Y. KITAGAWA KODAI MATH. J. 20 (1997), 156-160

AN *n*-DIMENSIONAL FLAT TORUS IN S^{2n-1} WHOSE EXTRINSIC DIAMETER IS EQUAL TO π

Dedicated to Professor Shukichi Tanno on his 60th birthday

Yoshihisa Kitagawa

1. Introduction

Let S^3 be the 3-dimensional standard unit sphere in the complex Euclidean space C^2 . For each θ satisfying $0 < \theta < \pi/2$, we consider a torus $M_{\theta} \subset S^3$ defined by

$$M_{\theta} = \{ (z_1, z_2) \in C^2 : |z_1| = \cos\theta, |z_2| = \sin\theta \}.$$

The torus M_{θ} is a flat Riemannian manifold equipped with the metric induced by the inclusion map $i_{\theta}: M_{\theta} \rightarrow S^3$. In [2] the author studied the question whether the flat torus $M_{\theta} \subset S^3$ is rigid or not, and he proved that every isometric deformation of $i_{\theta}: M_{\theta} \rightarrow S^3$ is trivial. Recently, concerning the question above, Enomoto, Weiner and the author proved the following rigidity theorem.

THEOREM 1.1 ([1]). If $f: M_{\theta} \to S^3$ is an isometric embedding, then there exists an isometry A of S^3 such that $f = A \circ i_{\theta}$.

There are two key ingredients in the proof of this theorem. One is the fact that every embedded flat torus in S^3 is invariant under the antipodal map of S^3 ([3]), and the other is the following:

THEOREM 1.2 ([1]). Let $f: M_{\theta} \to S^3$ be an isometric immersion. If the diameter of the image $f(M_{\theta})$ is equal to π , then there exists an isometry A of S^3 such that $f = A \circ i_{\theta}$.

In this note we establish a higher dimensional generalization of Theorem 1.2. For $n \ge 2$, let $\tau = (R_1, \ldots, R_n)$ be an *n*-tuple of positive real numbers such that $\sum_{i=1}^{n} R_i^2 = 1$, and let M_{τ} be an *n*-dimensional torus in the (2n-1)-dimensional standard unit sphere $S^{2n-1} \subset C^n$ defined by

$$M_{\tau} = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_{\tau}| = R_{\tau} \text{ for } 1 \leq \tau \leq n\}.$$

Then M_{τ} is a flat Riemannian manifold equipped with the metric induced by

Received December 13, 1996; revised March 5, 1997.

the inclusion map $i_{\tau}: M_{\tau} \rightarrow S^{2n-1}$. For each isometric immersion $f: M_{\tau} \rightarrow S^{2n-1}$, we denote by Diam(f) the diameter of the image $f(M_{\tau})$ in S^{2n-1} . Note that the inclusion map i_{τ} satisfies $\text{Diam}(i_{\tau}) = \pi$. The following theorem, which will be proved in Section 2, is the main result of this note.

THEOREM 1.3. Let $f: M_{\tau} \rightarrow S^{2n-1}$ be an isometric immersion. If $\text{Diam}(f) = \pi$, then there exists an isometry A of S^{2n-1} such that $f = A \circ i_{\tau}$.

Remark. Because of Theorem 1.3, it is interesting to ask the following question: Does there exist an isometric immersion $f: M_{\tau} \rightarrow S^{2n-1}$ with $\text{Diam}(f) < \pi$? However, the author does not know the answer to the question even for n=2.

2. Proof of Theorem 1.3

We first prove the following algebraic lemma.

LEMMA 2.1. Let v and v_{ij} $(1 \le i, j \le n)$ be elements of a real vector space V. Suppose that $\sum_{i,j=1}^{n} x_i x_j v_{ij} = v$ for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$ with $|x_i| = 1$ $(1 \le i \le n)$. Then $v_{ij}+v_{ji}=0$ for all i < j, and $\sum_{i=1}^{n} v_{ii} = v$.

Proof. We prove the lemma by induction on *n*. For n=1, the assertion of the lemma is trivial. Choose $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that $|x_i|=1$ for all $1 \le i \le n-1$. Then $\sum_{i,j=1}^n x_i x_j v_{ij} = v$ for $x_n = \pm 1$. This shows

$$\sum_{i,j< n} x_i x_j v_{ij} \pm \sum_{i< n} x_i (v_{in} + v_{ni}) = v - v_{nn}.$$

Hence

(2.1)
$$\sum_{i,j < n} x_i x_j v_{ij} = v - v_{nn},$$

(2.2)
$$\sum_{i < n} x_i (v_{in} + v_{ni}) = 0.$$

By (2.1) and the induction hypothesis it follows that $v_{ij}+v_{ji}=0$ for all i < j < nand that $\sum_{i=1}^{n-1} v_{ii} = v - v_{nn}$. On the other hand (2.2) implies that $v_{in}+v_{ni}=0$ for i < n. Hence we obtain the assertion of the lemma.

For each $u=(u_1, \ldots, u_n) \in \mathbb{R}^n$, we consider a transformation $T_u: M_\tau \to M_\tau$ given by

$$T_u(p) = (z_1 \exp(\sqrt{-1}u_1/R_1), \dots, z_n \exp(\sqrt{-1}u_n/R_n)),$$

where $p = (z_1, \ldots, z_n) \in M_{\tau}$. Note that

(2.3)
$$T_{u+v} = T_u \circ T_v \quad \text{for all} \quad u, v \in \mathbb{R}^n$$

Now we denote by Ω the set of all $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{R}^n$ such that $|\omega_i| = R_i$ for

YOSHIHISA KITAGAWA

all $1 \leq i \leq n$. Then

LEMMA 2.2. Let $f: M_{\tau} \rightarrow S^{2n-1}$ be an isometric immersion, and let $p \in M_{\tau}$. If there exists a point $q \in M_{\tau}$ such that f(q) = -f(p), then for each $\omega \in \Omega$ the curve $\gamma(t) = f(T_{t\omega}(p))$ is a unit speed geodesic in S^{2n-1} .

Proof. Let d(,) denote the distance function on M_{τ} induced by the Riemannian metric on M_{τ} . Then it follows that

(2.4)
$$d(x, y) \leq \pi$$
 for all $x, y \in M_{\tau}$,

where the equality holds if and only if $i_{\tau}(y) = -i_{\tau}(x)$. Since $|\omega_i| = R_i$, the curve $\gamma(t)$ is a unit speed curve in S^{2n-1} satisfying $\gamma(t+2\pi) = \gamma(t)$. So it is sufficient to show that $\gamma(\pi) = -\gamma(0)$. Since the immersion f is isometric, the assumption f(q) = -f(p) implies that $d(p, q) \ge \pi$. Hence it follows from (2.4) that $i_{\tau}(q) = -i_{\tau}(p)$. Therefore $i_{\tau}(q) = -i_{\tau}(p) = i_{\tau}(T_{\pi\omega}(p))$, and so $q = T_{\pi\omega}(p)$. Hence $\gamma(\pi) = f(T_{\pi\omega}(p)) = f(q) = -f(p) = -\gamma(0)$.

LEMMA 2.3. Let $f: M_t \rightarrow S^{2n-1}$ be an isometric immersion, and let σ be the second fundamental form of the immersion. If $\text{Diam}(f) = \pi$, then $\sigma(X_{\omega}, X_{\omega}) = 0$ for all $\omega \in \Omega$, where X_{ω} denotes the vector field induced by the one parameter group of transformation $T_{t\omega}(t \in \mathbf{R})$.

Proof. Let M_{τ}^{*} be the set of all $p \in M_{\tau}$ such that f(p) = -f(q) for some $q \in M_{\tau}$. Since $X_{\omega}(p) = (d/dt)T_{t\omega}(p)|_{t=0}$, it follows from Lemma 2.2 that $\sigma(X_{\omega}(p), X_{\omega}(p)) = 0$ for $p \in M_{\tau}^{*}$. So it is sufficient to show that $M_{\tau} = M_{\tau}^{*}$. Since $\operatorname{Diam}(f) = \pi$, the set M_{τ}^{*} is not empty. Let $p_0 \in M_{\tau}^{*}$, and let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis of \mathbb{R}^n satisfying $\alpha_i \in \mathcal{Q}$. Now we take a point $q \in M_{\tau}$. Then there exist real numbers x_1, \ldots, x_n such that $q = T_{x_1\alpha_1 + \cdots + x_n\alpha_n}(p_0)$. We consider a sequence of points $p_1, \ldots, p_n \in M_{\tau}$ defined by the relation $p_i = T_{x_i\alpha_i}(p_{i-1})$. Since $p_0 \in M_{\tau}^{*}$ and $\alpha_1 \in \mathcal{Q}$, it follows from Lemma 2.2 that $\gamma(t) = f(T_{t\alpha_1}(p_0))$ is a unit speed geodesic in S^{2n-1} . This shows $p_1 \in M_{\tau}^{*}$. Similarly we see that p_2, \ldots, p_n are contained in M_{τ}^{*} . On the other hand (2.3) implies that $q = T_{x_2\alpha_2 + \cdots + x_n\alpha_n}(p_1) = \cdots = T_{x_n\alpha_n}(p_{n-1}) = p_n$. Hence $q \in M_{\tau}^{*}$, and so $M_{\tau} = M_{\tau}^{*}$.

Now we denote by $\{e_1, \ldots, e_n\}$ the standard basis of \mathbb{R}^n , and define an orthonormal frame field $\{E_1, \ldots, E_n\}$ on M_{τ} by

$$E_i(p) = \frac{d}{dt} T_{te_i}(p) \Big|_{t=0},$$

where $p \in M_{\tau}$. Then

LEMMA 2.4. Let $f: M_{\tau} \rightarrow S^{2n-1}$ be an isometric immersion, and let σ be the second fundamental form of the immersion. If $\text{Diam}(f) = \pi$, then

- (1) $\sigma(E_i, E_j) = 0$ for $i \neq j$,
- (2) $\sum_{i=1}^{n} R_i^2 \sigma(E_i, E_i) = 0$,

158

- (3) $h(\sigma(E_i, E_i), \sigma(E_j, E_j)) = -1 \text{ for } i \neq j,$
- (4) $h(\sigma(E_i, E_i), \sigma(E_i, E_i)) = R_i^{-2} 1,$
- (5) $D(\boldsymbol{\sigma}(E_{\iota}, E_{\iota}))=0,$

where h and D denote the induced metric and the induced connection on the normal bundle of the immersion f, respectively.

Proof. Let $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $|x_1| = 1$ for all $1 \le i \le n$, and let $\omega = (x_1R_1, \ldots, x_nR_n)$. Since $\omega \in \Omega$, it follows from Lemma 2.3 that $\sigma(X_{\omega}, X_{\omega}) = 0$. On the other hand it is easy to see that $X_{\omega} = x_1R_1E_1 + \cdots + x_nR_nE_n$. So we obtain

$$\sum_{i,j=1}^n x_i x_j v_{ij} = 0,$$

where $v_{ij}=R_iR_j\sigma(E_i, E_j)$. Since $v_{ij}=v_{ji}$, it follows from Lemma 2.1 that $v_{ij}=0$ for $i\neq j$, and $v_{11}+\cdots+v_{nn}=0$. This shows the assertions (1) and (2). By the equations of Gauss we have

$$1 - \delta_{ij} = h(\sigma(E_i, E_j), \sigma(E_i, E_j)) - h(\sigma(E_i, E_i), \sigma(E_j, E_j)).$$

So the assertion (3) follows from (1). Combining (2) and (3), we obtain the assertion (4). Since the vector fields E_1, \ldots, E_n are parallel with respect to the Riemannian metric on M_{τ} , it follows from the equations of Codazzi that $D_{E_j}(\sigma(E_i, E_i)) = D_{E_i}(\sigma(E_i, E_j))$. Hence (1) yields

(2.5)
$$D_{E_i}(\sigma(E_i, E_i)) = 0 \quad \text{for} \quad i \neq j.$$

On the other hand, differentiating (2), we obtain

(2.6)
$$\sum_{i=1}^{n} R_{i}^{2} D_{E_{j}}(\sigma(E_{i}, E_{i})) = 0$$

Combining (2.5) and (2.6), we see that $D_{E_j}(\sigma(E_i, E_i))=0$ for all $1 \leq i, j \leq n$. This implies the assertion (5).

LEMMA 2.5. Let f and \tilde{f} be isometric immersions of the flat torus M_{τ} into the unit sphere S^{2n-1} . If $\text{Diam}(f)=\text{Diam}(\tilde{f})=\pi$, then there exists an isometry Aof S^{2n-1} such that $\tilde{f}=A \circ f$.

Proof. Let B (resp. \tilde{B}) denote the normal bundle of the immersion f (resp. \tilde{f}), and let D (resp. \tilde{D}) be the induced connection on the normal bundle B (resp. \tilde{B}). The second fundamental form of f (resp. \tilde{f}) is denoted by σ (resp. $\tilde{\sigma}$), and the induced metric on the bundle B (resp. \tilde{B}) is denoted by h (resp. $\tilde{\sigma}$). We denote by $\Gamma(B)$ and $\Gamma(TM_{\tau})$ the sets of the smooth cross sections of the normal bundle B and the tangent bundle TM_{τ} , respectively. Then, by the fundamental theorem for submanifolds [4, Chapter 7], the assertion of Lemma 2.5 follows from the existence of a bundle isomorphism $\Phi: B \to \tilde{B}$ such that

159

YOSHIHISA KITAGAWA

- (2.7) $h(\xi, \eta) = \tilde{h}(\Phi\xi, \Phi\eta)$ for all $\xi, \eta \in \Gamma(B)$,
- (2.8) $\Phi(\sigma(X, Y)) = \tilde{\sigma}(X, Y) \quad \text{for all } X, Y \in \Gamma(TM_{\tau}),$

(2.9) $\Phi(D_X\xi) = \widetilde{D}_X(\Phi\xi)$ for all $X \in \Gamma(TM_\tau)$ and all $\xi \in \Gamma(B)$.

To establish the existence of such a bundle isomorphism, we set $\xi_i = \sigma(E_i, E_i)$ and $\tilde{\xi}_i = \tilde{\sigma}(E_i, E_i)$. Then it follows from Lemma 2.4 (2)-(5) that

(2.10)
$$\sum_{i=1}^{n} R_{i}^{2} \xi_{i} = 0, \quad \sum_{i=1}^{n} R_{i}^{2} \tilde{\xi}_{i} = 0,$$

(2.11)
$$h(\xi_i, \xi_j) = \tilde{h}(\tilde{\xi}_i, \tilde{\xi}_j) = R_i^{-1} R_j^{-1} \delta_{ij} - 1,$$

$$(2.12) D_X \xi_i = 0, \widetilde{D}_X \widetilde{\xi}_i = 0.$$

For each $p \in M_{\tau}$, we denote by $B_p(\text{resp. } \tilde{B}_p)$ the fiber of $B(\text{resp. } \tilde{B})$ over the piont p. Then (2.11) implies that $\{\xi_1(p), \ldots, \xi_{n-1}(p)\}$ and $\{\tilde{\xi}_1(p), \ldots, \tilde{\xi}_{n-1}(p)\}\)$ are basis of B_p and \tilde{B}_p , respectively. So there exists a bundle isomorphism $\Phi: B \to \tilde{B}$ such that $\Phi(\xi_i) = \tilde{\xi}_i$ for $1 \leq i \leq n-1$. Since (2.10) yields $\Phi(\xi_n) = \tilde{\xi}_n$, it follows from Lemma 2.4 (1) that

(2.13)
$$\Phi(\sigma(E_i, E_j)) = \tilde{\sigma}(E_i, E_j).$$

By (2.11)-(2.13) we see that the bundle isomorphism Φ satisfies (2.7)-(2.9).

Now the assertion of Theorem 1.3 follows from Lemma 2.5, since the inclusion map $i_{\tau}: M_{\tau} \rightarrow S^{2n-1}$ satisfies $\text{Diam}(i_{\tau}) = \pi$.

References

- [1] K. ENOMOTO, Y. KITAGAWA AND J.L. WEINER, A rigidity theorem for the Clifford tori in S³, Proc. Amer. Math. Soc., 124 (1996), 265-268.
- $\begin{bmatrix} 2 \end{bmatrix}$ Y. KITAGAWA, Rigidity of the Clifford tori in S³, Math. Z., 198 (1988), 591-599.
- [3] Y. KITAGAWA, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
- [4] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Vol. 4, Publish or Perish, Berkeley, 1977.

DEPARTMENT OF MATHEMATICS UTSUNOMIYA UNIVERSITY MINE-MACHI, UTSUNOMIYA 321 JAPAN E-mail: kitagawa@cc.utsunomiya-u.ac.jp

160