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AN ^-DIMENSIONAL FLAT TORUS IN S2n-1

WHOSE EXTRINSIC DIAMETER IS EQUAL TO π
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1. Introduction

Let S3 be the 3-dimensional standard unit sphere in the complex Euclidean
space C2. For each θ satisfying O<0<;r/2, we consider a torus MθaS* defined
by

MΘ={(ZUZ2)<ΞC2: \z1\=cosθf | z β | =

The torus Mθ is a flat Riemannian manifold equipped with the metric induced
by the inclusion map iθ: MΘ-*SZ. In [2] the author studied the question whe-
ther the flat torus MΘC.S* is rigid or not, and he proved that every isometric
deformation of ie: MΘ-*S3 is trivial. Recently, concerning the question above,
Enomoto, Weiner and the author proved the following rigidity theorem.

THEOREM 1.1 ([1]). // / : M# —»S3 is an isometric embedding, then there
exists an isometry A of S3 such that f—Aήθ.

There are two key ingredients in the proof of this theorem. One is the
fact that every embedded flat torus in S3 is invariant under the antipodal map
of S3 ([3]), and the other is the following:

THEOREM 1.2 ([1]). Let f: Me —• S3 be an isometric immersion. If the
diameter of the image f{M$) is equal to π, then there exists an isometry A of Ss

such that f—Aoiθ.

In this note we establish a higher dimensional generalization of Theorem
1.2. For n>2, let τ=(Rlt ..., Rn) be an n-tuple of positive real numbers such
that Σn=i#?—1, and let Mτ be an n-dimensional torus in the (2n —l)-dimensional
standard unit sphere S^^cC" defined by

Mτ={(zlt ...,zn)ξΞCn\ \zt\=Rt for l^t^n].

Then Mτ is a flat Riemannian manifold equipped with the metric induced by
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the inclusion map iτ: Mτ-^S2n~1. For each isometric immersion / : Mτ—>S2n~1,
we denote by Diam(/) the diameter of the image f(Mτ) in S2n~ι. Note that
the inclusion map iτ satisfies Diam(*t)=7r. The following theorem, which will
be proved in Section 2, is the main result of this note.

THEOREM 1.3. Let f: Mτ->S2n~ι bean isometric immersion. //Diam(/)=τr,
then there exists an isometry A of S2n~ι such that f—Aήτ.

Remark. Because of Theorem 1.3, it is interesting to ask the following
question: Does there exist an isometric immersion f: Mτ—>S2n~1 with Diam(/)<
π? However, the author does not know the answer to the question even for
n=2.

2. Proof of Theorem 1.3

We first prove the following algebraic lemma.

LEMMA 2.1. Let v and vi:f(l<i, j<n) be elements of a real vector space V.
Suppose that ΣZj=iχιχJvtJ=v for all (xu ..., xn)^Rn with \xt\ =1 (l<i£n).
Then Vij+Vji=0 for all i<j, and Σt=ιVu=v.

Proof. We prove the lemma by induction on n. For n = l, the assertion
of the lemma is trivial. Choose (xu ... f Xn-^^R71'1 such that | x t | = l for all
l<ίi<Ln—1. Then Σίt,j=ιχιχJvιj=v f° r χn=±l> This shows

ι,j<n ι<n

Hence

(2.1) Σ XιXjVtj=v—vnn,

(2.2) Σixt(vin+vnt)=O.
ι<n

By (2.1) and the induction hypothesis it follows that vlj+vji=0 for all i<j<n
and that ^Σιΐ=ιVu—v—vnn. On the other hand (2.2) implies that vtn+vni=0 for
i<n. Hence we obtain the assertion of the lemma. •

For each u={uu ... y un)<^Rn, we consider a transformation Tu: Mτ->Mτ

given by

where p=(zu ..., z n )eM τ . Note that

(2.3) Tu+v=Tu°Tυ for all u,

Now we denote by Ω the set of all ω=(ωu ..., ωn)^Rn such that | ω < | = i ? ι for
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all l ^ i ^ n . Then

LEMMA 2.2. Let f: Mτ—>S2n~1 be an isometric immersion, and let
If there exists a point q<=Mτ such that f(q)=—f(p), then for each ω<=Ω the
curve γ(t)=f(Ttω(P)) is a unit speed geodesic in S271'1.

Proof. Let d(, ) denote the distance function on Mz induced by the Rie-
mannian metric on M t. Then it follows that

(2.4) d(x, y)<π for all x, y<=Mΐf

where the equality holds if and only if iτ(y)=— iτ{x). Since |α)<|=i? t, the curve
γ(t) is a unit speed curve in S271"1 satisfying γ(t+2π)=γ(f). So it is sufficient
to show that γ(π)=—γ(0). Since the immersion / is isometric, the assumption
f(q)=—f(p) implies that d(p, q)^π. Hence it follows from (2.4) that iτ(q)=
-iτ(p). Therefore iτ(q)=-iτ(p)=iτ(Tπω(P)), and so q=Tπω(p). Hence r(π)=

D

LEMMA 2.3. Let f: Mτ~^S2n~ί be an isometric immersion, and let a be the
second fundamental form of the immersion. If Diam(/)=τr, then σ(Xω, X J ^ O
for all ω^Ω, where Xω denotes the vector field induced by the one parameter
group of transformation Ttω(t^R).

Proof. Let Mf be the set of all p^Mτ such that f(p)=z—f(q) for some
q(=Mτ. Since Xω(p)=(d/dt)Ttω(p)\t=of it follows from Lemma 2.2 that σ(Xω(p),
^«(ί))=0 for pί=M*. So it is sufficient to show that Mτ=M*. Since DiamQO
= π, the set Mf is not empty. Let pQ^Mf, and let {au ..., an) be a basis of
Rn satisfying at^Ω. Now we take a point q<=Mτ. Then there exist real
numbers xu ... f xn such that g—TXiai+...+Xnan(p0). We consider a sequence of
points pu ..., pn(=Mτ defined by the relation pi=

zTXiai(pi.ί). Since po(=M*
and ffiGfl, it follows from Lemma 2.2 that γ(t)=f(Tta~(po)) is a unit speed
geodesic in S271'1. This shows p^Mf. Similarly we see that p2, ..., pn are
contained in Mf. On the other hand (2.3) implies that q=TX2a2+...+Xnan(p1)= ~
= TXnan(pn-1)—pn. Hence q^M*, and so Mτ=M*. •

Now we denote by {elf ..., en) the standard basis of Rn, and define an
orthonormal frame field {Eu ..., En) on Mτ by

where p^Mτ. Then

LEMMA 2.4. Let f: Mτ-^S2n~ι be an isometric immersion, and let σ be the
second fundamental form of the immersion. If Diam(/)=π, then

(1) σ(Et, Ej)=0 for iΦj,
(2) ^URΪσ(Eu £0=0,
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(3) h(σ(Elf E%), σ{EJf £ , ) ) = - 1 for iΦj,
(4) h(σ{Eιy E%\ σ(Et, Et))=R~2-l,
(5) D(σ(Et,Et))=0,

where h and D denote the induced metric and the induced connection on the normal
bundle of the immersion f, respectively.

Proof. Let (xu ..., * n ) e Λ n such that | * t | = l for all l<i^nf and let ω =
u ..., xnRn)- Since ωGfl, it follows from Lemma 2.3 that σCXα,, Xω)=0.

On the other hand it is easy to see that Xω=x1R1E1-\ \-xnRnEn. So we
obtain

Σ χ%XjVtj=0,
l . J = l

where vίj^=RiRjσ(Eι, Ej). Since Vij—vjiy it follows from Lemma 2.1 that v ^ =
0 for iΦj, and VnH hf n r ι =0. This shows the assertions (1) and (2). By the
equations of Gauss we have

l-δίj=h(σ(Elf Ej), σ(Et, Ej))-h(σ(Elf Ex\ σ(E3, E,)).

So the assertion (3) follows from (1). Combining (2) and (3), we obtain the
assertion (4). Since the vector fields Eu ..., En are parallel with respect to
the Riemannian metric on Mτy it follows from the equations of Codazzi that
DEj(σ(Eτ, Eι))=DE.(σ(Eι, Ej)). Hence (1) yields

(2.5) DEj(σ(Elf Et))=0 for iΦj.

On the other hand, differentiating (2), we obtain

(2.6) 1^.(^,^=0.

Combining (2.5) and (2.6), we see that DEj(σ(Elf Et))=0 for all l ^ i , j^n. This
implies the assertion (5). •

LEMMA 2.5. Let f and f be isometric immersions of the flat torus Mτ into
the unit sphere S271"1. // Diam(/)=Diam(/)=π, then there exists an isometry A
of S271-1 such that f=A°f.

Proof. Let B (resp. B) denote the normal bundle of the immersion / (resp.
/ ) , and let D (resp. D) be the induced connection on the normal bundle B (resp.
B). The second fundamental form of / (resp. /) is denoted by σ (resp. σ), and
the induced metric on the bundle B (resp. B) is denoted by h (resp. h). We
denote by Γ(B) and Γ(TMτ) the sets of the smooth cross sections of the normal
bundle B and the tangent bundle TMt, respectively. Then, by the fundamental
theorem for submanifolds [4, Chapter 7], the assertion of Lemma 2.5 follows
from the existence of a bundle isomorphism Φ : B->B such that



160 YOSHIHISA KITAGAWA

(2.7) A(f, η)=h{Φξ, Φη) for all ξ, η^Γ(B),

(2.8) Φ(σ(X,Y))=σ(X,Y) for all XyY^Γ{TMτ)y

(2.9) Φ(Dxξ)=Dx(Φξ) for all X^Γ(TMτ) and all ξ<=Γ(B).

To establish the existence of such a bundle isomorphism, we set ξi=σ(Elf Et)
and ξi=σ(Et, Et). Then it follows from Lemma 2.4 (2)-(5) that

(2.10) Σ/?ϊ£f=0, Σ/?&=(>,
t = l 1 = 1

(2.11) λ(&, &)=kL I^R^RJdtj-l,

(2.12) 0*&=O, Dxξi=0.

For each p^Mτ, we denote by 5 p(resρ. Z?p) the fiber of £(resρ. B) over the
piont p. Then (2.11) implies that {&(/>), ..., fn-i(/>)} and {^(ί), ..., L-i(P))} are
basis of 5 P and Bp, respectively. So there exists a bundle isomorphism Φ:
B-+B such that Φ(ζ%)=ξt for 1^/^w-l. Since (2.10) yields Φ(ξn)=L, it follows
from Lemma 2.4 (1) that

(2.13) Φ(<7(£\, Ej))=σ(Elf E,).

By (2.11)-(2.13) we see that the bundle isomorphism Φ satisfies (2.7)-(2.9). •

Now the assertion of Theorem 1.3 follows from Lemma 2.5, since the in-
clusion map iτ\ Mτ-*S2n~ι satisfies Diam(zτ)=τr.
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