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ASYMPTOTIC PROPERTIES OF SOLUTIONS OF
A CLASS OF IMPULSIVE DIFFERENTIAL EQUATIONS OF

SECOND ORDER WITH A RETARDED ARGUMENT

D. D. BAINOV, M. B. DIMITROVA AND A. B. DISHLIEV

Abstract

Some asymptotic properties are studied for the solutions of a class of
impulsive differential equations of second order with retarded argument and
fixed moments of impulse effect. Sufficient conditions are found for oscillation
of all bounded solutions.

1. Introduction

The impulsive differential equations are adequate mathematical models of
various processes and phenomena studied in physics, chemical technology,
population dynamics, technics and economics. That is why, in the recent years
they are an object of intensive investigation. Here we mention the monographs
[1] and [2], where numerous properties are studied for the solutions of the
impulsive differential equations.

The oscillatory theory of the impulsive differential equations is not yet
elaborated in contrast to the oscillation theory of ordinary differential equations
with deviating argument [4], [5], [6]. The first paper in this area is [3].
Therein sufficient conditions are found for oscillation of all solutions of linear
impulsive differential equations of first order with retarded argument and fixed
moments of impulse effect. Moreover, conditions on existence of at least one
nonoscillatory solution are obtained.

In the present work we study some asymptotic properties of the solutions
of a class of impulsive differential equations of second order with retarded
argument and fixed moments of impulse effect. Sufficient conditions are found
for oscillation of all bounded solutions of the equation under consideration.
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2. Preliminary notes

We consider the impulsive differential equation with retarded argument

<r(t)y'(t))'-f(t, y(f), y(f-h))=O, tΦτk,

A(r(τk)y'(τk))=gk(y(τk), y(τk-h)), Ay(τk)=0.

Here A(r(τk)y'(τk))=r(τk+O)y'(τk+O)-r(τk-O)y'(τk-O).
We suppose that y(τk+0)=y(τk-0)=y(τk); y'(τk-0)=y'(τk); r(τk-0)=r(τk);

h is a positive constant, τu τ2, ... are the moments of impulse effect.
We set the next initial conditions for the solutions of (1):

y(t)=φ(f), f e = [ - λ , 0 ] ,
(2)

where p e C ( [ - A , 0], R).
We denote by PC(R+f R) the set of all functions u:R+-*R, (J2+=[0, + «>)),

which are continuous for t<=R+, tΦτk, k<=N, continuous from the left for t<=R+

and having discontinuity of the first kind at the points τk(=R+, k^N.
We denote by PC(R+, R) the set of all functions u:R+-^R, for which

(du/dt)<=ΞPC(R+, R).

We introduce the following conditions:

HI. f<=C(R+xR2, R)} the function f(t, u, v) is nondecreasing with respect
to u and v for each fixed ί^O, and there exists a constant T > 0 such that
uf(t, u, v)>0 for uv>0 and t^T.

H2. gk<=C(R2, R), k<=N, gk(u, v) are nondecreasing functions with respect
to u and v, ugk{u, v)>0 for those k for which τk^T and uv>0,

H3. r^PC{R+, R+), r(r*+0)>0 for r*e/2 + =(0, +oo).
H4.

DEFINITION 1. Solution of the equation (1) with initial conditions (2) will
be called any function y: [—h, oo)-+R for which the following conditions are
fulfilled:

1. If -h^t£O, then y(t)=φ(t).
2. If 0<ί^Γi, then the solution y coincides with the solution of the problem

(1), (2) without impulse effect.
3. If τk<t^τk+i, k^N, the solution of the problem (1), (2) coincides with

the solution of the integro-differential equation

/(s, y(s), y(s-h))ds
k

=r(τΛ)y'(τk)+gk(y(τh), y{τk-h))+\ /(s, y(s), y(s-h))ds

with initial conditions (2).
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DEFINITION 2. The solution y of the problem (1) is said to be oscillatory if
for each # > 0 we have

{t:y(t)>0, t>a}ΦQ, {t:y(t)<0,

Otherwise, the solution y is called nonoscillatory.

Let S denote the set of all solutions of the equation (1). We introduce the
following sets:

: lim y(t)=^ + °°, lim r(t)y'(t)=+ oo\,
t-*+oo ί-+oo J

: lim KO^-oo, lim r(t)y'(t)=-oo\,

: 0< lim 3>(0< + °°, lim r(t)y'(t)=θ\,
ί-+0O J - + 0O J

: - O O < lim y(f)<Q, lim r(ί)y/(O

: lim y(t)=O, Urn r(f)y'(t)=θ\,

: ^(ί) is oscillatory solutions.

3. Main results

THEOREM 1. Let the following conditions be fulfilled:

1. Conditions H1-H4 are met.

3. ( | / ( s , ci?(s), cΛ(s-A))l</s+ Σ \gk(cR(u),

where R(f)=Λ —ττ~ for some nonzero constant c.
Jo r(u)

Then

Proof. Let y^S\S~". The following two cases are possible:
Case 1. 3>(ί)>0 for t^t^T. Then, it follows from conditions HI and H2

that there exists a point U^h such that Δ(r(τ*)/(τ*))>0 and (r(t)y'(t))'>0 for
t, Tk^t2. Therefore, there exists a point tz^t2 such that r(t)y'(t) has a constant
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sign for t^tz.
Let r(f)y'{t)^c>§ for t^t3. We shall prove that
Since y'{t)~^c/r(t), t^tZy it follows

The last inequality and condition 2 yield \imt->+<*,y(t)= + co and

y(t)

Let us choose ί4 (f4^f3) such that i?(f4)^27?(ί3). Then, it follows from (3)
for t^ti that

R(t)=s2"Ul9

i.e.,

yit^CxRQ;) and yit—h^c^it—h) for ΐ£U=U+h.

Now, integrating (1) from tδ to t and taking into account the monotonicity
of the functions / and gk (k^N) we arrive at the inequality

f(s, ClR(s), d/?(s-

+ Σ

It follows from the above inequality as ί-*+°°, and from condition 3 that

Let r(<)/(ί)<0, t^U. We shall prove that
Since y(t)>0, y'(t)<0, r(t)y'(t)<§ and r(t)y'(t) is an increasing function for

t^U, then there exist the finite limits

lim y(f)=y(+oo)^0 and \imr(t)y'(t)=L<0.
C-»+oo t-*+oo

Let us suppose lim^+oor(0^/(ί)=:L<0. Then r{t)y'{t)<L for t^U. There-
fore,

( 4 )

It follows from (4) after passing to limit as ί->+co that lim^+oo y(t)= — oo,
which contradicts the assumption that 3; is a positive solution. Therefore,
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(5) limr(0/(0=0.
e-+oo

It follows from (5) that either lim^+ 0 :y(0=0, orlim t^+ β M 0 = * ( 0 < £ < + °o),
i.e., y<ZΞS°\jSk.

Case 2. In the case when y is a negative solution of the equation (1), the
proof is analogous to this in case 1. D

THEOREM 2. Let the following conditions be fulfilled:

1. Conditions H1-H4 are met.

2. f°°-^-=4-oo and rf(t)^O for
J r{s)

3. There exist function p(t) and sequence {j8*}Ŝ i such that p<^PC(R+, R+)
and βk^0, k<=N.

4. The inequalities vf(t, u, v)^v2p(t) and vgk(u, v)^v2βk for uv>0, k<=N
are fulfilled.

5. l imsup-UT (u-t+h)p(u)du+ Σ (τk-t+h)βk]>L
ί-+oo r(t) Ut-h t-h^τk<t ι J

Then each bounded solution of the equation (1) is oscillatory.

Proof. Let y(t) be a nonoscillatory bounded solution of the equation (1).
Without loss of generality we may suppose that ^(0>0 for t^ti^O and y(t)^M,
M=const>0. It is clear, that ^(ί—Λ)>0 for t^t2=tλ+h.

It follows from conditions HI, H2 and from (1) that ( r (0/(0y>0 and
Δ(r(τk)y'(τk))>ΰ for t, τk>t2, i.e., r(t)y'(t) is an increasing function for t^t2.

The next cases are possible:
Case 1. r(t)y'(t)>c>Q for t^>t2. Analogously to the proof of Theorem 1

we obtain the equality limί^+oo^(0= + oo> which contradicts the boundedness of
the solution y.

Case 2. r(0:y'(0^0, fΞzt2. Therefore, y(t) is nonincreasing function for
t^t2. Then, in view of condition 4 for t>t3=t2+h we arrive at

(r(t)y'(t))'^p(t)y(t-h), tΦτk,
(6)

Integrating (6) from s to ί (f^s<t)y we obtain

p(u)y{u-h)du.
s

We integrate again the above inequality from t—h to t and arrive at the
inequality
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(7) O^Γ r(s)y(s)ds+\t \[tp(u)y(u-h)du+ Σ βky(τk-h)\d^
Jt-h Jt-hUs s^rκί J

Changing the order of integration in (7) implies

(8) (feΓ r(s)y/(s)ds + [ (u-t+h)p(u)y(u-h)du
Jt-h Jt-h

+ Σ (τk-t+h)βky{τk-h).
t-h£τk<t

Now, from the fact that r(t) is nondecreasing function in R+ and y(t) is
nonincreasing function for t^t2, as well as from (8) it follows the inequality

+y(t-h)\\t {u-t+h)p(u)du+ Σ {τk-t+h)βk~\
LJt-h ί-/ι<rΛ<t J

which means

3>(f-A)ΓΓ (u-t+h)p(u)du+ Σ (τk-t+h)βk]
LJt-h t-h^τk<t Γ J

i.e.,

~W\l (u-t+h)p(u)du+ Σ (τk
r(t) LJt-h t-hύτk<t

The last inequality contradicts condition 5 of Theorem 2.
If — M^3>(i0<0 for fϊ^i^O, analogous arguments as above lead to a con-

tradiction with condition 5 of Theorem 2. •

Let us consider now the following equation which is a particular variant of
the equation (1):

y"(t)-a(f)y(t)-b(t)y(t-h)=09 tΦτk9

(9)
Ay'{τk)=ak{τk)y{τk)+bk{τk)y(τk-h),

We introduce the next condition:

H5. a, b, ak, bk€ΞC(R+, R+), ktΞN.

COROLLARY 1. Let the following conditions be fulfilled:

1. Conditions H4 and H5 are fulfilled.

2. lim supΓΓ (u-t+h)b(u)du+ Σ (τk—t+h)bk(τk)\>l.
t-*+oo \_Jt-h t-h^τk<t J

Then each bounded solution of the equation (9) is oscillatory.
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Proof. In this case,

/(*, y<f), y(t-h))=a(t)y(t)+b(t)y(t-h)

gk(y(τk), y(τk-h))=ak(τk)y(τk)+bk(τk)y(τk-h)

A straightforward verification shows that conditions HI, H2, as well as

conditions 2, 3 and 4 of Theorem 2 are fulfilled. Therefore, in view of Theo-

rem 2 each bounded solution of the equation (9) is oscillatory. D
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