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1. Introduction and the statement of results

In [5], we gave the construction of integral (or mod 2) Euler spaces of a
given homotopy type such that the Stiefel-Whitney homology classes are equal
to any given homology elements. In this paper, we give a new construction
for mod 2 Euler spaces embedded in a given mod 2 Euler spaces such that the
Stiefel-Whitney homology classes are equal to any given homology elements of
the given space.

Let X be a locally compact ^-dimensional polyhedron. For a point x&X,
let %(X, X—x) denote the Euler number of the pair (X, X—x). The polyhedron
X is called a mod 2 Euler space if for each x^X, %(X, X—x)^l (mod2) (cf.
[1]> [3]) Let Kr denote the barycentric subdivision of a triangulation K of a
polyhedron X. If X is a mod 2 Euler space, the sum of all &-simplexes in Kr

is a mod 2 cycle and define an element sk(X) in Hk(X, Zz) (cf. [3]). The element
sk(X) is called the &-th Stiefel-Whitney homology classes of X. If X is a smooth
manifold, PL-manifold or Z2-homology manifold, the class $k(X) is known to be
the Poincare dual of the Stiefel-Whitney class wn"k(X) ([2], [3], [4], [10]).
Consequently, for such spaces, the Stiefel-Whitney homology classes are homotopy
invariant. But in the category of mod 2 Euler spaces, Stiefel-Whitney homology
classes are not generally homotopy invariant ([4], [5]). A polyhedron X is called
purely n-dimensional if the union of all rc-simplexes of a triangulation of X is
dense in X. In such case, X is said to be an n-dimensional polyhedron of pure
dimension. Our theorem is the following:

THEOREM. Let X be an n-dimensional mod 2 Euler space of pure dimension
and let αt be homology elements of Hi(X\ Z2) for *=0, 1, •••, n — 1. Then for
any k<n — l, there exist a k-dimensional compact mod2 Euler space Y of pure
dimension and a PL-embedding f:Y-*X such that f*Si(Y)=alf for all i^k.
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2. Proof of Theorem

To prove Theorem, we need the following lemmas. We devote section 3
and 4 to prove Lemma 2.

LEMMA 1. Let X be an n-dimensional compact mod 2 Euler space of pure
dimension. Let a be a homology element of Hk(X Z2) where k^n — l. Then
there exist a k-dimensional compact mod 2 Euler space Z of pure dimension
and a PL-embedding g\Z-^X such that g^sk(Z)—a, and for Q^i^k — 1,
g* : Hi(Z Z2)^Hi(X Z2) is a surjection.

Proof. Let T be a triangulation of X. Let c be a mod 2 &-cycle in T which
determines the homology class a. Let T' be the barycentric subdivision of T.
Then the cycle c is subdivided to the mod 2 &-cycle c' in T', which is denoted
by c'=*ΣιλζΞΛσλ. We denote by Ac the set all &-simρlexes of T'— {σ^heΛ Let
Tk be the &-skelton of T'. Then |T* is a mod 2 Euler space (Proposition 2.1
of [4]). For each reΛc, we choose a Pr in X such that Pr is joinable to τ
and such that Int(Pr*r)nInt(/V*r')=0 for different r, τ' in Λ c and (Pr*r)Γι|T* |
=r. We define Z by Z= | T* | VJ(UΓEΛC /V^r). Note that Pr*3r is a ^-dimensional
PL-ball. Since, for *eδr, ^{τ'eΛ'lδτ'^ c} ^0 (mod 2), it follows that Z is a
^-dimensional compact mod 2 Euler space of pure dimension. Let g : Z-^X be
the inclusion. Then by the construction we have g*sk(Z)=α, and for 0<,ι<^k — 1,
g* : Ht(Z Z2)-^Hl(X Z2) are surjections. q. e. d.

LEMMA 2. Let g : Z— >X be α PL-embedding of compact mod 2
of pure dimension. Assume that k<n, where dim^ί=n, dim Z—k. For i=l,
~ , k — 1, let βτ be a homology element of Ht(Z Z2). Then there exist a
k-dimensional compact mod 2 Euler space Y , and furthermore a homotopy equi-
valence h: Z-»Y and a PL-embedding f : Y—>X such that g is homotopic to f°h,
h*βt=Si(Y) for /=!, •••, &-1, and h*sk(Z)=sk(Y).

In Lemma 2, the construction of Y and h : Z-^Y is analogous to that in [5].
But we need to construct a PL-embedding / : Y-+X.

Proof of Theorem. By Lemma 1, there exist a ^-dimensional compact mod 2
Euler space Z of pure dimension and a PL-embedding g : Z-^X such that
g*sk(Z)=ak, and for l^i^k — 1, g* : Ht(Z Z^E^X Z2) is a surjection. Note
that *(ZVS*)^%(Z)+1 (mod2) and X(Sk\/Sk)^l (mod 2). Then we may assume
that g*s0(Z)= α0 Let βτ be the element of Hτ(Z Z2) such that g*βl = al for
/=0, 1, ••• , & — 1. By Lemma 2, there exist a ^-dimensional compact mod 2 Euler
space Y of pure dimension, and furthermore a homotopy equivalence h : Z—>Y
and a PL-embedding f:Y-*X such that g is homotopic to f°h, h^βl—sί(Y) for

2=0, 1, -, k-1, and Λ*^βΛ = sΛ(K). Then /*s<(F)=/*Λ*j8t=^*jS»=αt. q.e.d.
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3. An elementary lemma for simplexes

In this section, we consider quotient spaces of the simplex and prove an
elementary lemma which is necessary to prove Lemma 2. Let An and Δ* be
the n-simplex <ι;0, vlt ••-, vny and the ^-simplex (v0, vlf •••, vky, respectively,
where k<n. We will construct a quotient space A* of Δ* and a PL-embedding
g&:Ak-^An. Let σp be the /^-simplex <f0, vlf ••• , vpy in Δ*, where p<k. Let
τp be a ^-simplex <f0, MI, ••• , wp> which is linearly embedding in Δ* such that
rpπ9Δ*— zv Let #:<7p^rp be the linear map such that a(v0)—v0 and a(vz)=ut

for /=!, 2, •••, /?. We introduce an equivalence relation ~ on Ak as follows:
x^y if * — 3; or if a(x)=y for xeσ p . Let A* be the quotient space Δ*/~ and
h&:Ak-^Ak the projection. Let i:dAk-*Ak and j:Ak—»An be the inclusions. We
need the following lemma to prove Lemma 1 :

LEMMA 3. Let Δn, Δ*, σp and τp be simplexes such that σp-<Ak-<An and
that τp is a linear subspace of Δk as aboves, and let A* be the quotient space Ak/^.
Then there exists a PL-embedding gΔ'-Ak—>An such that gΔohΔ°i=j°i and

Δn.

Proof. Let τp be as aboves. Let τ' be any ^-simplex (VQ, u{, ••• , u'py
which is linear embedding in Δ* such that τ'Γ\dAk= VQ. Then there exists a
PL- homeomorphism h:Ak->Ak such that

(1) h\dAk is the identity,
(2) A(τ*)=τ',
(3) h(uz)=u't for ί = l, 2, - , /), and
(4) h\τp \τp-*τf is linear.

By the above, we may prove the lemma for a certain τp. First we define τp

as follows. Let G be the barycenter of Δ*. Put u0—v0. We denote by Int^Y
the interior of X. For z — 1, 2, •••, k, we choose points u% in Int<^, G>. We
define τp by rp— <MO, MI, •••, MP>. Next, to construct gΔ'.Ak-+An, we construct
a subset Ax of Δ71 which is PL-homeomorphic to Ak. Let G0 be the barycenter
of the simplex (vk+1, vk+z, •••, Vn>> Let G! be a point in Int G0*Δfe, where X*Y
is the join of X and F. Put a'Q— v0. For ί = l, 2, •••, k, let α{ be a point in
Int<Gι, i^i>. We denote by Ak the simplex <flί, αί, •••, flί>. Let G2 be a point
in Int G^Ak. Put W=Vo. Put Bk=(b'Q, b[, - , W>. For /=!, 2, ••• , k, we define
^ by b'i=<G2, Viyr\Ak. Forί=0, 1, -, ί, put uί=v j. For i=p + l, p+2, •••, ^,
let u( be a point in Int<6{, τ;t>. We denote by C^ the simplex <M{, wί, •••, u'ky.
We define Ax by A/-(G1*3Δ^-Int(G1*3Λ^))w(^'-ϊntβ*)U(G2*acA-Int(G2*35*))
UC*. Put <20— bo— VQ. For ί = l, 2, •••, k, we choose different points alt bt in
Int<Vi, w t> such that <^0, fti, ••• , bky«a0, aίt ••• , α*>. Put ^4=<β0, fli, ••• , aky,
B=(bQ, blr ••• , bky, C=<w0, ulf u2, ••- , uky. Then we have the decomposition of
Δ* as follows :

Δ*=(Δ*-Int A)\J(A-lnt B)\j(B-lnt C)\JC.
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Considering the construction of A' and the decomposition of Δ*, we can construct
a PL-homeomorphism g^:Ak-»A' such that, for /=0, 1, •••, k,

(1)
(2)
(3)
(4) £Λ β A Δ β ί = A Δ " ί .

We define gΔ'Δ*—>Δn by g&=j'°g&, where /':Δ'cΔΛ is the inclusion. Then
£ Δ oA Δ */=/.ί and £Δ(Δ* — A Δ ι(3Δ*))ciIntΔn. q.e.d.

4. Proof of Lemma 2

We need the following lemma at the induction step in the proof of Lemma 2.

LEMMA 4. Let g: Z—»X be a PL-embedding of compact mod 2 Euler spaces
of pure dimension. Let a be a homology element of HP(Z Z2). Suppose that
0<jfr<£<w, where άimX=n and άimZ=k. Then there exist compact k-dimen-
sional mod 2 Euler space Y of pure dimension and futhermore a homotopy
equivalence h:Z—+Y and a PL-embedding f:Y—»X such that h*(a)—sp(Y),
A*(Si(Z))=Sί(F) for p<i^k and f h is homotopic to g.

The following lemma (cf. Lemma 2.4 in [5]) is immediately induced from
the definition of Stiefel-Whitney homology classes and homology groups. So
we omit the proof.

LEMMA 5. Let h:K-»L be a surjective simplicial map, where Z—\K\ and
Y—\L\ are compact mod2 Euler spaces with same pure dimension. Let c—^χ^A^λ
be a mod 2 p-cycle, where (θλ}λ&Λ is a set of p-simplexes in K. Suppose
that #h~\y)^Q (mod 2) for y^h(\Jλ(ΞΛ\n\, σ λ ] and #h~\y)^l (mod 2) for
ytΞh(Z-\Jλ(ΞΛσλ\ Then A*(si(Z))=s<(r) for i>p and Λ*(sp(Z)-M)=sp(r),
where \_c] is a homology class in HP(Z Z2) defined by the chain c.

Proof of Lemma 4. Let T be a triangulation of X and let K be the sub-
complex which is a triangulation of g(Z). We may suppose that Link(σ T)Γ\
Link^, T)=0 for different &-simplexes σ and a' in K. Let c be a mod 2 cycle
which is a sum of />-simplexes of K, such that M — sp(Z}—a in HP(Z Z2).
Let T' and Kf be the barycentric subdivision of T and K, respectively. Let
c' — Σiλ&Λtf1* be the barycentric subdivision of c. For each λ&Λ, choose a
^-simplex Δ^ in K' and an n-simplex ΔJ in T' — K' such that tf'KΔ KΔJ. Let
vχ be a vertex of σpχ. Choose ^-simplex τ\ linearly embedded in ΔJ such that
r^π9Δ*—vι. As in Lemma 3, let Δ* be the quotient space of Δ$ and hλ :Δ HΔ [
the projection. Furthermore let gλ : ΔJ->Δ? be the PL-embedding as in Lemma
3. Put F=(Z-UjeΛΔ$MUjeΛΔS). Then Y is a mod 2 Euler space of pure
dimension. Define A : Z->Y by A |ΔJ=Λ; ι for λ^Λ and A | (Z—\J λ ς Ξ A Δ\) is the
identity. By the construction, A is a homotopy equivalence. Furthermore we
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have that #h-\y)=Q (mod 2) for y^h(\J2GAlnt σp

λ) and #h~l(y)=l (mod 2) for
y^h(Z—\J^A<*pλ)> By Lemma 5, we have A*(s*(Z))—s*(F) for p<i^k and
A*(α)-A*(sp(Z)-[c'])=sp(F). Define a PL-map /:F-X by f\L\=gι for Λ e Λ
and /|(Z —U;ieΛΔ*)=gi(Z—U^A;). By the construction, we have A « / is
homotopic to g. q.e.cl.

/V00/ 0/ Lemma 2. For /—I, 2, •••, £ —1, let β*_ t be a homology element
of Hk_ι(Z Z2). By the induction on 2, we prove Lemma 2. By Lemma 4,
there exist a /^-dimensional compact mod 2 Euler space Y l f and a homotopy
equivalence / i i : Z—»FΊ and PL-embedding §Ί : Y^-^X such that £ι°Aι is homotopic
to g, /iι*(s*(Z))=sjfe(Fι) and A1;ί;(/3*-ι)=S£_ι(Fι). Next we assume that i<k — l
and that there exist a ^-dimensional compact mod 2 Euler space Yl of pure
dimension, and furthermore a homotopy equivalence hl: Z-^Yτ and PL-embedding
gt:Yi-^X such that £ί o A t is homotopic to g, Ai#(s*(Z))=s*(F t) and hi*(βj)—
Sj(Yτ) for k—i<j<k. By Lemma 4, there exist a ^-dimensional compact mod 2
Euler space F l+1 of pure dimension and furthermore a homotopy equivalence
A ί + 1 : Yi-*Yl+l and PL-embedding ^ ΐ+1 : Yl+l->X such that gl+1°hi+ί is homotopic
to gt, Aί+1*(sχr t))=sχF l+ι) for k-i^j^k and Ai+i*(A< J | s( j8*_ l-i))=s*- l_ 1(r t +i).
Put A l + 1 = A ί + 1 ° A t :F-»Ft+ι. Then gl+ί°hl+ί is homotopic to 5- and /zl+1*(/3;)—
s/Fi+i) for k—ι — l<j<k. Then, for/—I, 2, •••, ^ — 1, there exist ^-dimensional
compact mod 2 Euler spaces Yι of pure dimension, and homotopy equivalences
hl:Z-*Yl and PL-embeddings gl\Yi-^X such that gi°hτ are homotopic to g,
hίήί(sk(Z))=sk(Yl) and Ai*(j8,)=sχrl) for k-i^j<k. PutY=Yk-l9f=gk.l:
Y-+X and A-A^^Z-F. Then f h=g, A*(^)=sXK) for l^ ^^-l and
A*(s,(Z))-s,(F). q.e.d.
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