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EQUIVARIANT CATEGORY OF THE FREE PART OF
A G-MANIFOLD AND OF THE SPHERE OF

SPHERICAL HARMONICS

WACLAW MARZANTOWICZ*

Abstract
In this work we study the G-category of a G-manifold M by taking in

consideration the fixed point set of a maximal torus of a compact Lie group
G. The used method let us compute the G-category of sphere of every real
irreducible, odd indexed representation Vt of the group G=SO(3). An appli-
cation to a nonlinear Dirichlet problem, one of several possible, is given.
Simplifying a proof of estimate of the G-category of the free part of a sphere
we also show that the complement of saturation of fixed point set of a
maximal torus is an open invariant subset of larger G-category than the free
part of action and give particular computation for the spherical harmonics.

0. Introduction

In study variational methods with symmetries it is very useful to apply
invariant of mini-max type as genus of a G-space, G-category, or cohomological
index of a G-space (see [Bar2] for a revue of recent results). In view of
applications the most important is to know a value of such an invariant for the
unit sphere of an orthogonal representation of a given compact Lie group G. It
was first observed that if G is the torus T=Tk, or £-torus Z%, p prime, then
for every orthogonal representation V without fixed point of G on the sphere
S(V) a value of such an invariant for the sphere is equal to the complex
dimension (or real dimension) of V (cf. [Fa], [C-P], [Mai] and [Bar2] for other
references). The situation changed drastically if the connected component Go of
G is nonabelian (cf. [Barl]). Using a method of classification of compact Lie
groups with the Borsuk-Ulam property developed himself, T. Bartsch gave a
condition on representation Wo of G=SO(3) (and an example) that for every
other representation U of SO(3), UG=0, we have

and consequently does not depend monotonic on the dimension ([Bar2]). On the
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other hand real irreducible representations of G=S0(3) are the spaces Vu

/—1, 2, ..., of spherical harmonics of order /. The dimension of Vt is equal to
2/+1 ([CLM]), thus tends to infinity if /-* oo. It is worth of emphasize that the
spaces Vt appear naturally as the defect spaces (kernels of the linearization) in
nonlinear problems with S0(3)-symmetry, since they are the eigenspaces of
Laplacian on the unit ball in R\

The main purpose of this work (Theorem 2.3) is to show that for G —
SO(3) and any odd /

sΓil+i.
where [x] denote the integer part of a real number x.

We begin with a generalization and improvement results of a recent paper
of Balanov and Brodsky [Ba-Br] on the genus of free part of action on
G-spheres. They extended the classical theorems of Krasnosielski [Kr] and A.
Svartz for the finite cyclic group onto the case of arbitrary compact Lie. We
show that instead of an invariant subset A of the G -sphere 5 such that the
action on S\A is free we can take a G-subset A of G-manifold M such there
exists a subgroup KdG which acts freely on M\A (Theorem 1.1). Also we
get rid of the condition on smoothness of A used in [Ba-Br] replacing it by a
condition on the dimension of A as in the original Svartz formulation. An
estimate of the G-category of M\A holds provided vanishing the cohomology
groups H\M\Z) in gradation greater than the codimension of A, which is
satisfied if M=S is the sphere (Proposition 1.2, Corollary 1.3). Our proof is
much shorter. Next we restate an estimate of [Ma2] on the G-category of a
G-space for which Xτ—^, T a maximal torus of G. We remark that our formula
gives sharper estimate than that one of [Bar-C] (Corollary 1.8, Remark 1.9).
This leads to an observation that to pick up an open invariant subset HJ of
sphere S of a large G-category it is more convenient to take the set HJ—
S\S(T) instead of HJ^Sω, as was taken in [Ba-Br]. Particular computations
are done for the irreducible representations, i.e. spherical harmonics, of the group
G=SO(n) to compare with those of [Ba-Br] (Theorem 2.2). Using opportunity
the author would like to thank to Z. Balanov for pointing out his attention on
this problem and many interesting talks.

We observe that for a compact Lie group G of rank 1 if the ST=S° is the
zero-dimensional sphere, and SN( T)=9, N(T) is the normalizer of T, then
catβS^(m+l)/(l-frf(5)), where m is the dimension of 5 and d(S) is the maximal
dimension of orbits on S (Theorem 1.10) (Note that in general catG(S\S(Γ)) gives
no impact on the G-category of the whole sphere.) This theorem let us estimate
the G-category of S(Vi), the sphere of irreducible representations (i.e. spherical
harmonics) of the group G=SO(3) if / is odd, because then the above assumption
is satisfied (Theorem 2.3). Furthermore, as it was showed by Bartsch that the
equivariant genus of every compact S0(3)-ANR is bounded from above by 52.
Comparing it with the statement of Theorem 2.3 we show that for every odd



94 WACfcAW MARZANTOWICZ

/>103 the equivariant category of S(VΊ) is strictly greater than its equivariant
genus (Corollary 2.4).

Finally we apply our main theorem to establish a multiplicity of solutions
of a nonlinear Dirichlet problem

Au=μf(u), AιdDs=0

with a real parameter μ, which bifurcate from an eigenvalue of the Laplacian
Δ on the unit ball D\Q, 1) in Rz (Proposition 2.8).

1. Estimation of the G-category

We shall use the standard notation of group transformation theory (cf. [Bre],
[tD]). Let G be a compact Lie group and M a closed oriented manifold of
dimension m. By (H) we denote an orbit type of the closed subgroup H(ZG.
For a closed subgroup HaG by d(H) we denote the dimension of H. By a
dimension of a subset AdM of M we mean the cohomological dimension of A.
We begin with the following theorem.

1.1 THEOREM. Let a compact Lie group G act on a smooth closed oriented
manifold M of dimension m and AdM be a closed invariant subset of M such that
M\AdM(H) for an orbit type (//). Assume then there exists a subgroup KdG
such that K acts freely on G/H.

Suppose that dim,4^&, k£m-3, and Hk+\M; Z)= ••• =Hm'\M; Z)=0.
Then

γγj h

Proof. From the long exact sequence of the pair (M, A) with integer
coefficients ->Hk-\M, A)-^Hk-\M)-*Hk-\A)-»H\M, A)-+Hk(M)-+H\A)-»
Hk+\M, A)^Hk+1(M)->Hk+\A)-»Hk+\M, A)-*Hk+\M)-^Hk+\A)-+ ••• it fol-
lows that H\M, A)=0 for i^k+2 if H\M)=0 for i^k+2. Consequently, by
the Lefschetz-Poincare duality, we have Hq(M\A)=Hm-q(M, A)=0 for every
l^q^(m — k)—2. This shows that M\A is (m-£)-2-acyclic over Z. The last
and the assumption on the existence of a subgroup KczG as imposed above
show that the assumptions of Theorem 3.2 of [Ma2] are fulfilled, because on
M\A is only one orbit type (G/H). Consequently we have

where [r] denote the integer part of a real number r. The statement follows
from the following inequality

w LTT^Jϊ^
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where / is nonnegative integer, and α^O, is a real number. •

Now we show that the result of Balanov and Brodsky [Ba-Br] can be
deduced from Theorem 1.1. It is enough to use the following well known fact.

1.2 PROPOSITION. Let A—f(N)dM be a image of n-dimensional manifold
N, m>n, throughout a Cι-map /:iV—>M. Then dim^4^n.

Proof. Since n<m, every point xeΛΓis critical i.e. N=C the set of critical
points. It is not difficult to show that locally (in local coordinates ΊJ) the
(n+O-dimensional, z^l , Lebesque measure μ(f(cυr\C))—^ ([Mi] 3., or [St]
Chapter II 3). This shows that hn+i(f(cU))=0 for the (n+O-dimensional Hausdorff
measure. Since N is covered by countable number of such local coordinates,
hn+i(f(N))=Q. This means that Hausdorff dimension of f(N) is less or equal
to n. Consequently the covering dimension of A=f(N) is less or equal to n
(cf. [Hu-W] Theorem VII 3) which gives the same inequality for the cohomo-
logical dimension of A ([Hu-W] Theorem VIII 4). D

Applying the above Proposition we get the following version of main
theorem of [Ba-Br].

1.3 COROLLARY. Let G be a compact Lie group of dimension d(G) acting
on the sphere Sm. Let A be a closed G-invariant subset of Sm such that the
G-space Sm\A is free. Suppose, further that A is an image of an n-dimensional
smooth compact manifold under a smooth map with n<m (if A is empty then it
is thought as the image of the (—l)-dimensional manifold under the empty map).
Then

1.4 Remark. Note that Balanov and Brodsky showed the above inequality
for the genus of a G-space which is less or equal to the G-category. To get
that one should modify the proof of Theorem 3.2 of [Ma2] which we applied
in our argument. On the other hand we get rid of the assumption on smooth-
ness of action used by them (we assume only that M is a manifold to have the
Alexander-Lefschetz-Spanier duality). If the action is smooth it is natural to
take the principal orbit type as (H).

We have just proved that the set S(H) consisting of principal orbit type (H)
has G-category which growth depends on the dimension of Sun. In general it
is difficult to compute άimM(H)=άimM(H:> even for a manifold being the sphere
S. Now we show that taking out from a manifold M the saturated fixed point
set M(T) of the maximal torus T c G one get an open invariant subset M\M(T)

of G-category not less that a constant depending on dimM, dimG, dimT,
provided that M has the cohomology property as in Theorem 1.1. A proof of
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this fact is based on an lower estimate of G-category of a G-space without
fixed point of maximal torus given the author ([Ma2] and similar to that one
given by Bartsch and Clapp [Bar-C].

For a subgroup HdG by rk(H) we denote the rank of H i.e. the dimension
of a maximal subtorus TdH of H. By δ(G) we denote the number d(G)—rk(G).
For a given G-set X, by

d(X)=max{d(G)-d(Gx)}=d(G)-min{d(Gx)}.

Note that if G acts smoothly on a G-manifold Mthen d(M)=d(G)—d(H), where
(H) is the principal orbit type on M.

1.5 PROPOSITION. Let G be a compact Lie group acting smoothly on a
manifold M of dimension m and TdG be the maximal torus of G. Then

Proof. Note that dimM ( Γ ) = dimM ( Γ). (cf. [Bre] IV, Lemma 3.5). Since
M(D is a fiber bundle with fiber G/T base Mm/G and structure group N(T)/T
([Bre] IV, Theorem 3.3), we have dimM ( Γ ) =dimM ( Γ ) /G + ίί(G)-ύ!(7). On the
other hand Mm/G is homeomorphic to M\T)/N(T) (cf. [Bre] II, Corollary 5.10),
because there is only one orbit type on Mm. Since the Weyl group of maximal
torus W(T) = N(T)/T is finite, we have dim(M(τ))

τ/NT) = άim(Mm)τ/W(T) =
dim(M ( Γ ))Γ—dimMΓ. Combining the above we get

which completes the proof. •

Note that d(T)=rkG by the definition. For a given action of G on M we
set ί : = d i m M Γ for the maximal torus TdG.

1.6 THEOREM. Suppose that a compact Lie group G acts smoothly on a
smooth closed oriented manifold M of dimension m with the principal orbit type
(H). Assume that t+δ(G)<m-3 and Ht+δ^+2(M; Z)= ••• =Hm-\M; Z)=0.
Then

m-t-δ(G)
l+d(G)-d(H) '

Proof. From Proposition 1.5 it follows that dim M^<t+δ(G). The as-
sumption on the cohomology of M. It is sufficient to show that M\M{T) is
m—t—δ(G)~2-acyclic. The statement follows from Proposition 3.7 of [Ma2] and
inequality (*), since there is only a finite number of distinct orbit types on M.
(The last and {M\M{T))T=® yield the existence a subgroup ZpdTdG such
that the action of Zp on M\M(T) is free.) •
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1.7 COROLLARY. Let G be a compact Lie group of dimension d(G) acting
smoothly on the sphere Sm with the principal orbit type (//). Let ί = d i m S Γ for
a maximal torus TdG, and t+δ(G)<m-3. Then

l+d(G)+d(H) *

In particular, if there exists a point x e S m such that d(Gx)=0 (or (H)—e i.e. the
free part is not empty) then

•

1.8 COROLLARY. Suppose that Sm is as in Corollary 1.7 and dim(Sm)Γ=0.
Then

where (H) is the principal orbit type. •

1.9 Remark. It is worth of pointing out the estimate of corollary is better
that similar one of [C-P] and [Bar-C] (see [Bar2] Corollary 2.21). Indeed for
G = SO(3) let Vt be the l-th irreducible representation of G, />2. Then dim V\
= 1, and the principal orbit type is equal to e (see [Bar2], [CLM]). Corollary
2.21 of [Bar2] gives the following estimate

dim((VT)J.) 2/
= = ' / 3

On the other hand, in this case Corollary 1.8 gives

1.10 THEOREM. Let S be a manifold being cohomology sphere over Z of
dimension m on which acts smoothly a compact Lie group G of rank 1. Suppose
that d imS Γ =0 for a maximal torus TdG and SN(T)=Q for the normalizer N(T)
of T in G. Then

ra+1

Proof. Note that there are only three compact connected Lie groups of
rank 1, namely S\ S3 and 50(3) (cf. [Bre]).

From the Smith theory (or Borel localization theorem) (cf. [Bre] or [H]) it
follows that m is even and ST^S° as a submanifold consists of two points sx

and s2. Since SN(T>=0, W(T)=N(T)/T acts transitively on S°, and consequently
there is only one orbit of the action N(T) equal to SiUs2 and isomorphic to
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N(T)/T=W(T) as a N(T)-set. This shows that W(T) is equal to Z2, and N{T)
is an extension of the torus T by Z2.

Moreover, since T=S1aG acts on S\ST without fixed point and there is
only a finite number of orbit types of action T on S, we can find a subgroup
K^ZpdS^T, ί-prime, such that SK=ST^S°, i.e. the action of K is free
outside 5°.

Let g(ΞN(T)\T be an element of N(T) such that gsλ=s2. By the choice
^ 2 G T . By the definition the ordering [g']i-*g~\)g is the homomorphism from
W(T) into AutCS^sGLU, Z ) s {1, -1}. Consequently or g-\t)g=t, either
g-\t)g=-t for every ί ε T .

In the first case g commutes with T and the extension TcN(T)->W(T) is
trivial (the product). If g~K)g=—lά, or equivalently g~1tg=t~1 for every ifeT,
then the extension TaN(T)-*W(T) is nontrivial. Substituting i=g2, we get
g 4 =l, consequently or g 2 = l either g2=—l<=T. In second case g=g(—l) is an
element of N(T)\T of order 2. For simplicity we denote it also by g. The
above shows that the chosen element g acts in the same way on K=ZP,
consequently a group H generated by a generator h^H and g is isomorphic or
to the cyclic group Z2p either to the dihedral group Dp> with the cyclic normal
subgroup K. We shall establish the theorem if we show that

(**)

under our assumption. Indeed, it is easy to check that

dim(G/G*)),

(cf. [Bar2] or [Ma2]), which gives desired estimate in view of equality (**).
Since dim S=m and H is finite we have cat^S^m+1 ([Bar2], [Mai]). We

shall show the opposite inequality.
Let {Ui}\ be an //-invariant minimal cover of S that the closure of any

element of which is equivariantly deformed in S to an orbit H/Ht. Suppose
that for l£i<l, Kt=K and HtφK for l+l^i^k. In the first case the end
map r\, of //-equivariant deformation r\, is an //-equivariant map of cl HJX onto
one orbit SiUs2, with s2=gs1. Note also that if Sι^cϋι then r\ is an equivariant
deformation of c l ^ onto slf since rl(sι)=su rl(Sκ)dSκ and rι(sχX/) is an
connected set. Analogously for s2. Remark also that from it follows that /^l.

We need the following lemma.

1.11 LEMMA. Let S and H be as above. Set cU-\J[cUl.
Then there exists an H-equivariant map r: c\cU—>Sκ= {su s2} such that r(st)

= s», ί = l, 2.

Proof. For a given ΛdS let [A] denote its image in the orbit space S/H.
It is clear that it is enough to show the thesis for the counterimage, throughout
the projection on orbit space, of each connected component of [cl^U]. Next let
ΊJ0 be the cover of connected component of [clΊJ] containing [5°]. We shall
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have established the lemma if we prove the existence of stated map for
because for other components of [cl<U] a proof is analogous—even easier with
respect to lack of the last requirement then. Decomposing each cUι following
connected components of [cl<Ut] if necessary we can assume that [cl*ϊΛ] is
connected for every l<i^n.

We show the existence of r on cl̂ Uo by an induction over i. For an
//-equivariant map rι: c\cUl->S° by HJϊ or ΊJT, we denote the set (r^^Csi), or
correspondingly (ri)~\s2). Of course cl ίUϊ"Πcl ίUr=0. Suppose that n = l. By
our assumption sί^

cU1, and if r1(sί)=s2 then taking fι~grι we get an //-equi-
variant map from cl HJi onto S° satisfying the second requirement. Indeed for
an element gkq<^H, k a generator of K, we have f\gkqx) :=gr\gkqx)=g2kqr\x)
—r\x), since r 1 is //-equivariant and K acts trivially on S°. On the other hand
gkqr\x) :^gkqgr\x)=r{x), since gkqg=kq or gkqg=k~q.

Assume the required map exists for a cover {ΊJi} ΐ of invariant set as above.
This means that for every 1^*, j^n if cl<U<Γ\clίi7J=0 then clUtίΛcl<i/J=0
and SiG^Ui. By our assumption (W:—\J7tcUι consists of two components W+ =
\J? *Ut and cW-^\JrίcυTy since [<F] is connected. Take the set cUn + 1 the (w+l)-th
element of the cover.

If c\(W+ΓΛc\cυi+1Φ0 then the required map is well defined. If dcΨ+ΓΛclcυi+ι

= 0 then we have to take an //-equivariant map fn+1=grn+1 instead of rn+1 as
in the first step of induction. This shows that for {"U/}? and <UΛ+i, fn+1 the
required map is well defined. Note that if {s0, sl}^c\HJl then rι(sj)=Sj, as it
has been already pointed out. This proves the lemma by induction. •

Observe that Lemma 1.11 shows that k—ί^l if ra;>l. Indeed, otherwise
Sm — \J[cϋι and Lemma 1.11 states that there exists an equivariant map from Sm

onto Sτ—S°y which leads to a contradiction if m ^ l .
We complete the proof of Theorem 1.10 by the Borsuk-Ulam theorem

argument. Form an invariant cover of S taking cU0=^J{cUl and cUι, l+l<i<Lk.
Next take VQ—Rι the real, one-dimensional nontrivial representation of H defined
by the projection //^->////ί=Z2 and the isomorphism Z2=O(1). Observe that the
m a p r : c\cU->S°= {sίf s2] defines an//-equivariant map from cl<U onto 0(1)=O(V)
given by s ^ l , s 2 - > - l , {1, -VtzR^Vo.

Moreover, for any l+l<*i^k the mapping rι maps c\cUι onto an orbit Hxt

of Xi^S\Sτ with the isotropy group HXv which is equal either to the trivial
group e or conjugate to the two-elements cyclic group generated by g. In the
first case the whole i/-equivariant deformation r\: c\cUιXI-*SecS lies in the
//-free part of S. By the argument of Proposition 2.2 of [Mai], there exists a
/ί-equivariant deformation of f\: o\cUιXl-^Se onto an /f-orbit KX^K. In the
second case we have an //-equivariant, thus /Γ-equivariant, deformation which
end is a /C-equivariant map r\: c\cUI-*H/{g}=K. Summing up, for every
ί+l^i^k we have a /f-equivariant map rι: Q\UI-^K.

Put ζW*:=\JU1

cUx. Finally, using the maps {r, rι+\ ..., rι+k\ and a
/ί-invariant partition of unity refined into {ΊJi+i, ..., Vk} we can construct a
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/f-equivariant map h : CI'WQ—*S(V), where V is a unitary, free representation of
K—Zv of dimension [(ft—/+l)/2] and such that / is homotopic (not-equivariant-
ly!) to the map onto a point if k— /^cat^Ccl'Fo) and is an odd number (Lemmas
2.7 and 2.8 of [Mai]). We can assume that cdLtκ{c\<W0)=k— /, otherwise, adding
^o to any /f-categorial invariant cover of clŜ Ό* we get /C-categorial invariant
cover of S consisting of less than k members.

Using next a /C-invariant partition of unity φ, ψ refined to HJ* and <W0, and
/ί-equivariant mappings r and h we can construct a /f-equivariant map

/ : S —> S(V0®V)=S(V0)*S(V),

given by the formula f(x):=lφ(x)r(x), ψ(x)h(x)~].
By its construction, the map fκ: SK=^SO-^SO=S(VO)=S(V^V)K is the

identity map, up to an identification, thus άegfκφ0 mod(p).
From the Borsuk-Ulam theorem for the group G — Zv (cf. [Barl], [Bar2],

[C-P], [Mai] Theorem 2.9, or [Ma2] Theorem 1.7 for an orthogonal action on
S) it follows that m—l^k—l—1, which gives k—l^m. Since / ^ l we finally
get the estimate cat#(S)^m+l, which proves Theorem 1.10. •

1.12 Remark. It is worth of pointing out that the referred version ([Mai]
Thm. 2.9) of the Borsuk-Ulam theorem for G = T, Z% is stated as follows. Let
f:X-*Y, X=Y=Sm, be an equivariant map, d e g / ^ 0 (Φΰ in Zp), then XG—
Sr=YG and d e g / ^ 0 (^0 in Zp). Here we need just opposite formulation, but
a proof by the Borel localization theorem ([H]) also holds in this case (cf. [Mai]).
For a special case when S=S(V) is the unit sphere of orthogonal representation
V of Zp the corresponding version of the Borsuk-Ulam theorem is just Theorem
1.7 c) of [Ma2].

2. SO(tt)-category of spherical harmonics

Now we will study equivariant category of sphere, or its invariant subsets,
of an irreducible representation of the group G—SO{n). For any odd n=2m+l
we apply results of Section 1 (Cor. 1.7) to show that the complement of the fixed
point set of the maximal torus TmdSO(n) has a " large" category. In general
it is difficult to compute d imM ( ί n=dimM ( i 7 ) even for a manifold being the
sphere S. It is worth of pointing out that Balanov and Brodsky applied their
version of Theorem 1.1 to derive an estimate for G-category of the free part
of sphere of complex spherical harmonics JC(n, I) i.e. the /-th irreducible
representations of the group SO(n), rc-odd. To show it they did complicated
computations in JC(n, I) and their formula contains also a term equal to the
maximum of dimensions of fixed point sets of cyclic subgroups [Ba-Br]. We
use an observation that a larger set S\S(T) has the G-category greater than the
set S(H) for every representation of any compact Lie group G and easier to
derive by use of Corollary 1.7. Moreover for the particular case of G=SO(n)
and S=S(JC(n, /)) the G-category of S\S(T) is estimated by a function for which
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seems be easier to prove the monotonicity with respect to the both variables n
and /. We shall work with the real representations, since the topological
dimension corresponds to an algebraic then. However the calculations of Theorem
2.1 and Proposition 2.2 hold if we substitute corresponding terms multiplied by
2. Opposite the proof of Theorem 2.3 works in the real case only.

Let n = 2 m + l be an odd number, n ^ 3 , and / be a natural number. Denote
by £P(n, /) the linear space of all real homogenous polynomials of degree / in n
variables and by M{n, ΐ) the corresponding space of spherical harmonics (Jί(nt I)
C^(w, /)). Let ξ, xu yu ..., xm, ym be an orthogonal basis in Rn, n=2m+l. It
is well known ([BtD]) that a polynomial /<Ξ£P(n, /) of the form

I ξk

belongs to M(n, I) iff for every k, 0<k^l—2 we have fk+2=—Δfk, where Δ is
the Laplace operator and fk^@(n, ί—k). The group G=SO(n) acts on &(n, I),
thus also on JC(n, I) by the formula (gf)(u)=f(g~1u)f g(=SO(n).

We start with n = 3 . Using the chose basis we can identify the maximal
torus TcSO(3) with the set of matrices of the form:

1 0 0 •

0 cos φ sin φ

_0 — sinφ cosφ_

where 0e[O, 2π]. Note that f(xu yx) is an S 1 =TcSO(3) invariant iff it is of
the form f(xu yi)=ω(xi+yl), where ω(rf), rι=x\+y\ is homogeneous polynomial
of even degree.

This means that for Z=2fe+1 odd if /e«#(3, If then / 0 = 0 and f1(xly yx)=
c(x!+^?) fe. For I—2k we have the opposite / 0 = e ( * ! + y ΐ ) k and / i = 0 . In other
words

dim ^ ( 3 , / ) Γ = 1 .

It is well known that representations {M(n, I)}, 1=0, 1, ... form the complete set
of all irreducible real representations of SO(n).

Since 3(SO(3))=2, we get the following application of Corollary 1.7.

2.1 PROPOSITION. Let 7=01=1^(3, U), ίτ>0 and lt>l, for at least one i,
be an orthogonal representation of G = SO(3). Then there exists an invariant, open
subset HJClS(V), ίU=S(V)\S(Vr)<Γ> of S(V) such that

Proof. Since dimM(3, l)=2l+1 ([BtD]), dimS(V)=Σί(2/<+l)-l=ΣΓ2/<

r - 1 . On the other hand Vτ^Rr, which gives dimS(Vf=r—1.
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Moreover the only not zero-dimensional subgroups of G=SO(3) are T=S1=
SO(2)cO(2), which shows that all isotropy groups on S(JC(3, l))\S(M(3, /)(Γ)) are
finite if ί>l. This force the same property for V. Substituting the above
correspondingly to the numerator and denominator of the formula of Corollary
1.7 we get the statement. •

In a similar, but a little bit more complicated way we can study the case of
an arbitrary odd w=2m+l. The above description of JC(n, I) shows that JC(n, I)
=J£0(B&i> where Mo consists of the harmonics containing even degrees of ξ and
Mi consists of the harmonics containing odd degree of ξ. It is known that
Mo=@(n—1, /), JCi£*&(n—l, I—I) not only as vector spaces but also as repre-
sentations of G=SO(n) ([BtD]). One can check that the maximal torus of
SO(n) is equal to T=Tm and JC(n, l)τ = 2>(m, //2), or JC(n, /)Γ^<?(m, (/-l)/2) if
/ is even or odd respectively. Since

we have

d\mM{n, /)=(

and

άimM(n, l)τ=( /t? ) if / is even, or

dim^(n, [)τ={ lι_l)/2 ) i f l i s o d d '

where in the round brackets are the Newton symbols.
Since dimS0(n)=ra(2ra+l), and dim T c 5 0 ( n ) = m , we have δ(SO(n))=2m\

The above equalities lead to the following consequence of Corollary 1.7.

2.2 THEOREM. Let M(n, I) be l-th irreducible representation of the group
G-SO(n), n = 2 m + l . Then for the open invariant set cU=S(M(n, l))\S(JC(n, ί)YT)

we have

Proof, In respect of above the statement is a direct consequence of Corol-
lary 1.7, since d(fϋ)^d(G). •

Note that right hand side of the inequality of Theorem 2.2 is greater than
the corresponding term in the estimate of catσS(VΊ)<<,> in [Ba-Br]. We are left
with a task to show our main result.
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2.3 THEOREM. Let Vt be the l-th real irreducible representation of the group
G=SO(3) and l=2q+l is odd. Then

J==z 4

or equivalently

Proof. It is known that d i m F z = 2 / + l and dim(Vr

ι)
Γ=l, thus dimS(F,)Γ=0

([Bar2], [CLM]). Moreover the maximal torus of SO(3) is equal to T=SO(2)
=S* and JV(T)=O(2) ([Bre])). Furthermore if l=2q+l is odd then dim(VΊ)0(2)

=0, thus S(FZ)O(2)—0 Consequently we can apply Theorem 1.10, which gives
the desired estimate, since dimSO(3)=3. D

Theorem 2.3 gives an interesting example of a G-space for which the
G-category is strictly greater than the G-genus of the same space. The equi-
variant genus of a G-space X, XG—^y is, by definition (cf. [Bar2]), the smallest
number k^O such that there exists a G-map / : X-* (G/Hλ)* ••• *{G/Hk)> HiΦG,
and it is denoted by genusG(^Γ).

2.4 COROLLARY. // />103 is an odd number then for the l-th real irreducible
representation of the group G=SO(3) we have

catG(S(y i))>genusG(S(y i)).

Moreover the right hand side of the above inequality is a constant independent on
I but the left tends to infinity as /—*oo.

Proof. By Theorem 2.3 we have

^ 2/+1

On the other hand Bartsch in [Barl] gave a sufficient and necessary condition
on a group G for the existence a finite-dimensional representation Wo, W

G—{0},
of G such that for any G-ANR X, XG=0, there exists an equivariant map
f:X-+S(W0). He also checked that G = SO(3) fulfils this condition and derived
a form of Wo for this particular case of G=SO(3) ([Bar2]). It is sufficient to
take the complex representation W0=VB@VG, which is representation of complex
dimension 26. It is well known (cf. [Bar2]) that genusG(X)^dim(X/G)+l, and
surely genuSί?(Jί)^genusG(F) if there is a G-map f\X—>Y. Consequently for
every SO(3) space X we have

This proves the statement. •
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Finally we illustrate Theorem 2.3 by an application. For a natural reason
we will discuss a nonlinear Dirichlet problem (for the cube domain see [Be-Pa]
and [Kr-Ma]).

Let f:R->R be a C^function such that /(0)=0, / / (0)=l. Let us consider
the equation

(2.5) Au=μf(u), ueH&Ω),

where Ω=D(0, l)aR* is the unit open disc, and μ^R is the parameter. Note
that if u(x) is a smooth solution of (2.5) then uldD=0, since wei/J(42). Observe
that the group SO(3) acts on H\{Ω) by the formula Tgu(x)=u(gx), g<^SO(3),
X G S . It is well known that problem (2.5) is variational (i.e. the solutions
correspond to the critical points of a functional) provided a regularity conditions

rt

are posed on the function F(t)=\ f(s)ds. Then the functional is given as
Jo

is C2 on H:—H\(Ω)y SO(3)-invariant and the critical points of 3 on the sphere
5 e in H correspond to the classical solutions of (2.5). It is known (see for exam-
ple [M], [Be-Pa]) that the problem of finding solutions of

(2.6) grad/(w)=Λw,

is locally reduced to a problem of finding critical points of a invariant function
on a G-manifold Mp G-homeomorphic to the sphere in the eigenspace Vμ of the
Laplacian —Δ in Hl(Ω), near the point (0, X), μ=l/λ is the corresponding
eigenvalue.

On the other hand the spectrum of Laplacian i.e. the solutions of equation

(2.7) -Au=μu, uιdD=0,

is completely described (eigenvalues and eigenspaces) (cf. [VL]). By use of the
Laplace separating variables we replace equation (2.7) by a pair of boundary
problems.

where v=v(θ, φ)^C°°(S2=dD)f θ, φ are polar coordinates on the sphere and λ
is a real number.

(2.7b) (r*3ϊγ+(μr2-λ)βl=0, |iR(0)|<oo,

where Si is a smooth function on R, and μ is the parameter of (2.6).
It is well known that for λ=1(1+1), /=0, 1, ... the problem (2.7a) has

solutions equal to the spherical functions vψ, m=0, ± 1 , ±2, ..., +/. In other
words the eigenvalue is equal to /(/+1) and the eigenspace spanned by vf, is
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isomorphic to Vt the /-th irreducible representation of G=SO(3). Each such λ

gives a infinite number of distinct eigenvalues

where (λjι+1/2)) is the /-th positive root of the Bessel function Jι+ί/2(λ). More-
over the eigenspace corresponding to μi3 is spanned by the functions ψιJm=

CιJmvΓ(θ, φ), thus isomorphic to Vt as a representation of 50(3).

The above leads to the following.

2.8 PROPOSITION. Let μo=^μij>0 be an eigenvalue of the problem (2.6), for

an odd l=2q+l. Then for every sufficiently small ρ>0 the problem (2.5)

Au=μf(u), utΞHKfl),

has at least tf+l=[//2]+l distinct S0(3)-orbits of solutions (u, μ) such that

\\u\\ = p and μ is close to μ0.

Proof. It is enough to the mentioned method of Marino, and Benci and
Pacella ([M], [Be-Pa], and also [Kr-Ma]) in local, equivariant, variational
Liapunov-Schmidt reduction and then apply Theorem 1.10 in view of the form
of spectrum of problem (2.6). D
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