))

= (~1)*2%%" rG-(1/2)-8((%2).5+1)
(G k+D/T(G- R/ DT +k+ D/ (GHE)/2)

oy )l )
@iy a5

= (—1)H273P2 I'(s—(1/2)) (25— 1)dy_s(h)
C(G-—k+1)2T(G+k+1)/2) (25(G+1)

z 0 (—k+1)/2 2 0 (1/2)-5
-det|{ Im det{ 2Im
0 w 0w

z 0 51 z 0 S+k 5—k
-det(ZIm(O W)[r]) Cl(lm(o W)[r],h,T, 3 ),
and

2 z 0\ 5—-k+1
(42.2) b,(c‘)z,z(h[’r],lm(o W)T)

= (=1)k22z2

1
T(G—k+ 1)/2)T(G - k)/2)T(G+k+ 1)/2)0(G + 4)/2)

2 0\ GkD/2
‘Sz(h,§+1)det(lm( ))
0w

s+k+1s k+1
~172<21m<0 )[] wh, : )
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sy £))
e

¢ (Im( s+k+1 s—k+l)
& .

’ 2
In the following, we denote ﬂ(h ) (resp. A(hg)) the smallest (largest) eigenvalue of
nonzero eigenvalues of 4[g!/?] for 0 # he V,, and g € Pp,.

PROPOSITION 1. Let se€ C and assume {(2s) #0. Then for positive matrix
), there exists a constant ¢ € R~ depending only on Re(s) = o such that

#((63))

Proof. By [Ma, p. 284], for ge P,
& (g,5) = 2n7s(1 - )L(s)L(25)¢ (9, 9)

has an integral representation
(4.6)

EP(g)=| o {O(r,9)det(y)’ +det(g) /*O(y, g™ )det(y)' ™} det(y)dy.
det(y)20

t 0
0y

So(y -1 gyl 2y el 20kl oy

Here R; is the Minkowski reduced domain in P; and

oy, 4?): Z P, e~mo(9lely)

ceZ®Y
rank c=1

with a certain differential operator P, of degree 2. The expression (4.6) shows
that _.g )(g, s) is an entire function of seC.

By [Mi, Proposition 4.4] and [Kl, p. 145], there ex1st constants ¢, c; de-
pending only on a positive constant r with |det(Re(z)"'z)| < r such that

=0(g,9) < J:O{ﬂ(g)'lt"’z exp(—cu(g)?)

+ det(g) "2 2(g)r " exp(—caA(g) 1)} dt.

It is easy to see that there exist positive constants ¢3 depending only on ¢ such
that

©
J taexp(_atl/\') dr < C3{OC_V(U+1)_1 + o Ve+1)+] + o] + OC}
1

for all « € R-y. The Proposition follows by using the last inequality. O
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ProposITION 2. For y >0, he Z .y and (a,f) € Cc? &(y,hya,B) is a hol-

omorphic function of («,8) on C*. Let T be a compact subset of C*. Then there
exist positive constants ¢, and ¢, depending only on T such that

cre ypRe(@)-1,-Re(f) (1 4 y=@2)  for h >0
cle‘2”""y|h|Re(ﬂ)'ly”Re("‘)(1 +y ) forh<O0
with (a,f) € T. We are able to take

2 = max{[Re(«)], —min{0, [Re(B)]}}

where [Re(a)] denotes the largest integer | such that | < Re(a).

|él(y7h7 a)ﬂ)l = {

Proof. Above results are well hnown. For example, see [Miy, p. 281].

PROPOSITION 3. For ye Py, he A} and (o,8) € CA\R?, &(»,h,a,B) is a

holomorphic function of (x,f8) on C>\R?. Let r be a positive constant and T a
compact subset of C 2. Then there exist positive constants ci,c; and c3 depending
only on r and T such that

|E2(p, by, B) | < c1e7 F™)a(y)2 (A(hy)” + u(hy) ™)

for u(y)=r and (o,f) € T. Here t(hy) is the sum of absolute values of ei-
genvalues of hy.

Proof. The fundamental properties of the confluent hypergeometric func-
tions &, or 7, are due to [Sh 2]. O

0w
a C® automorphic form of bounded growth except on the pole.

THEOREM 2. For se C in 0 < Re(s) < 1, E,?’((-Z' °),(§~k+1)/2) is

0
variable both z and w on SL(2,Z). We shall show the growth condition of

(2) z 0
525 0))
Let Im(z) = ¢ and Im(w) = y. By (4.0.0), (4.1.0), (4.2.0) and Proposition 1,
there exist positive constants ci,...,cs depending only on Im(z) =¢, Re(s) =0

and weight k& such that

FO ((—2 0) s—k+1>
KO\No w/) 2

2 -z 0\ 5—k+1
(5 05

Proof. By Theorem B (2), E,EZ) ((Z 2),s) is a C®-modular form of one-

<y kD2

<c- y(a—k+l)/2(y—2<7—l + y—20+1 + y—2 + 03),
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2 -z 0\ §—k+1
(3 )5

Here we assumed ((25){(s+ 1) # 0 and se C\R. By (4.1.1), (4.2.1) and Pro-
position 2, there exist positive constants cs, ..., 1o depending only on A, Im(z) =

t, Re(s) = ¢ and weight k, and exist constants (r1,r2,r3,14) € R* dependmg only
on ¢ and weight k£ such that

2) -z 0\ 5—k+1
(7 0)s

h;o cs.yrnlhlas((t) Z)VVZ(H- (8 >[]—c7) ~2eli 5 )i

rez®/41

prim

< cq- YORD2,

IN

IA

S e (g )1 (o e e
hEZ;&O 0 y O y

rez® l)/+1

prim

Thus |F,£,23,1] and |F,£‘2%71| — 0 when y — co. By (4.2.2) and Proposition 3, there
exist positive constants c;;, ¢j2 and c¢;3 depending only on A, Im(z)=¢, Re(s)=o,

p >0 with ,u(((’, g)) > p and weight k; and exist constant rs € R depending

S )

(G 3) 0G5 )

Let g e P,,. By [Sh 2, Lemma 2.9], there exists an element b € GL,,(Z) such that

only on p and weight k such that

) —z 0\ 5—k+1
(795

g['b] = diag(g1, ..., gm), gj € Rso
and
hb~'] = diag(1,, —1,)
with some p,ge Z >0, p+q=m. Hence
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t(hg) = t(diag(1,, —1,) - diag(g1, . . ., gm))

I
M

9gj

~
1]

—s

1
9; m

v

m

If
—_

J

= ml|det(h)|'/™ det(g) /™.

T(h<<; 2)) > 2|det(h)| 2 (1y) /2,

hence |F,£2% ,| = 0 when y — oo.
Now we estimate the Eisenstein series using we have obtained. There exist

Therefore in our case

positive constants ay, . ..,as depending only on Im(z) = ¢, Re(s) = o and weight k
such that
—z —k+1 2 2 0\ 5—k+1
205 ) =) snd () =)
k 0 w 2 VZ; ,12_; w 2

< ay - pORHD2(p20-1 20kl 2y g
+a - yTRD2

and especially in the region 0 < Re(s) <1 and for y — o

(4.7) <ay- Y2

Next, we study in the case y — 0 following the proof of [St, Proposition 2]. Let
p(w) = yk/zE,(f) (( N 0) F—Fk+ l)/2> with y = Im(w). Then

lp(r(w)| = le(w)|

for all yeT'! = SL(2,Z) and we H;. We choose I''\ H; such that |w| = 1 and
[Re(w)] £ 1 for wel"l\Hl By (4.7)

kpp@ (2 O\ S—k+1\| _ (ka2
y Ek (( 0 W>’ 2 = a4 y *

Let w=x+iyeH; and choose g=(‘: Z)el"1 such that g(w)e
T''\H;. Then

lo(w)| =
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lo(w)l = lo(g(w))]
< ay - |Im(g(w))|*?
=ay - y3/2|cz + d[—3
Sag- (P4 ),

Therefore we have

(2 -z 0\ 35-k+1 (—k-3)/2 (=k+3)/2
E — 1 <as-
k (( 0 w>’ 2 saly Y )

(4.8)

for any y > 0 and 0 < Re(s) < 1. This completes the proof of Theorem 2. []

5. Proof of Theorem 1

First, we show the following Lemma.

Lemma 1. (1) Put (a,8) € CA\R? with k+pf —a=0. Then for any ne
Z>07

(5.1) jo X Yk2BE (4 B dy = .

(2) Put (6,7,a,B) € C* with 0—0(—/)’—!—1—0 and k—1+pB+y=0. For
given n € Z, put (hpq)eZ30 such that hg* = n. Then we have for any t > 0,

(52) JO I YR (2 4 2 )0 (9P + ¢y, by, B) dy = 0.

(3) Put (o, [)’) € C? with k+B—a=0. For given ne Z-o, put (h,p,q) e
Z3, such that hq> =n. Then we have for any t >0, :

0
63 [ e ey hap b
0
— e(n/2)t 2 a—ﬂ+lnp—2ﬁq—2a+2r(a _ l)r(a)—lt—ﬂe—Znhpzt.
Proof- (1) By (2.3),
0
| ey

o¢] 0
— J J (x + i)—ot(x _ l-)—ﬁe—Znn(l-f—tx)yyk—l—ady dx

—o0 JO
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= (27in) Tk — o) r

79

(x + i) ™(x — i) *dx

—Q0

= 22k Fni=B 2mn) T (k — )[(k + f— DT (k + B — o) "' T(a) 7.
Thus (5.1) is hold for k+ f —a =0.
(2) For 0 —a—p=1,

Jo e_znnyyk—2+}'(p2t + qzy) 951 (pzt + qzy, h, a, B) dy
© © . 2 2
N J Jo (x + )7 (x — i) P (Pt + g2 y) 0TI g2y (p )X =2ty gy e
-

0
= (Zﬂin)-k-‘_l_yr(k -1+ y)J (x + l')—“e—Znihpztx dx.

— 00
Here we use the relation:

0 u—1,—au -1
J "(a + iv) dp = {Znu e ™T'() foru>0
-

0

for u < 0.
(3) By (2.4),

Jo eI YR G (PPt + ¢P y, by o, B) dy

(o o)
= @A~ 7T () ' T () ! j e k=2 (p*t + q*y, mh, o, ) dy.
0
For k+f—a=0,

0
L e y* =2y (p’t + ¢’ y, mh,a, B) dy

_ J Jw (x + 7Zh) ac—l(x _ nh)ﬁ'—le—2nny—2(p2t+q2y)xyk—2+ﬁdydx
x+nh>0J0

— 2 *'r- 1)

— _ 2
(x — wh)P~ e 2™ g
x—mh>0

= (2q2)—a+1 (2p2)—ﬁt—ﬁ'r(a _ l)r(ﬂ)e_z’“hl’z.

Thus we obtain the assertion of Lemma 1.

O
Proof of Theorem 1.

First we write the Fourier expansion of
E,(Cz) (( "Oz' 3), (5—k+ 1)/2) respect to w=x+ iy as follows:
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(2) -z 0 w _ - 2min Re(w)
E; (( 0 w)’ 3 = Z a(n, s, Im(w))e .

n=-—o

By Theorem B (2), E,(f)(('of 2),(§—k+1)/2) is a C® automorphic form

of weight k in each of the variables z and w for any s e C except the poles of

EP((7°),G-k+1)/2). And by Theorem 2 £ (7 °), (s~ k+1)/2) is

of bounded growth for 0 < Re(s) < 1 except on the pole. The constant terms
of the Fourier expansion of E,({z) show that the possible poles arise when
{(2s) =0 in the region 0 < Re(s) < 1 with s¢ R. By Theorem A, there exists

h(z,8) = % c(n,s)e?™ e S} such that <g,E,§2> (( N g), G-k+1) /z)> -

{g,h) for all geS}.
Here

o0
c(n,s) = (47m)k_11"(k — 1)_1J a(n,s, y)e_z""y det(y)k_zdy,
0

By (4.4)

2
a(n, s, Im(w)) = Z Z

=l A=l heAl rez()/GLy(Z)
HA=(: ;)

l(iam(G ) =) (e o))

for n #0. In the following we put Re(z) =0 and Im(z) =+ Using (4.1.1)-
(4.2.2) and Lemma 1, we have

c(n,s) x (4zn)' Tk — 1)

2
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=1 =1 Y0 * 2,4
v=1 2=1 kel rezll6Ly(z)
W= )

0 -
x bl(j)v’/1 <h[tr]’ Im ((Z) W ) , ._S‘__];_‘l‘—l) e—2nnyyk—2dy
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= > S Si(h 5+ )ARDR

hehi rezl)/GLi(2Z)
h[ r]=(* n)

® : t 0 5 §—
XL e—znnyyk—2+(y-k+1)/zfl(<0 y)[r]’h7s+k+1’s k+1) dy

+ Z Z (_l)k/222—2§n3/2

N (2.1)
'h € A*l €2, GLI(Z)
h| r]=(* ”)

el o))
() e D))
<a((y S)nntst e

(o]
+J > > Salh s+ 1)
0

heds rezl?/GLy(Z)
A= 1)

n

; t 0 S+ k §—
xe—znnyyk—2+(s—k+1)/zéz((0 y>[’],h,s+ +1,s k+l)dy

2

= Z (_l)k/zz_s-n.r((§+k—l)/2) d_s(h)

hp.qeZs0 D((3+k+1)/2) ((5+1)

hq2=n (12 q)=1
x t(§—k+l)/2p-—§+k—lq—f—k+le—2ﬂthp2

o
+ J Z t(i—k+l)/2S2(h, S+ l)y(5+k—3)/26—27my
O heas h=(: )

t 0 S+k+15—k+1
dy.
Xéz((o y)’h’ 22 )y

Here the interchange of summation and integration is justified by using Prop-
osition 2. On the other hand, by (3.1)
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L(s, f,st) - f(z) = (_l)k/222s+k—4n_3/21_,<5‘-|2— I)F(s_;k)r(s'*";"‘ 1)

< (s +k—1)7¢(s + 1)<f,E,$2)((_OZ O)S—“——';—Jr—l»

Therefore for 0 < Re(s) < 1, <f,E,§>(('of ) G-k+1)/2)y=<f, By =0 if

and only if L(s,f,st) =0. From dim S} =1, we have h(z,p) =0, hence
¢(n,p) =0 for every positive integer n. Thus we conclude the proof of
Theorem 1. Oa

*
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