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PLANE CURVES IN LIE SPHERE GEOMETRY

TAKAYOSHI YAMAZAKI AND ATSUKO YAMADA YOSHIKAWA

Abstract

We construct Lie frames of Legendre maps into the unit tangent bundle
of Sz according to the method of moving frames, and classify them.

0. Introduction

Lie sphere geometry was constructed by S. Lie about 1870, which includes
Mobius geometry and Laguerre geometry. S. Sasaki and T. Suguri obtained
the necessary and sufficient condition that two plane curves are Lie equivalent
in 1940 ([SS]), to give an example of results nevertheless few studies have so
far been made. But there has been renewal of interest in Lie sphere geometry
over the past decade. It was known that the class of Dupin hypersurfaces in
Sn is invariant under Mobius transformations. In 1985, U. Pinkall showed that
this class is invariant even under Lie transformations. Since then, a large
number of studies have been made on Dupin hypersurfaces in view of Lie
sphere geometry by S. S. Chern, T. E. Cecil, R. Miyaoka, G. Thorbersson and
so on. It may be worth while looking over the theory of plane curves in Lie
sphere geometry and the contents of [SS] according to recent studies.

Let TιSn be the unit tangent bundle of the unit sphere Sn in the Euclidean
space. An immersed hypersurface f:Mn~1-^Sn with a unit normal field
ξ:Mn~1-^Sn naturally induces a map λ=(f,ξ):Mn-ί->T1S

n. This map λ is
called the Legendre map induced by / with ξ. The projective orthogonal group
of signature (n+1, 2) PO(n+l, 2) acts on 7\Sn transitively, then 7ΊSn =
P0(n+l, 2)/H for the isotropy subgroup H of P0(n+l, 2) at a point. In this
paper we are concerned with the case when n~2, that is Legendre maps into
TiS2 induced by curves in S2.

We apply the method of constructing Frenet frames in G. R. Jensen Π]
Let λ:M-^G/H be a connected, smoothly embedded submanifold of a homo-
geneous space G/H. For λ, we construct a k-th order frame bundle Lk which
gives k-th order contact under the action of G as follows: We begin define
the zeroth order frame bundle L0CG. Next we reduce L0 to the first order
frame bundle LI by means of considering the first order differential. Further-
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more we reduce the frame bundle one after another in the similar way. If λ
is of constant type of any order, frames of λ of all orders can be constructed
LoIDLilDLalD ••• nLq=Lq+ί. Thus we obtain a Frenet frame u : M-+G which
are a lifting of λ by taking a smooth cross section of Lq. We call q the
dimension of the Frenet frame. Frenet frames of a Legendre map λ in 7\Sn

under the action of PO(n+l, 2) are called Lie frames of λ.
The summary of our main results is the following: Let Ω be the Maurer-

Cartan form on PO(3, 2). If a Legendre map λ: M1-^T1S
2 is of constant type

of all orders, then we get three types of Lie frames M1—>P0(3, 2) of λ with
respect to the pullback of Ω:

Type (a): Lie frames with dimension 2 of oriented circles,
Type (b-1): Lie frames with dimension 6 of "degenerate" curves and
Type (b-2): Lie frames with dimension 8 of general curves.

Lie frames of type (b-2) agree with that obtained by S. Sasaki and T. Suguri,
who examined only general curves ([SS]). This classification obtained here
makes it clear how curves degenerate.

In § 1, we give basic facts in Lie sphere geometry. In § 2, we outline the
method of constructing Lie frames, and give our main theorem. In § 3, we
prove the main theorem. In § 4, we get some characteristics of curves in Lie
equivalent classes.

This paper is based on a part of the master thesis of T. Yamazaki ([Y]),
and developed by A. Y. Yoshikawa. The authors also get some results about
Lie frames of Legendre maps of surfaces ([YY]).

Thanks are due to Professor Hajime Sato for his helpful suggestions and
comments in studying the problems here.

1. Lie sphere geometry

We give here an outline of fundamentals in Lie sphere geometry. This
section is largely based on U. Pinkall [P] and T. E. Cecil [C].

1.1. Lie spheres
Let Sn be the unit sphere in the Euclidean space En+\ and Tβ71 the unit

tangent bundle of Sn i.e.

T1S
n={(u, v)<^SnxSn', U'V=Q\,

where denotes the inner product of En+ί. An oriented hypersphere c : Sn~l

^Sn with center p^Sn and signed radius ρ<=(—π, π) induces a mapping
(c, ξ): Sn~ί-^TlS

n by adding the unit normal vector field ξ along c determined
by its orientation. We also call (c, ξ) an oriented hypersphere. When p=Q,
that is c shrinks to a point, we consider a mapping (c, ξ), which is called a
point sphere, by adding the inclusion ξ: Tl{S

n-^T1S
n. From now on, we will

use the term Lie sphere to denote an oriented hypersphere or a point sphere.
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Let R$+Ά={χ— (xlf •••, xn+s); x^R} be an (n+ 3)-dimensional real vector
space with scalar product < , > defined by

We denote by Pn+2 its associated projective space, and by Qn+l the quadric in
Pn+2 defined by <#, *>— 0. Then we can identify a Lie sphere in TΊS71 with
a point of Qn+l under a bijective mapping from (c, ξ) to [cos^o, p, sin/o], where
p— cos pc— sin pξ eSn and p^(—π, π).

1.2. Lie transformations
Let Λzn~l be the set of all projective lines on Qn+ί. By LinejF, Z}<=A2n~1

we denote the line generated by [F], [Z]eQn+1. Then

under a mapping from (u, v} to Line{(l, u, 0), (0, v, 1)}.
A diffeomorphism φ: T^S71— »TιSn is called a Lz'0 if ransformation if it carries

Lie spheres to Lie spheres. For example a Mobius transformation and a parallel
transformation are Lie transformations the former takes point spheres to point
spheres and the latter takes (c, ζ) to (cosfc+sinff, — sinfc+cos££), where £e[0, π).
Lie transformations are generated by Mobius transformations and parallel trans-
formations.

Denote the group of all Lie transformations by G. A Lie transformations
φ can be regarded as a diffeomorphism φ: Qn+ί-+Qn+1 preserving lines on Qn+1,
that is the restriction of a projective transformation Φ : p^+2_^pn+2 preserving
Qn+l. Thus,

G = PO(n+l, 2)=0(n+l, 2)/{±l}.

Let o=(βι, en+ι)eTιSn be the origin, where (βi, •••, en+ι) is the natural basis
of En+1.

We have chosen a basis of Rξ +3 so that it scalar product < , > is given by
(1.1). From now on, we will change the basis of Rξ+B so that

(1.2) <x, y>=*xSy,

where
/ 0 0 - 7 :

(1.3) S=(S4/)= 0 In-, 0

\-/2 0 0

Then, 0(n+l, 2)={/>€ΞGL(n+3;jβ); tPSP=S\.
The origin o^T.S71 is identified with Line{(0, •-, 0, 1, 0), (0, -, 0, 0, 1)} .

A211'1. The group G acts on A271'1 transitively, and
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for the isotropy subgroup H of G at o.

1.3. Lie frames
A Lie frame (Yίf •••, Yn+z) is an ordered set of vectors in JR£+3 satisfying

the relations

(1.4) <rt, r,>=st,

for 1< '̂, y^n+3. The space of all Lie frames can be identified with O(n+l, 2).
Let Ω=(ωj) be the Maurer-Cartan form introduced by the equation

(1.5) </rt=2>SV
.7 = 1

Taking the exterior derivative of (1.5), we get the Maurer-Cartan equations

(1.6) dα>{=Σ?<0iΛα)i.
ft = l

By using (1.6), we find that ωln^f\(dωl

n^
n~lφQ. Hence T^ is a contact

manifold with a contact form

1.4. Legendre submanifolds, Legendre maps and curvature spheres
An immersed (n— l)-dimensional integral submanifold of the contact distri-

bution D is called a Legendre submanifold.
An immersed hypersurface f:Mn~1-^Sn with a unit normal field ξ : Mn~l

-^Sn naturally induces a Legendre submanifold *=(/, ξ) : Mn~1^TlS
n. This

map λ is called the Legendre map induced by / with ξ. Conversely a Legendre
submanifold λ=(f, ξ): Mn'~l-^T1S

n naturally induces a smooth map/iM71'1-^71,
which may have singularities. The following theorem, however, shows that a
Legendre submanifolds is locally transformed by a parallel transformation to be
a Legendre map.

THEOREM 1.3 [P]. Let λ=(f, ξ): Mn'ί-^T1S
n be a Legendre submanifold.

Then for each x<^Mn~\ the mapping cosί/H-sinίf : Mn~l-*Sn fails to bean
immersion at x only for at most n—l values of fe[0, π).

Let λ— LinetΓ, Z} : Mn~1->Λ2n~ί be a Legendre submanifold, p<=Mn~l and
r, se/2 with (r, s)^(0, 0). We call the sphere

(1.7) LK(py]=lrY(p)+sZ(pK

a curvature sphere of λ at p, if there exists a non-zero vector X in TpM
n~l

such that

(1.8) r dY(X)+s </ZCY)eSρan {Y(p\ Z(p)} .

The vector X is called a principal vector corresponding to [/£]. A curvature
sphere is invariant under Lie transformations.
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2. Lie frames of Legendre maps in TλS
2 under PO(3, 2)

We explain the method of constructing Frenet frames in the case of Lie
frames of a Legendre map λ from a 1-dimensional manifold M to T^S2.

First of all we construct a zeroth order frame field along λ. The isotropy
subgroup H of G at the origin o is given by

(2.1)
A 0 0

0 1 0
o o *A-

/ O 0 0
exp £ 0 0

\ 0 1B 0
exp

0 0 0

0 0 0

C O O

(A 0 0 \ / O 0 0\
From now on we denote the matrices 0 1 0 1, expl B 0 0 1 and

/ O 0 0 \ _ „ \ 0 0 M-/ \ 0 <^0/
exp 0 0 0 by A, B and C, and denote a matrix λ in # by h=ABC. The

\C 0 O /
Lie algebra 3 of G is given by

(2.2) Λ) 'XS+SX=Q\

a δ

B 0 ), γ, ζeo(2)

and the Lie algebra I) of .// is given by

α 0 0
(2.3) )S 0 0 ), j-eo(2)

We take a vector subspace m of g complementary to 5, and choose the follow-
ing 0ι, 02, £3 for a basis of m :

(2.4)

0 0

0 0

0 0

0 0

\ 0 0

/ 0 0

0 0

0 0

0 0

U 0

0

0

0

0

0

0

J_

0

0

0

0 1\
-1 0

0 0

0 0

0 0 )

0 0 \

0 0

0 1

0 0

0 0 /

JO 0
0 0

0 0

0 0
1 0 0

1

0

0

0

0

0 0 \
0 0

1 0

0 0
0 O /
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Let pQ: //->GL(3, R) be the isotropy representation given by the adjoint action

of H on m with respect to this basis. We denote A by ( dn fll2Y then for
\#21 #227

/det A 0 0

(2.5) /o0(Λ)=l * flu βia

A zeroth order frame at />eM is an element g^G such that π(g)—λ(p) (where
π is the natural projection G-+G/H). Let L0 denote the set of all zeroth order
frames on M. A zeroth order frame field u along λ is a smooth cross section
of LO— M.

In the next step, we construct a first order frame field along λ. Let Ω=(ωj)
be the Maurer-Cartan form on G. With respect to the decomposition g=ϊ)+m,
we decompose β into β0+6>o, so we get

(2.6) Θ0=ω1

6e1+ωlet+ωles .

We see that w*ωj=0, because Λ is a Legendre submanifold and ω\ is the contact
form. We choose a line element φ of M. and set tt*α>3=Λ;20, w*ωi=Λ;30 for
some smooth functions xz, XB on M. Let w be a zeroth order frame field along
λ. We denote by Ru the right action of z/eG on G///. We define a smooth
map Λ0 from L0 to the Grassmann manifold G3, i so that λ0(u)=Rΰ*λ*(TpM)
where λ(p)=π(u) by identifying m^T0(G/H) with /23 with respect to the basis
0ι, e2, 63 of m, then.

(2.7) Xo(M)= t[0 *2(/>) A:e(i)]eG8.i.

(For further details, see [J].) Let F be a neighborhood of u in L0. We denote
a point {[0 λ:2 %3]eG3)ι by [jc]. We consider the orbit C>ι on >ί0(F) under the
action of (H, pQ), that is (?ι=Ucχ:eλ 0(n{|θo(Λ)M|Λe//}. The action of (77, p0)
is as follows:

(2.8) /

There exists a smooth map Av : V— GL(2, R) such that ^(v)ί|(^) = o for

and π(v) =λ(q). Thus we can take a local cross section s so that
0 1\ ^̂  .. Γ 0 1 Γ 0

s \ x * ( q ) \ } = P » ( A v ( v ) 0 0 ) \ x , ( q ) \ = \ 1 . Let ^-sUoC^cG^, that is
Us(d L o

(2.9) ^={'[0 1 0]}.

We say that λ has the type of Wi if there exists a zeroth order frame field u
such that ΛoMcPFi. If λ has the type of W1} we let L^^WO and call Ll

the set of first order frames on λ (with respect to
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The isotropy subgroup Hl of H at a point of Wl is given by

(2.10) Hl^\ABC\ A=(α" αι2)eGL(2, R\ B^Ml>2(R\ Ceo(2)l.

We say that λ is of constant type at zeroth order if there exists an neighborhood
U of p on M and a local cross section Wl such that λ \ Ό is the type of W1 and
the isotropy subgroup of H at any point of Wl is equal to Hίf In this case λ
is always of constant type of zeroth order. We reach the conclusion that the
first order frame field u satisfies

/Γ) I 1 \ «k//Ξι \ jf(ώ.ll) u*((yo)=:φe2)

and that any two Legendre maps in TλS
2 have at least first order G-contact.

In the third place, we construct a second order frame field along λ. The
Lie algebra ϊh of Hλ is given by

(2.12)

'a 0 0 \

β 0 0 };a=(a" aΛ
\ 0 αw

We decompose ή=^ι+mι, and for a basis of rrti we take the following e4'

(2.13)

1 0 0

1 0

0 0

0 0

0 0

0

0

0

0

0

0 0 \

0 0

0 0

0-1

0 O /

The isotropy representation jθι: /Λ—>GL(4, R) given by the adjoint action of
on m+rth with respect to the basis es, •••, e, is

/* 0

0 *

0

0

0

022

flu

(2.14)

where h=ΛBC^Hί) and A=afr ^jeGL(2, Λ). Let w be a first order frame

field along λ. With respect to the decomposition ^—^-f mι, we decompose ΩQ

into £?ι+θι, then

(2.15)
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Set u*ω\=x4φ for a smooth function x4 on M. We denote by R& the right
action of weG on G/H,. Let Λ ( 1 ) : M-^G/H, be given by λ(ί>'(/>)= 1X1 where
λ(p}=π(u). We define a smooth map Λ from Ll to G4,ι so that ΛI(M)+

] by identifying m + m^Tco^G///!), with /24 with respect to

4, then

(2.16) 0

We consider the orbits on λ^V) under the action of (Hlt p^. We denote a point
'[0 1 0 *4] in G4,ι by [>]. The action of (//Ί, ^i) is as follows:

(2.17) 0

Let V be a neighborhood of u in LI, and let

G4

β.ι={'[0 1 0 0]}CG4)1,

GJ. !={'[() 1 0 * ] ; x=£0}cG 4 i l.
(2.18)

Suppose that ^ι(F)cG4

α,!, and denote the orbit on λ(V) by Oξ, that is O}=
Q 1 0 (ΓH/KΞ//J. In this case, we can take a local cross section

s: Λι(y)-»#2

α so that s

(2.19)

0 1
1
0
0

, and hence

ws=s(λl(vy)={*[p l o o ] } .

We say that λ has the type of Wξ if there exists a first order frame field u
such that λ^dW?. If λ has the type of Wξ, we let L?=^W2

α) and call Lξ
the set of second order frames on A with respect to Wξ.

Suppose that λ(V)cG2.ι. and denote the orbit on λ(V) by 0t, that is
. In this case, we can take a local cross section

so that s , and hence

(2.20) 1 0 1 ] } .

We say that Λ has the type of W\ if there exists a first order frame field u
such that ;Uw)C^2

6. If λ has the type of W\y we let Li=JlirWS) and call L\
the set of second order frames on λ with respect to W^

The isotropy subgroup H$ of Hl at a point of Wξ is equal to //i, and the
isotropy subgroup H\ of Hl at a point of W\ is given by

(2.21) ,),
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We say that λ is of constant type (a) or type (b) at first order if there exists
an neighborhood U of p on M such that λ\u is the type of Wϊ or W\ respec-
tively.

Suppose that λ is of constant type (a) at first order. Then we get a second
order frame field u:U-^G/Hl along λ:U-*G/H. Adding an extra step, we
lift u from G/Hl to G. We choose here a lifting ϋ of u such that
then we obtain the Lie frame u : U-+G of type (a) with dimension 2:

u*Ω=Xaφ, where Xa —

1 0 0

0 0

0 0

0 0

0 0

1

0

0

0

0

0 0 \

0 0

1 0

0 0

0 0 /

Suppose that λ is of constant type (b) at first order. Furthermore we
reduce the frames one after another in the similar way. Suppose that there is
an open set U such that λ\v is of constant type of any order, then we can
construct frames of all orders: L0Z)LιZ)L2lD ••• H)L3— Lg+1. Thus we obtain a
Lie frame U-+G of type (b) which is a lifting of λ by means of taking a
smooth cross section of Lq. We will describe the further process of construct-
ing higher order frames in detail in §3. In conclusion we get the following
main theorem:

THEOREM 2.1. Let λ: M1—»TlkS
2 be a Legendre map which is induced by an

embedded curve f : M1-^S2 with field of unit normals ξ: M1-^S2. Let Ω be the
Maurer-Cartan form on P0(3, 2) and ds a line element on M1. // there exists
an open set ί/cM1 such that λ\u is of constant type of any order, then we can
construct one of the following three types of Lie frames u : U->PO(3, 2) of λ\u

Type (a):

(2.22)

Type (b-1):

(2.23)

u*Ω=Xads, where Xa —

' 0 0

0 0

0 0

0 0

k 0 0

1

0

0

0

0

0 0 \

0 0

1 0

0 0

0 0 i

u*Ω=Xlds, where Xl=

/ 0 0

1 0

0 0

0 0

( 0 0

1

0

0

0

0

0 0 \

0 0

1 0

0-1

0 0 1
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Type (b-2) :

(2.24) u*Ω=X\ds, where X2

b=

1 0 k

1 0

f , 0

0 -1

i 1 0

1

0

0

1*
0

0 0 \

0 0

1 0

0 -1

-k 0 i

where k is the seventh order invariant of λ.

To put the condition of type (b-2) in another way, we can take a Lie
frame ( Y l f Y2, Y9, F4, F5) that satisfies the following Frenet's formula:

(2.25)

dY2

ds

dYz

ds

ds " ' 4

This formula agrees with that obtained by S. Sasaki and T. Suguri ([SS]).

3. Proof of Theorem 2.1

We have already explained how to construct second order frames in the
preceding section. We continue constructing higher order frames of type (b).

Construction of third order frames of type (b).
The Lie algebra ϊj, of HI is given by

a 0 0

β 0 0

γ lβ — *<

We decompose ΐh—f> 2+m 2, and for a basis of m 2 we take
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I 0 0

0 1

0 0

0 0

0 0

0

0

0

0

0

0 0 \

0 0

0 0

0 0

0 -I/

The representation pz' H%-*GL(5, R) given by the adjoint action of HI on

1+m2 with respect to the basis elt •••, eδ is

/ * 0

* fli

* 0

* 0

* 2k

*

*

*

*

0

0

0

fli

/7.

0 \

0

0

0

1

where P^Hb

z. With respect to ^i= , we have Ωί=Ω2+Θ2) where

We consider orbits and local sections W3 of the action of (//!, p2) on G5 ( 1. We
can take

,̂= {'[0 1 0 1 0 ] } .

Construction of fourth order frames of type (b).
The isotropy subgroup H3 of H\ at a point of W3 is given by

ABC;A=
a -z-

0

R\ B=(h

The Lie algebra Ϊj3 of HB is given by

0 2c

We decompose ΐ)2—^3+tπ3, and for a basis of m3 we take

/ 0 1

0 0

0 0

0 0

| 0 0

0

0

0

0

0

0 0 \

0 0

0 0

0 0

-1 0 /
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The representation ρB: //3-»GL(β, R) given by the adjoint action of //3 on
ι+m2+m3 with respect to the basis e l f •••, eQ is

/ * 0

* a

* 0

* 0

* 2b\
(biY-fa

\ a

where Pe#3. With respect to ΪJ2=ΐj

βs=(α

* o
* 0

* 0

* a

* -2&!

— 4(bι)2— 662

9α

3+ms, we have

, 2 Λ>|-3-ω!>6.

* 0 \

* 0

* 0

* 0

* 0
1
a I

β2=β3+β3, where

We consider orbits and local sections 1/F4 of the action of (H9, /?3) on G6,ι We
can take

^={^0 1 0 1 0 0]}.

Construction of fifth order frames of type (b).
The isotropy subgroup //4 of HB at a point of W* is given by

#4 =

α -r-

0 (α)'

The Lie algebra f)t of //4 is given by

la 0 0

eGL(2, R), B=(b j(

^ 0 0
, β=(βι 0),

_ «ι -TΓPi

0 2

We decompose ΐ)3=^)4+1114, and for a basis of m 4 we take

/ 0 0

0 0

0 1

0 0

0 0

0

0

0

0

1

0 0

0 0

0 0

0 0

0 0 /

The representation p^: H4-^GL(7} R) given by the adjoint action of //4 on

1+ ••• +m4 with respect to the basis eίf •••, e7 is
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/* 0 * 0 * * 0 \

* a * 0

* 0 * 0

* 0 * α

2b

* * o
* * 0

* * o
-2b * * 0

0
2(b)z

* :r *

\
(b)B-6c __ _

* 6(α)2 * 9(<z)2 * *

where Pe7/4. With respect to ϊ^ϊh+ro^ we have Ω3=Ω4+Θ4, where

We consider orbits and local sections Wδ of the action of (7/4, p4) on G1Λ. We
can take

^={'[0 1 0 1 0 0 0 ] } .

Construction of sixth order frames of type (b).
The isotropy subgroup Hδ of //4 at a point of Wδ is given by

, C=
-L

ABC; A= a 3 L" <=GL(2, R\ B=

0 (α)2

The Lie algebra ϊjB of //5 is given by

a 0 0 \

0 ); α=t
1 o

We decompose ^4—ί5+m5, and for a basis of m δ we take

0 —
18

(by
18,- 0

=(A 0)

/ 0 0

0 0

0 0

0 1

\-l 0

0

0

0

0

0

0 0\

0 0

0 0

0 0

0 O/

The representation p5: H5-^GL(8, R) given by the adjoint action of H5 on
m + ntι+ ••• -fm5 with respect to the basis eίf ••-, e8 is
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0 * 0 * * *

* a * 0 * * *

* 0 * 0 * * *

* 0 * a * * *

335

2b -2b * * *

3α 3α

9(aY

0 \

0

0

0

0

0

0

1

where Pe//5. With respect to ^4~^5-fm5, we have Ω^— where

We consider orbits and local sections WQ of the action of (Hs, p5) on G8,ι. We
can take the following two types of W6 :

^={'[0 1 0 1 0 0 0 0 ] } , ^={'[0 1 0 1 0 0 0 -1]}.

The isotropy subgroup HI of H5 at a point of W\ is equal to H5. Suppose
that there is a small open set U in M such that λ \ Ό is of constant type at first
order with respect to W\ We say that λ is of type (b-1) in U. In this way we
get a sixth order frame field u : U-^G/Hδ along λ: U-+G/H. Adding an extra
step, we lift u from G/H5 to G. We choose here a lifting u of u such that
u*β5— 0, then we obtain the Lie frame u: U->G of type (b-1) with dimension
6 in Theorem 2.1.

The isotropy subgroup HI of Hδ at a point of W\ is given by

'±1 ±4,

0 1

0 -
(by
18

0

Suppose that there is an open set U in M such that λ\u is of constant type at
sixth order with respect to W\ we say that λ is of type (b-2) in U. Further-
more we reduce the frames.

Construction of seventh order frames of type (b-2).
The Lie algebra Ϊj6 of HI is given by
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a 0 0

β 0 0

0 <β -l

We decompose ^5—5β+Htβ> and for a basis of m 6 we take

,α= - 3-μ^O)

\0 0 /

/ I 0

0 2

0 0

0 0

\ 0 0

0

0

0

0

0

0 0\

0 0

0 0

-1 0

0 -2/

The representation ρe' Hl-*GL(9, R) given by the adjoint action of HI on
ι+ ••• + m 6 with respect to the basis el9 •••, e9 is

/* 0

* ±1

* 0

* 0

* 2ft

2(ft)2

* - 3

2(ft)3

* 9

(ft)4

* -is

* -ft
\

* 0 *

* 0 *

* 0 *

* ±1 *

* —2ft *

- 2(ft)2

+ 3

2(ft)3

9

_ (ft)4

* + 18 *

2ft
* o3

* * 0

* * 0

* * 0

* * 0

* * 0

* * 0

* * 0

* * ±1

* * 0

0 \

0

0

0

0

0

0

0

1
/

where P&H\. With respect to ^5— ̂ 6+m6, we have Ω^— ^ where

We consider orbits and local sections WΊ of the action of (Hi, pj on Gβ i l. We
can take

W^i'ΐQ 1 0 1 0 0 0 - 1 0 ] } .

Construction of eighth order frames of type (b-2).
The isotropy subgroup HΊ of Hi at a point of WΊ is given by

IA 0

0

\0 0
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The Lie algebra Ϊj7 of HΊ is equal to 0. For a basis of ϊj6 we take

337

010 =

/ 0 1

0 0

!»
0 0

\ 0 0

0

0

0

3
2
0

0 0 \

0 0

0 0

0 0

-1 0 /

As the result we take a local cross section

1 0 1 0 0 0 - 1 0 4*

of trivial adjoint action (HΊ) /o7) on Gι0,ι The smooth function k on U is called
the seventh order invariant of λ\Ut The Lie frame of a Legendre map λ: £7—>
TtS2 of type (b-2) is the eighth order frame field u along λ with respect to W8.
In this way we obtain the Lie frame of type (b-2) in Theorem 2.1.

We have thus proved Theorem 2.1. Figure 1 shows the Cartan polygon.
(See e.g [Gre].)

•••—-•—•—•—•—• type (a)

Figure 1
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4. Classification of Legendre maps in TjS2 in view of curvature curves

Let us consider the classification of curves obtained in Theorem 2.1 in view
of curvature circles. The curvature circle of Λ:M—>7\S 2 of type (a), (b-1) or
(b-2) is [/£"] = [F6], We begin considering curves of type (a).

COROLLARY 4.1. A Legendre map of type (a) is an oriented circle.

Proof. \_K~] is constant since dY5=0. Thus λ is an oriented circle.

For a curve of type (a) we can take the following Lie frame:

D

(4.1)

' 1 0

0 1

0 0

0 0

, 0 0

s

0

1

0

0

s2 \

0 0

s 0

1 0

0 i j

=exp sXa,

where Xa is the matrix in (2.22). By using the coordinate of Rζ+3 so that its
scalar product <, > is given by (1.1), we describe expsX(0) as follows:

(4.2) s->expsA'α(0)=Line{(l, cost, sin?, 0, 0), (0, 0, 0, 1, 1)} EΞΛ 3

=((cosf, sinf, 0), (0, 0, l))e7YS2,

where s=2tanί/2. This curve is obviously an oriented circle.
Now we consider curves of type (b-1). For a curve of type (b-1) we can

take the following Lie frame:

(4.3)

' 1 0

s 1

0 0

0 0

\ 0 0

s

s2

2

1

0

0

s2

2
s3

IT

s

1

0

s3 \
6~
s4

~"2Ϊ
s2

2~

s

i /
where X\ is the matrix in (2.23). We describe expsΛTJ(0) as follows:

(4.4) , -96s3)

f(s)=-(_192s3, -24s4+288s2, -s6-3βs4+144s2+576),
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where Δ-s6+36s4-f 144s2+576.
ξ on S2dE* respectively.

Figure 2 and Figure 3 show the curves / and

Figure 2 Figure 3

We mention the procedure for distinguishing the type of a given curve by
the curvature circle. Let s-+λ(s) be a curve in T^2 and [ff(s)] the curvature
circle of λ(s). When dK/ds=Q, λ is an oriented circle. If dK/dsΦΰ we
examine the second differential d2K/ds2. We let d2K/ds2=kK-Y. If k^Q
then λ is a general curve with k^O. If &:=0 we examine the fifth differential
d*K/ds\ When d*K/ds*=Q, λ is a curve of type (b-1). When d*K/ds*Φθ, λ
is a general curve with £=0. Figure 4 summarizes the procedure above.

no
k(type(b-2), fe=6

Γtype(b-2), ^ is not equal to OJ

Figure 4

Finally we obtain the necessary and sufficient condition that two curves are
Lie equivalent by virtue of Theorem 2.1 and the theorem about uniqueness and
existence of mapping of a manifold into a Lie group (see e.g. [Gri § 1]).

COROLLARY 4.2. (a) Any two oriented circles in 7\S2 are Lie equivalent
(b) Any two curves of type (b-1) in 7\S2 are Lie equivalent.
(c) Let λ: M-7YS2, λ'.M-^T.S2 be smooth curves of type (b-2), and k k

the seventh order invariant of λ, λ respectively. Curves λ and λ are Lie equiv-
alent if and only if there exists a one-to-one correspondence φ: M-+M such that
k—φ^k.
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