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1. Introduction and the statement of results

In [5], we gave the construction of integral (or mod 2) Euler spaces of a
given homotopy type such that the Stiefel-Whitney homology classes are equal
to any given homology elements. In this paper, we give a new construction
for mod 2 Euler spaces embedded in a given mod 2 Euler spaces such that the
Stiefel-Whitney homology classes are equal to any given homology elements of
the given space.

Let X be a locally compact n-dimensional polyhedron. For a point x&X,
let X(X, X—x) denote the Euler number of the pair (X, X—x). The polyhedron
X is called a mod2 Euler space if for each xeX, XX, X—x)=1 (mod 2) (cf.
[1], [3]). Let K’ denote the barycentric subdivision of a triangulation K of a
polyhedron X. If X is a mod 2 Euler space, the sum of all k-simplexes in K’
is a mod 2 cycle and define an element s,(X) in H.(X, Z,) (cf. [3]). The element
sx(X) is called the k-th Stiefel-Whitney homology classes of X. If X is a smooth
manifold, PL-manifold or Z,-homology manifold, the class s,(X) is known to be
the Poincaré dual of the Stiefel-Whitney class w™ *(X) ([2], [3], [4], [10]).
Consequently, for such spaces, the Stiefel-Whitney homology classes are homotopy
invariant. But in the category of mod 2 Euler spaces, Stiefel-Whitney homology
classes are not generally homotopy invariant ([4], [5]). A polyhedron X is called
purely n-dimensional if the union of all n-simplexes of a triangulation of X is
dense in X. In such case, X is said to be an n-dimensional polyhedron of pure
dimension. Our theorem is the following:

THEOREM. Let X be an n-dimensional mod 2 Euler space of pure dimension
and let @, be homology elements of H(X ; Z;) for :=0, 1, ---, n—1. Then for
any k<n—1, there exist a k-dimensional compact mod 2 Euler space Y of pure
dimension and a PL-embedding f:Y —X such that fsxs,(Y)=a,, for all 1<k.

Received April 25, 1994 ; revised December 22, 1994.
481



482 AKINORI MATSUI

2. Proof of Theorem

To prove Theorem, we need the following lemmas. We devote section 3
and 4 to prove Lemma 2.

LEMMA 1. Let X be an n-dimensional compact mod 2 FEuler space of pure
dimension. Let a be a homology element of Hy(X ; Z,) where k<n—1. Then
there exist a k-dimensional compact mod2 Euler space Z of pure dimension
and a PL-embedding g:Z—X such that gusi(Z)=a, and for 0=:<k—1,
gy« H(Z ; Z,)~H(X ; Z,) is a surjection.

Proof. Let T be a triangulation of X. Let ¢ be a mod 2 k-cycle in T which
determines the homology class @. Let T’ be the barycentric subdivision of T.
Then the cycle ¢ is subdivided to the mod 2 k-cycle ¢’ in T’, which is denoted
by ¢/’=3:c10:. We denote by A° the set all k-simplexes of 7/—{0;}1c4. Let
T* be the k-skelton of T’. Then |T*| is a mod 2 Euler space (Proposition 2.1
of [4]). For each r= A°, we choose a P, in X such that P, is joinable to =
and such that Int(Psr)N\Int(P, +r')=0 for different z, v/ in A° and (P*7)N\|T*|
=7. We define Z by Z=|T*#|\U(U.cs¢ P¥07). Note that P,x0dr is a k-dimensional
PL-ball. Since, for x€0r, # {t'€A°|0t’2x} =0 (mod 2), it follows that Z is a
k-dimensional compact mod 2 Euler space of pure dimension. Let g:Z—X be
the inclusion. Then by the construction we have g«s.(Z)=a, and for 0<:<k—1,
g« H(Z ; Z,)~H(X ; Z,) are surjections. g.e.d.

LEMMA 2. Let g: Z—X be a PL-embedding of compact mod 2 Euler spaces
of pure dimension. Assume that k<n, where dim X=n, dim Z=Fk. For i=1,
v, k=1, let B, be a homology element of H(Z;Z,). Then there exist a
k-dimensional compact mod 2 Euler space Y, and furthermore a homotopy equi-
valence h:Z—Y and a PL-embedding f:Y —X such that g is homotopic to feh,
h*‘Bt:St(Y) for Z=1, ey, k'—'l, and h*Sk(Z>=Sk(Y).

In Lemma 2, the construction of ¥ and A :Z—Y is analogous to that in [5].
But we need to construct a PL-embedding f:Y —X.

Proof of Theorem. By Lemma 1, there exist a k-dimensional compact mod 2
Euler space Z of pure dimension and a PL-embedding g:Z—X such that
gxsi(Z)=a,, and for 1=i<k—1, g«: H(Z ; Z,)->H{(X ; Z,) is a surjection. Note
that X(ZVS*)=X(Z)+1 (mod 2) and X(S*\V/S*)=1 (mod 2). Then we may assume
that g«s(Z)=a,. Let B, be the element of H.(Z; Z,) such that g«f.,=a, for
1=0, 1, ---, k—1. By Lemma 2, there exist a k-dimensional compact mod 2 Euler
space Y of pure dimension, and furthermore a homotopy equivalence h:Z—Y
and a PL-embedding f:Y—X such that g is homotopic to feh, hxB,=s,Y) for
1=0, 1, -, k—1, and hxBr=s.(Y). Then fus(¥V)=fshsB.=gxp.=a.. q.e.d.
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3. An elementary lemma for simplexes

In this section, we consider quotient spaces of the simplex and prove an
elementary lemma which is necessary to prove Lemma 2. Let A" and A* be
the n-simplex <v,, vy, ==-, v,» and the k-simplex <v,, vy, -+, vy, respectively,
where 2 <n. We will construct a quotient space A* of A* and a PL-embedding
ga:A*—A™. Let o? be the p-simplex <v,, vy, -+, vp> in A*, where p<k. Let
7? be a p-simplex <v,, Uy, -, up» which is linearly embedding in A* such that
?MO0A*=v,. Let a:06P—7? be the linear map such that a(v,)=v, and a(v,)=u,
for i=1, 2, ---, p. We introduce an equivalence relation ~ on A* as follows:
x~y if x=y or if a(x)=y for x=a?. Let A* be the quotient space A*/~ and
hy : A*—AF the projection. Let 7:0A*—A* and j:A*—A"™ be the inclusions. We
need the following lemma to prove Lemma 1:

LEMMA 3. Let A™, A%, 6P and P be simplexes such that oP<A*<A"™ and
that t® is a linearsubspace of A* as aboves, and let A* be the quotient space A*/~.
Then there exists a PL-embedding ga:A*—A" such that gaohpei=j-i and
ga(A* — hpoi(0A*))CInt A™.

Proof. Let P be as aboves. Let 7/ be any p-simplex <v,, ui, -+, upy
which is linear embedding in A* such that ¢/"\0A*=v,. Then there exists a
PL- homeomorphism & :A*—A* such that

(1) h|0A* is the identity,

2) h(z?)=7’,

3) h(u,)=u; for 1=1, 2, ---, p, and

(4) hl|t?:rP—7’ is linear.

By the above, we may prove the lemma for a certain t?. First we define z?
as follows. Let G be the barycenter of A*. Put u,=v,. We denote by Int X
the interior of X. For i=1, 2, ---, k, we choose points u, in Int{v,, G). We
define 72 by 77=<u,, Uy, -+, Upy. Next, to construct gA:A"—>A”, we construct
a subset A’ of A" which is PL-homeomorphic to A*. Let G, be the barycenter
of the simplex V.1, Vrsse -+, Unp. Let G; be a point in Int Gy*A¥, where XxY
is the join of X and Y. Put a;=v,. For 7=1, 2, ---, k, let a; be a point in
Int{G,, v;>. We denote by A* the simplex <{ay, a{, -+, a;>. Let G, be a point
in Int G,*A*. Put bi=v,. Put B*=<¥b{, b}, ---, bi>. For i=1, 2, ---, k, we define
b; by bi=<G,, vi>NA*. Fori=0, 1, ---, p, put u;=v;. Fori=p+1, p+2, -, k&,
let u, be a point in Int<{b}, v,>. We denote by C* the simplex {uj, uj, -, up.
We define A’ by A’ =(G %0A* —Int(G*0 A*))\ (A% —Int B\ J(G,#0C* —Int(G,*x0B*))

JC*. Put ay=by=v,. For i=1, 2, ---, k, we choose different points a,, b; in
Int{v;, u,> such that <b,, by, -, bp><ay, @y, ---, ary. Put A=<a,, a,, -+, a),
B=<b,, by, -, br>, C=<u,, U, 4y, -+, upry. Then we have the decomposition of

A* as follows:
A*=(A*—Int A)U(A—Int B)U(B—Int C)UC.
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Considering the construction of A’ and the decomposition of A*, we can construct
a PL-homeomorphism g} :A*—A’ such that, for i=0, 1, ---, k,

(1) githala))=a;

2)  gh(ha(b))=0b;

3) galha(u))=u;

(4) ghohavi=hai. )
We define ga:A*—A™ by ga=j’-g}4, where j/:A’CA™ is the inclusion. Then
gachaoi=jei and ga(A*—h,-i(0A*)CInt A™. g.e.d.

4. Proof of Lemma 2

We need the following lemma at the induction step in the proof of Lemma 2.

LEMMA 4. Let g: Z—X be a PL-embedding of compact mod 2 Euler spaces
of pure dimension. Let a be a homology element of H(Z ; Z;). Suppose that
0<p<k<n, where dim X=n and dim Z=*k. Then there exist compact k-dimen-
sional mod 2 Euler space Y of pure dimension and futhermore a homotopy
equivalence h:Z—Y and a PL-embedding f:Y—X such that hy(a)=s,(Y),
h(s:(Z2))=sY) for p<i<k and f-h is homotopic to g.

The following lemma (cf. Lemma 2.4 in [5]) is immediately induced from
the definition of Stiefel-Whitney homology classes and homology groups. So
we omit the proof.

LEMMA 5. Let h: K—L be a surjective simplicial map, where Z=|K| and
Y=|L| are compact mod 2 Euler spaces with same pure dimension. Let ¢=2]1c40
be a mod2 p-cycle, where {0:}3c4 is a set of p-simplexes in K. Suppose
that #h (y)=0 (mod2) for yeh(\Uieslnte;) and #h '(y)=1 (mod2) for
YEMZ—\Usea01). Then hy(s{(Z)=sY) for i>p and hu(sp(Z)—[c])=s,Y),
where [c] is a homology class in H,(Z ; Z,) defined by the chain c.

Proof of Lemma 4. Let T be a triangulation of X and let K be the sub-
complex which is a triangulation of g(Z). We may suppose that Link(g; T)N
Link(¢’, T)=0 for different k-simplexes ¢ and ¢’ in K. Let ¢ be a mod 2 cycle
which is a sum of p-simplexes of K, such that [¢]=s,(Z)—a in H)(Z ; Z,).
Let T/ and K’ be the barycentric subdivision of 7 and K, respectively. Let
¢’=311c40% be the barycentric subdivision of ¢. For each A€/, choose a
k-simplex A% in K’ and an n-simplex A7 in T’—K’ such that ¢3<{A%<A%. Let
vz be a vertex of ¢4. Choose p-simplex 7% linearly embedded in A% such that
BM0A%=v;. As in Lemma 3, let A% be the quotient space of A%and £, : As—A%
the projection. Furthermore let g, :A%—A? be the PL-embedding as in Lemma
3. Put Y=(Z—\U;e4A)\U(U1csA%. Then Y is a mod 2 Euler space of pure
dimension. Define h:Z—Y by h|Ai=h; for A4 and h{(Z—\U;c44% is the
identity. By the construction, h is a homotopy equivalence. Furthermore we
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have that #4 ' (y)=0 (mod 2) for yh(\J,e4Int ¢8) and #h (y)=1 (mod 2) for
yeZ—\Uics03). By Lemma 5, we have hu(s(Z))=s,Y) for p<i<k and
ha(@)=h(sp,(Z)—[c’])=5,(Y). Define a PL-map f:Y —X by f|Ai=g; for 24
and f|(Z—\Ue18)=g[(Z—\U1es4%). By the construction, we have hof is
homotopic to g. q.e.d.

Proof of Lemma 2. For i=1, 2, -, k—1, let B;-, be a homology element

of H,_(Z; Z,). By the induction on : we prove Lemma 2. By Lemma 4,
there exist a k-dimensional compact mod2 Euler space Y,, and a homotopy
equivalence A, : Z—Y, and PL-embedding g, :Y,—X such that g,-h, is homotopic
to g, hix(si(Z))=s,(Y ) and h;x(Br-1)=s,-(Y ). Next we assume that i<k—1
and that there exist a k-dimensional compact mod 2 Euler space Y, of pure
dimension, and furthermore a homotopy equivalence h,: Z—Y, and PL-embedding
g.:Y—X such that g;-h, is homotopic to g, h;x(s:(Z))=s,(Y.) and h(8,)=
s{(Y,) for k—i<j<k. By Lemma 4, there exist a k-dimensional compact mod 2
Euler space Y,,, of pure dimension and furthermore a homotopy equivalence
141:Y—Y,,, and PL-embedding g,,,:Y.,,—X such that g,.,°h;,; is homotopic
to 2y, ALax(s;(Y )=5;Y 1) for k—i<7<k and Al w(Ro(Br-oa))=Sk-0o1(Y esr).
Put h,,,=hi,oh,:Y—Y,,,. Then g,,;°h,,; is homotopic to g and h,,.x(8,)=
sj(Y 1) for k—1—1<;7<k. Then, for =1, 2, ---, k—1, there exist k-dimensional
compact mod 2 Euler spaces Y, of pure dimension, and homotopy equivalences
h,:Z—Y, and PL-embeddings g,:Y;—X such that g;-h, are homotopic to g,
hix(se(Z)=5,(Y,) and hu(B,)=s;(Y,) for k—i=<j<<k. Put Y=Y, f=g,.::
Y—X and h=h,_,: Z-Y. Then feh=g, h«(B,)=s;Y) for 1<7<k—1 and
h*(Sk(Z)):Sk(Y). q.e. d.
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