# STIEFEL-WHITNEY HOMOLOGY CLASSES AND EULER SUBSPACES 

Dedicated to Professor Seiya Sasao on his 60th birthday

Akinori Matsui

## 1. Introduction and the statement of results

In [5], we gave the construction of integral (or mod 2) Euler spaces of a given homotopy type such that the Stiefel-Whitney homology classes are equal to any given homology elements. In this paper, we give a new construction for mod 2 Euler spaces embedded in a given mod 2 Euler spaces such that the Stiefel-Whitney homology classes are equal to any given homology elements of the given space.

Let $X$ be a locally compact $n$-dimensional polyhedron. For a point $x \in X$, let $\chi(X, X-x)$ denote the Euler number of the pair $(X, X-x)$. The polyhedron $X$ is called a $\bmod 2$ Euler space if for each $x \in X, \chi(X, X-x) \equiv 1(\bmod 2)$ (cf. [1], [3]). Let $K^{\prime}$ denote the barycentric subdivision of a triangulation $K$ of a polyhedron $X$. If $X$ is a mod 2 Euler space, the sum of all $k$-simplexes in $K^{\prime}$ is a $\bmod 2$ cycle and define an element $s_{k}(X)$ in $H_{k}\left(X, \boldsymbol{Z}_{2}\right)$ (cf. [3]). The element $s_{k}(X)$ is called the $k$-th Stiefel-Whitney homology classes of $X$. If $X$ is a smooth manifold, PL-manifold or $\boldsymbol{Z}_{2}$-homology manifold, the class $s_{k}(X)$ is known to be the Poincaré dual of the Stiefel-Whitney class $w^{n-k}(X)$ ([2], [3], [4], [10]). Consequently, for such spaces, the Stiefel-Whitney homology classes are homotopy invariant. But in the category of mod 2 Euler spaces, Stiefel-Whitney homology classes are not generally homotopy invariant ([4], [5]). A polyhedron $X$ is called purely $n$-dimensional if the union of all $n$-simplexes of a triangulation of $X$ is dense in $X$. In such case, $X$ is said to be an $n$-dimensional polyhedron of pure dimension. Our theorem is the following:

Theorem. Let $X$ be an $n$-dimensional mod 2 Euler space of pure dimension and let $\alpha_{2}$ be homology elements of $H_{i}\left(X ; \boldsymbol{Z}_{2}\right)$ for $\imath=0,1, \cdots, n-1$. Then for any $k \leqq n-1$, there exist a $k$-dimensional compact $\bmod 2$ Euler space $Y$ of pure dimension and a PL-embedding $f: Y \rightarrow X$ such that $f_{*} s_{i}(Y)=\alpha_{\imath}$, for all $\imath \leqq k$.

Received April 25, 1994 ; revised December 22, 1994.

## 2. Proof of Theorem

To prove Theorem, we need the following lemmas. We devote section 3 and 4 to prove Lemma 2.

Lemma 1. Let $X$ be an $n$-dimensional compact mod 2 Euler space of pure dimension. Let $\alpha$ be a homology element of $H_{k}\left(X ; \boldsymbol{Z}_{2}\right)$ where $k \leqq n-1$. Then there exist a $k$-dimensional compact $\bmod 2$ Euler space $Z$ of pure dimension and a PL-embedding $g: Z \rightarrow X$ such that $g_{*} s_{k}(Z)=\alpha$, and for $0 \leqq ı \leqq k-1$, $g_{*}: H_{i}\left(Z ; \boldsymbol{Z}_{2}\right) \rightarrow H_{i}\left(X ; \boldsymbol{Z}_{2}\right)$ is a surjection.

Proof. Let $T$ be a triangulation of $X$. Let $c$ be a $\bmod 2 k$-cycle in $T$ which determines the homology class $\alpha$. Let $T^{\prime}$ be the barycentric subdivision of $T$. Then the cycle $c$ is subdivided to the $\bmod 2 k$-cycle $c^{\prime}$ in $T^{\prime}$, which is denoted by $c^{\prime}=\sum_{\lambda \in A} \sigma_{\lambda}$. We denote by $\Lambda^{c}$ the set all $k$-simplexes of $T^{\prime}-\left\{\sigma_{\lambda}\right\}_{\lambda \in \Lambda}$. Let $T^{k}$ be the $k$-skelton of $T^{\prime}$. Then $\left|T^{k}\right|$ is a $\bmod 2$ Euler space (Proposition 2.1 of [4]). For each $\tau \in \Lambda^{c}$, we choose a $P_{r}$ in $X$ such that $P_{r}$ is joinable to $\tau$ and such that $\operatorname{Int}\left(P_{\tau} * \tau\right) \cap \operatorname{Int}\left(P_{\tau^{\prime} *} * \tau^{\prime}\right)=\emptyset$ for different $\tau, \tau^{\prime}$ in $\Lambda^{c}$ and $\left(P_{\tau} * \tau\right) \cap\left|T^{k}\right|$
 PL-ball. Since, for $x \in \partial \tau, \#\left\{\tau^{\prime} \in \Lambda^{c} \mid \partial \tau^{\prime} \ni x\right\} \equiv 0(\bmod 2)$, it follows that $Z$ is a $k$-dimensional compact $\bmod 2$ Euler space of pure dimension. Let $g: Z \rightarrow X$ be the inclusion. Then by the construction we have $g_{* s_{k}}(Z)=\alpha$, and for $0 \leqq ı \leqq k-1$, $g_{*}: H_{i}\left(Z ; \boldsymbol{Z}_{2}\right) \rightarrow H_{2}\left(X ; \boldsymbol{Z}_{2}\right)$ are surjections.
q.e.d.

Lemma 2. Let $g: Z \rightarrow X$ be a PL-embedding of compact mod 2 Euler spaces of pure dimension. Assume that $k<n$, where $\operatorname{dim} X=n, \operatorname{dim} Z=k$. For $i=1$, $\cdots, k-1$, let $\beta_{\imath}$ be a homology element of $H_{i}\left(Z ; \boldsymbol{Z}_{2}\right)$. Then there exist a $k$-dimensional compact mod 2 Euler space $Y$, and furthermore a homotopy equivalence $h: Z \rightarrow Y$ and a PL-embedding $f: Y \rightarrow X$ such that $g$ is homotopic to $f \circ h$, $h_{*} \beta_{2}=s_{i}(Y)$ for $i=1, \cdots, k-1$, and $h_{*} s_{k}(Z)=s_{k}(Y)$.

In Lemma 2, the construction of $Y$ and $h: Z \rightarrow Y$ is analogous to that in [5]. But we need to construct a PL-embedding $f: Y \rightarrow X$.

Proof of Theorem. By Lemma 1, there exist a $k$-dimensional compact mod 2 Euler space $Z$ of pure dimension and a PL-embedding $g: Z \rightarrow X$ such that $g_{*} s_{k}(Z)=\alpha_{k}$, and for $1 \leqq i \leqq k-1, g_{*}: H_{i}\left(Z ; \boldsymbol{Z}_{2}\right) \rightarrow H_{i}\left(X ; \boldsymbol{Z}_{2}\right)$ is a surjection. Note that $\chi\left(Z \vee S^{k}\right) \equiv \chi(Z)+1(\bmod 2)$ and $\chi\left(S^{k} \vee S^{k}\right) \equiv 1(\bmod 2)$. Then we may assume that $g_{*} s_{0}(Z)=\alpha_{0}$. Let $\beta_{2}$ be the element of $H_{2}\left(Z ; \boldsymbol{Z}_{2}\right)$ such that $g_{*} \beta_{\imath}=\alpha_{2}$ for $i=0,1, \cdots, k-1$. By Lemma 2 , there exist a $k$-dimensional compact mod 2 Euler space $Y$ of pure dimension, and furthermore a homotopy equivalence $h: Z \rightarrow Y$ and a PL-embedding $f: Y \rightarrow X$ such that $g$ is homotopic to $f \circ h, h_{*} \beta_{2}=s_{i}(Y)$ for $\imath=0,1, \cdots, k-1$, and $h_{*} \beta_{k}=s_{k}(Y)$. Then $f_{*} s_{i}(Y)=f_{*} h_{*} \beta_{\imath}=g_{*} \beta_{\imath}=\alpha_{\imath}$. q.e.d.

## 3. An elementary lemma for simplexes

In this section, we consider quotient spaces of the simplex and prove an elementary lemma which is necessary to prove Lemma 2. Let $\Delta^{n}$ and $\Delta^{k}$ be the $n$-simplex $\left\langle v_{0}, v_{1}, \cdots, v_{n}\right\rangle$ and the $k$-simplex $\left\langle v_{0}, v_{1}, \cdots, v_{k}\right\rangle$, respectively, where $k<n$. We will construct a quotient space $\hat{\Delta}^{k}$ of $\Delta^{k}$ and a PL-embedding $g_{\Delta}: \hat{\Delta}^{k} \rightarrow \Delta^{n}$. Let $\sigma^{p}$ be the $p$-simplex $\left\langle v_{0}, v_{1}, \cdots, v_{p}\right\rangle$ in $\Delta^{k}$, where $p<k$. Let $\tau^{p}$ be a $p$-simplex $\left\langle v_{0}, u_{1}, \cdots, u_{p}\right\rangle$ which is linearly embedding in $\Delta^{k}$ such that $\tau^{p} \cap \partial \Delta^{k}=v_{0}$. Let $\alpha: \boldsymbol{\sigma}^{p} \rightarrow \tau^{p}$ be the linear map such that $\alpha\left(v_{0}\right)=v_{0}$ and $\alpha\left(v_{\imath}\right)=u_{\imath}$ for $i=1,2, \cdots, p$. We introduce an equivalence relation $\sim$ on $\Delta^{k}$ as follows: $x \sim y$ if $x=y$ or if $\alpha(x)=y$ for $x \in \sigma^{p}$. Let $\hat{\Delta}^{k}$ be the quotient space $\Delta^{k} / \sim$ and $h_{\Delta}: \Delta^{k} \rightarrow \hat{\Delta}^{k}$ the projection. Let $i: \partial \Delta^{k} \rightarrow \Delta^{k}$ and $\jmath: \Delta^{k} \rightarrow \Delta^{n}$ be the inclusions. We need the following lemma to prove Lemma 1 :

Lemma 3. Let $\Delta^{n}, \Delta^{k}, \sigma^{p}$ and $\tau^{p}$ be simplexes such that $\sigma^{p}<\Delta^{k}<\Delta^{n}$ and that $\tau^{p}$ is a linearsubspace of $\Delta^{k}$ as aboves, and let $\hat{\Delta}^{k}$ be the quotient space $\Delta^{k} / \sim$. Then there exists a PL-embedding $g_{\Delta}: \hat{\Delta}^{k} \rightarrow \Delta^{n}$ such that $g_{\Delta} \circ h_{\Delta} \circ i=\jmath \circ i$ and $g_{\Delta}\left(\hat{\Delta}^{k}-h_{\Delta^{\circ}} i\left(\partial \Delta^{k}\right)\right) \subset \operatorname{Int} \Delta^{n}$.

Proof. Let $\tau^{p}$ be as aboves. Let $\tau^{\prime}$ be any $p$-simplex $\left\langle v_{0}, u_{1}^{\prime}, \cdots, u_{p}^{\prime}\right\rangle$ which is linear embedding in $\Delta^{k}$ such that $\tau^{\prime} \cap \partial \Delta^{k}=v_{0}$. Then there exists a $P L$ - homeomorphism $h: \Delta^{k} \rightarrow \Delta^{k}$ such that
(1) $h \mid \partial \Delta^{k}$ is the identity,
(2) $h\left(\tau^{p}\right)=\tau^{\prime}$,
(3) $h\left(u_{\imath}\right)=u_{\imath}^{\prime}$ for $\imath=1,2, \cdots, p$, and
(4) $h \mid \tau^{p}: \tau^{p} \rightarrow \tau^{\prime}$ is linear.

By the above, we may prove the lemma for a certain $\tau^{p}$. First we define $\tau^{p}$ as follows. Let $G$ be the barycenter of $\Delta^{k}$. Put $u_{0}=v_{0}$. We denote by Int $X$ the interior of $X$. For $i=1,2, \cdots, k$, we choose points $u_{\imath}$ in Int $\left\langle v_{\imath}, G\right\rangle$. We define $\tau^{p}$ by $\tau^{p}=\left\langle u_{0}, u_{1}, \cdots, u_{p}\right\rangle$. Next, to construct $g_{\Delta}: \hat{\Delta}^{k} \rightarrow \Delta^{n}$, we construct a subset $\hat{\Delta}^{\prime}$ of $\Delta^{n}$ which is $P L$-homeomorphic to $\hat{\Delta}^{k}$. Let $G_{0}$ be the barycenter of the simplex $\left\langle v_{k+1}, v_{k+2}, \cdots, v_{n}\right\rangle$. Let $G_{1}$ be a point in Int $G_{0} * \Delta^{k}$, where $X * Y$ is the join of $X$ and $Y$. Put $a_{0}^{\prime}=v_{0}$. For $i=1,2, \cdots, k$, let $a_{\imath}^{\prime}$ be a point in Int $\left\langle G_{1}, v_{i}\right\rangle$. We denote by $A^{k}$ the simplex $\left\langle a_{0}^{\prime}, a_{1}^{\prime}, \cdots, a_{k}^{\prime}\right\rangle$. Let $G_{2}$ be a point in Int $G_{1} * A^{k}$. Put $b_{0}^{\prime}=v_{0}$. Put $B^{k}=\left\langle b_{0}^{\prime}, b_{1}^{\prime}, \cdots, b_{k}^{\prime}\right\rangle$. For $i=1,2, \cdots, k$, we define $b_{i}^{\prime}$ by $b_{i}^{\prime}=\left\langle G_{2}, v_{i}\right\rangle \cap A^{k}$. For $i=0,1, \cdots, p$, put $u_{\imath}^{\prime}=v_{i}$. For $i=p+1, p+2, \cdots, k$, let $u_{\imath}^{\prime}$ be a point in $\operatorname{Int}\left\langle b_{i}^{\prime}, v_{\imath}\right\rangle$. We denote by $C^{k}$ the simplex $\left\langle u_{0}^{\prime}, u_{1}^{\prime}, \cdots, u_{k}^{\prime}\right\rangle$. We define $\hat{\Delta}^{\prime}$ by $\hat{\Delta}^{\prime}=\left(G_{1} * \partial \Delta^{k}-\operatorname{Int}\left(G_{1} * \partial A^{k}\right)\right) \cup\left(A^{k}-\operatorname{Int} B^{k}\right) \cup\left(G_{2} * \partial C^{k}-\operatorname{Int}\left(G_{2} * \partial B^{k}\right)\right)$ $\cup C^{k}$. Put $a_{0}=b_{0}=v_{0}$. For $i=1,2, \cdots, k$, we choose different points $a_{2}, b_{i}$ in Int $\left\langle v_{i}, u_{\imath}\right\rangle$ such that $\left\langle b_{0}, b_{1}, \cdots, b_{k}\right\rangle\left\langle\left\langle a_{0}, a_{1}, \cdots, a_{k}\right\rangle\right.$. Put $A=\left\langle a_{0}, a_{1}, \cdots, a_{k}\right\rangle$, $B=\left\langle b_{0}, b_{1}, \cdots, b_{k}\right\rangle, C=\left\langle u_{0}, u_{1}, u_{2}, \cdots, u_{k}\right\rangle$. Then we have the decomposition of $\Delta^{k}$ as follows:

$$
\Delta^{k}=\left(\Delta^{k}-\operatorname{Int} A\right) \cup(A-\operatorname{Int} B) \cup(B-\operatorname{Int} C) \cup C
$$

Considering the construction of $\hat{\Delta}^{\prime}$ and the decomposition of $\Delta^{k}$, we can construct a PL-homeomorphism $g_{\Delta}^{\prime}: \hat{\Delta}^{k} \rightarrow \hat{\Delta}^{\prime}$ such that, for $i=0,1, \cdots, k$,
(1) $g_{\Delta}^{\prime}\left(h_{\Delta}\left(a_{2}\right)\right)=a_{\imath}^{\prime}$
(2) $g_{\Delta}^{\prime}\left(h_{\Delta}\left(b_{i}\right)\right)=b_{2}^{\prime}$
(3) $g_{\Delta}^{\prime}\left(h_{\Delta}\left(u_{i}\right)\right)=u_{2}^{\prime}$
(4) $g_{\Delta}^{\prime} \circ h_{\Delta} \circ i=h_{\Delta} \circ i$.

We define $g_{\Delta}: \hat{\Delta}^{k} \rightarrow \Delta^{n}$ by $g_{\Delta}=j^{\prime} \circ g_{\Delta}^{\prime}$, where $j^{\prime}: \hat{\Delta}^{\prime} \subset \Delta^{n}$ is the inclusion. Then $g_{\Delta} \circ h_{\Delta^{\circ}} i=j \circ i$ and $g_{\Delta}\left(\hat{\Delta}^{k}-h_{\Delta} \circ i\left(\partial \Delta^{k}\right)\right) \subset$ Int $\Delta^{n}$.
q.e.d.

## 4. Proof of Lemma 2

We need the following lemma at the induction step in the proof of Lemma 2.
Lemma 4. Let $g: Z \rightarrow X$ be a PL-embedding of compact $\bmod 2$ Euler spaces of pure dimension. Let $\alpha$ be a homology element of $H_{p}\left(Z ; \boldsymbol{Z}_{2}\right)$. Suppose that $0<p<k<n$, where $\operatorname{dim} X=n$ and $\operatorname{dim} Z=k$. Then there exist compact $k$-dimensional mod 2 Euler space $Y$ of pure dimension and futhermore a homotopy equivalence $h: Z \rightarrow Y$ and a PL-embedding $f: Y \rightarrow X$ such that $h_{*}(\alpha)=s_{p}(Y)$, $h_{*}\left(s_{i}(Z)\right)=s_{i}(Y)$ for $p<i \leqq k$ and $f \circ h$ is homotopic to $g$.

The following lemma (cf. Lemma 2.4 in [5]) is immediately induced from the definition of Stiefel-Whitney homology classes and homology groups. So we omit the proof.

Lemma 5. Let $h: K \rightarrow L$ be a surjective simplicial map, where $Z=|K|$ and $Y=|L|$ are compact $\bmod 2$ Euler spaces with same pure dimension. Let $c=\sum_{k \in A} \sigma_{\lambda}$ be a $\bmod 2 p$-cycle, where $\left\{\sigma_{\lambda}\right\}_{\lambda \in \Lambda}$ is a set of $p$-simplexes in $K$. Suppose that $\# h^{-1}(y) \equiv 0(\bmod 2)$ for $y \in h\left(\cup_{\lambda \in \Lambda} \operatorname{Int} \sigma_{\lambda}\right)$ and $\# h^{-1}(y) \equiv 1(\bmod 2)$ for $y \in h\left(Z-\cup_{\lambda \in \Lambda} \boldsymbol{\sigma}_{\lambda}\right)$. Then $h_{*}\left(s_{i}(Z)\right)=s_{i}(Y)$ for $i>p$ and $h_{*}\left(s_{p}(Z)-[c]\right)=s_{p}(Y)$, where [c] is a homology class in $H_{p}\left(Z ; Z_{2}\right)$ defined by the chain $c$.

Proof of Lemma 4. Let $T$ be a triangulation of $X$ and let $K$ be the subcomplex which is a triangulation of $g(Z)$. We may suppose that $\operatorname{Link}(\sigma ; T) \cap$ $\operatorname{Link}\left(\sigma^{\prime}, T\right)=\emptyset$ for different $k$-simplexes $\sigma$ and $\sigma^{\prime}$ in $K$. Let $c$ be a $\bmod 2$ cycle which is a sum of $p$-simplexes of $K$, such that $[c]=s_{p}(Z)-\alpha$ in $H_{p}\left(Z ; Z_{2}\right)$. Let $T^{\prime}$ and $K^{\prime}$ be the barycentric subdivision of $T$ and $K$, respectively. Let $c^{\prime}=\sum_{\lambda \in A} \sigma_{\lambda}^{p}$ be the barycentric subdivision of $c$. For each $\lambda \in \Lambda$, choose a $k$-simplex $\Delta_{\lambda}^{k}$ in $K^{\prime}$ and an $n$-simplex $\Delta_{\lambda}^{n}$ in $T^{\prime}-K^{\prime}$ such that $\sigma_{\lambda}^{p}<\Delta_{\lambda}^{k}<\Delta_{\lambda}^{n}$. Let $v_{\lambda}$ be a vertex of $\sigma_{\lambda}^{p}$. Choose $p$-simplex $\tau_{\lambda}^{p}$ linearly embedded in $\Delta_{\lambda}^{k}$ such that $\tau_{\lambda}^{p} \cap \partial \Delta_{\lambda}^{k}=v_{\lambda}$. As in Lemma 3, let $\hat{\Delta}_{\lambda}^{k}$ be the quotient space of $\Delta_{\lambda}^{k}$ and $h_{\lambda}: \Delta_{\lambda}^{k} \rightarrow \hat{\Delta}_{\lambda}^{k}$ the projection. Furthermore let $g_{\lambda}: \hat{\Delta}_{\lambda}^{k} \rightarrow \Delta_{\lambda}^{n}$ be the PL-embedding as in Lemma 3. Put $Y=\left(Z-\cup_{\lambda \in A} \Delta_{\lambda}^{k}\right) \cup\left(\cup_{\lambda \in A} \hat{\Delta}_{\lambda}^{k}\right)$. Then $Y$ is a $\bmod 2$ Euler space of pure dimension. Define $h: Z \rightarrow Y$ by $h \mid \Delta_{\lambda}^{k}=h_{\lambda}$ for $\lambda \in \Lambda$ and $h \mid\left(Z-\cup_{\lambda \in \Lambda} \Delta_{\lambda}^{k}\right)$ is the identity. By the construction, $h$ is a homotopy equivalence. Furthermore we
have that $\# h^{-1}(y) \equiv 0(\bmod 2)$ for $y \in h\left(\cup_{\lambda \in A}\right.$ Int $\left.\sigma_{\lambda}^{p}\right)$ and $\# h^{-1}(y) \equiv 1(\bmod 2)$ for $y \in h\left(Z-\bigcup_{\lambda \in \Lambda} \sigma_{\lambda}^{p}\right)$. By Lemma 5, we have $h_{*}\left(s_{i}(Z)\right)=s_{i}(Y)$ for $p<i \leqq k$ and $h_{*}(\alpha)=h_{*}\left(s_{p}(Z)-\left[c^{\prime}\right]\right)=s_{p}(Y)$. Define a PL-map $f: Y \rightarrow X$ by $f \mid \hat{\Delta}_{\lambda}^{k}=g_{\lambda}$ for $\lambda \in \Lambda$ and $f\left|\left(Z-\cup_{\lambda \in A} \Delta_{\lambda}^{k}\right)=g\right|\left(Z-\cup_{\lambda \in \Lambda} \Delta_{k}^{k}\right)$. By the construction, we have hof is homotopic to $g$.
q.e.d.

Proof of Lemma 2. For $i=1,2, \cdots, k-1$, let $\beta_{k-2}$ be a homology element of $H_{k-i}\left(Z ; \boldsymbol{Z}_{2}\right)$. By the induction on $l$, we prove Lemma 2. By Lemma 4, there exist a $k$-dimensional compact $\bmod 2$ Euler space $Y_{1}$, and a homotopy equivalence $h_{1}: Z \rightarrow Y_{1}$ and PL-embedding $g_{1}: Y_{1} \rightarrow X$ such that $g_{1} \circ h_{1}$ is homotopic to $g, h_{1 *}\left(s_{k}(Z)\right)=s_{k}\left(Y_{1}\right)$ and $h_{1 *}\left(\beta_{k-1}\right)=s_{k-1}\left(Y_{1}\right)$. Next we assume that $i<k-1$ and that there exist a $k$-dimensional compact mod 2 Euler space $Y_{\imath}$ of pure dimension, and furthermore a homotopy equivalence $h_{\imath}: Z \rightarrow Y_{\imath}$ and PL-embedding $g_{\imath}: Y_{i} \rightarrow X$ such that $g_{i} \circ h_{\imath}$ is homotopic to $g, h_{i *}\left(s_{k}(Z)\right)=s_{k}\left(Y_{\imath}\right)$ and $h_{i *}\left(\beta_{\jmath}\right)=$ $s_{j}\left(Y_{\imath}\right)$ for $k-i \leqq \jmath<k$. By Lemma 4, there exist a $k$-dimensional compact mod 2 Euler space $Y_{\imath+1}$ of pure dimension and furthermore a homotopy equivalence $h_{\imath+1}^{\prime}: Y_{i} \rightarrow Y_{\imath+1}$ and PL-embedding $g_{\imath+1}: Y_{\imath+1} \rightarrow X$ such that $g_{\imath+1} \circ h_{\imath+1}^{\prime}$ is homotopic to $g_{\imath}, h_{\imath+1 *}^{\prime}\left(s_{j}\left(Y_{\imath}\right)\right)=s_{j}\left(Y_{\imath+1}\right)$ for $k-i \leqq \jmath \leqq k$ and $h_{\imath+1 *}^{\prime}\left(h_{i *}\left(\beta_{k-\imath-1}\right)\right)=s_{k-\imath-1}\left(Y_{\imath+1}\right)$. Put $h_{\imath+1}=h_{\imath+1}^{\prime} \circ h_{\imath}: Y \rightarrow Y_{\imath+1}$. Then $g_{\imath+1} \circ h_{\imath+1}$ is homotopic to $g$ and $h_{\imath+1 *}\left(\beta_{\jmath}\right)=$ $s_{j}\left(Y_{\imath+1}\right)$ for $k-\imath-1 \leqq \jmath \leqq k$. Then, for $i=1,2, \cdots, k-1$, there exist $k$-dimensional compact $\bmod 2$ Euler spaces $Y_{2}$ of pure dimension, and homotopy equivalences $h_{2}: Z \rightarrow Y_{\imath}$ and $P L$-embeddings $g_{\imath}: Y_{i} \rightarrow X$ such that $g_{i} \circ h_{\imath}$ are homotopic to $g$, $h_{i *}\left(s_{k}(Z)\right)=s_{k}\left(Y_{\imath}\right)$ and $h_{i *}\left(\beta_{\jmath}\right)=s_{j}\left(Y_{\imath}\right)$ for $k-i \leqq \jmath<k$. Put $Y=Y_{k-1}, f=g_{k-1}$ : $Y \rightarrow X$ and $h=h_{k-1}: Z \rightarrow Y$. Then $f \circ h=g, \quad h_{*}\left(\beta_{j}\right)=s_{j}(Y)$ for $1 \leqq \jmath \leqq k-1$ and $h_{*}\left(s_{k}(Z)\right)=s_{k}(Y)$.
q.e.d.

## References

[1] E. Akin, Stiefel-Whitney homology classes and cobordism, Trans. Amer. Math, Soc., 205 (1975), 341-359.
[2] J. Cheeger, A combinatrial formula for Stiefel-Whitney classes, Topology of Manifolds, Cantrel and Edwards, eds., Markham Publ., 1970, 470-471.
[3] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math., 96 (1972), 511-525.
[4] A. Matsui, Stiefel-Whitney homology classes of $Z_{2}$-Poincaré-Euler spaces, Tôhoku Math. J., 35 (1983), 321-339.
[5] A. Matsul and H. Sato, Stiefel-Whitney homology classes and homotopy type of Euler spaces, J. Math. Soc. Japan, 37 (1985), 437-453.
[6] A. Matsui, Stiefel-Whitney homology classes and odd maps, Topology and Computer Science, Kinokuniya, 1987, 337-346.
[7] A. Matsui, Intersection formla for Stiefel-Whitney homology classes, Tôhoku Math. J., 40 (1988), 315-322.
[8] C. McCrory, Cone complexes and PL-transversality, Trans. Amer. Math. Soc., 207 (1975), 269-291.
[9] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies, 76, Princeton Univ. Press., 1974.
[10] D. Veljan, Axioms for Stiefel-Whitney homology classes of some singular spaces, Trans. Amer. Math. Soc., 277 (1983), 285-305.

Department of Mathematics
Faculty of Education
Fukushima University
Fukushima 960-12
Japan

