A. MATSUI KODAI MATH. J. 18 (1995), 481-486

STIEFEL-WHITNEY HOMOLOGY CLASSES AND EULER SUBSPACES

Dedicated to Professor Seiya Sasao on his 60th birthday

AKINORI MATSUI

1. Introduction and the statement of results

In [5], we gave the construction of integral (or mod 2) Euler spaces of a given homotopy type such that the Stiefel-Whitney homology classes are equal to any given homology elements. In this paper, we give a new construction for mod 2 Euler spaces embedded in a given mod 2 Euler spaces such that the Stiefel-Whitney homology classes are equal to any given homology elements of the given space.

Let X be a locally compact n-dimensional polyhedron. For a point $x \in X$, let $\chi(X, X-x)$ denote the Euler number of the pair (X, X-x). The polyhedron X is called a mod 2 Euler space if for each $x \in X$, $\chi(X, X-x) \equiv 1 \pmod{2}$ (cf. [1], [3]). Let K' denote the barycentric subdivision of a triangulation K of a polyhedron X. If X is a mod 2 Euler space, the sum of all k-simplexes in K' is a mod 2 cycle and define an element $s_k(X)$ in $H_k(X, \mathbb{Z}_2)$ (cf. [3]). The element $s_k(X)$ is called the k-th Stiefel-Whitney homology classes of X. If X is a smooth manifold, PL-manifold or \mathbb{Z}_2 -homology manifold, the class $s_k(X)$ is known to be the Poincaré dual of the Stiefel-Whitney class $w^{n-k}(X)$ ([2], [3], [4], [10]). Consequently, for such spaces, the Stiefel-Whitney homology classes are homotopy invariant. But in the category of mod 2 Euler spaces, Stiefel-Whitney homology classes are not generally homotopy invariant ([4], [5]). A polyhedron X is called purely n-dimensional if the union of all n-simplexes of a triangulation of X is dense in X. In such case, X is said to be an n-dimensional polyhedron of pure dimension. Our theorem is the following:

THEOREM. Let X be an n-dimensional mod 2 Euler space of pure dimension and let α_i be homology elements of $H_i(X; \mathbb{Z}_2)$ for $i=0, 1, \dots, n-1$. Then for any $k \leq n-1$, there exist a k-dimensional compact mod 2 Euler space Y of pure dimension and a PL-embedding $f: Y \rightarrow X$ such that $f_*s_i(Y) = \alpha_i$, for all $i \leq k$.

Received April 25, 1994; revised December 22, 1994.

AKINORI MATSUI

2. Proof of Theorem

To prove Theorem, we need the following lemmas. We devote section 3 and 4 to prove Lemma 2.

LEMMA 1. Let X be an n-dimensional compact mod 2 Euler space of pure dimension. Let α be a homology element of $H_k(X; \mathbb{Z}_2)$ where $k \leq n-1$. Then there exist a k-dimensional compact mod 2 Euler space Z of pure dimension and a PL-embedding $g: Z \rightarrow X$ such that $g_* s_k(Z) = \alpha$, and for $0 \leq i \leq k-1$, $g_*: H_i(Z; \mathbb{Z}_2) \rightarrow H_i(X; \mathbb{Z}_2)$ is a surjection.

Proof. Let T be a triangulation of X. Let c be a mod 2 k-cycle in T which determines the homology class α . Let T' be the barycentric subdivision of T. Then the cycle c is subdivided to the mod 2 k-cycle c' in T', which is denoted by $c' = \sum_{\lambda \in A} \sigma_{\lambda}$. We denote by Λ^c the set all k-simplexes of $T' - \{\sigma_{\lambda}\}_{\lambda \in A}$. Let T^k be the k-skelton of T'. Then $|T^k|$ is a mod 2 Euler space (Proposition 2.1 of [4]). For each $\tau \in \Lambda^c$, we choose a P_r in X such that P_r is joinable to τ and such that $Int(P_r * \tau) \cap Int(P_r * \tau') = \emptyset$ for different τ , τ' in Λ^c and $(P_r * \tau) \cap |T^k| = \tau$. We define Z by $Z = |T^k| \cup (\bigcup_{\tau \in \Lambda^c} P_r * \partial \tau)$. Note that $P_r * \partial \tau$ is a k-dimensional PL-ball. Since, for $x \in \partial \tau$, $\# \{\tau' \in \Lambda^c \mid \partial \tau' \ni x\} \equiv 0 \pmod{2}$, it follows that Z is a k-dimensional compact mod 2 Euler space of pure dimension. Let $g: Z \to X$ be the inclusion. Then by the construction we have $g_* s_k(Z) = \alpha$, and for $0 \leq i \leq k-1$, $g_*: H_i(Z; Z_2) \to H_i(X; Z_2)$ are surjections.

LEMMA 2. Let $g: Z \to X$ be a PL-embedding of compact mod 2 Euler spaces of pure dimension. Assume that k < n, where dim X = n, dim Z = k. For i = 1, \dots , k-1, let β_i be a homology element of $H_i(Z; \mathbb{Z}_2)$. Then there exist a k-dimensional compact mod 2 Euler space Y, and furthermore a homotopy equivalence $h: Z \to Y$ and a PL-embedding $f: Y \to X$ such that g is homotopic to $f \circ h$, $h_*\beta_i = s_i(Y)$ for $i = 1, \dots, k-1$, and $h_*s_k(Z) = s_k(Y)$.

In Lemma 2, the construction of Y and $h: Z \rightarrow Y$ is analogous to that in [5]. But we need to construct a PL-embedding $f: Y \rightarrow X$.

Proof of Theorem. By Lemma 1, there exist a k-dimensional compact mod 2 Euler space Z of pure dimension and a PL-embedding $g: Z \to X$ such that $g_*s_k(Z) = \alpha_k$, and for $1 \le i \le k-1$, $g_*: H_i(Z; \mathbb{Z}_2) \to H_i(X; \mathbb{Z}_2)$ is a surjection. Note that $\chi(Z \lor S^k) = \chi(Z) + 1 \pmod{2}$ and $\chi(S^k \lor S^k) = 1 \pmod{2}$. Then we may assume that $g_*s_0(Z) = \alpha_0$. Let β_i be the element of $H_i(Z; \mathbb{Z}_2)$ such that $g_*\beta_i = \alpha_i$ for $i=0, 1, \cdots, k-1$. By Lemma 2, there exist a k-dimensional compact mod 2 Euler space Y of pure dimension, and furthermore a homotopy equivalence $h: Z \to Y$ and a PL-embedding $f: Y \to X$ such that g is homotopic to $f \circ h$, $h_*\beta_i = s_i(Y)$ for $i=0, 1, \cdots, k-1$, and $h_*\beta_k = s_k(Y)$. Then $f_*s_i(Y) = f_*h_*\beta_i = g_*\beta_i = \alpha_i$. q.e.d.

3. An elementary lemma for simplexes

In this section, we consider quotient spaces of the simplex and prove an elementary lemma which is necessary to prove Lemma 2. Let Δ^n and Δ^k be the *n*-simplex $\langle v_0, v_1, \dots, v_n \rangle$ and the *k*-simplex $\langle v_0, v_1, \dots, v_k \rangle$, respectively, where k < n. We will construct a quotient space $\hat{\Delta}^k$ of Δ^k and a PL-embedding $g_{\Delta}: \hat{\Delta}^k \to \Delta^n$. Let σ^p be the *p*-simplex $\langle v_0, v_1, \dots, v_p \rangle$ in Δ^k , where p < k. Let τ^p be a *p*-simplex $\langle v_0, u_1, \dots, u_p \rangle$ which is linearly embedding in Δ^k such that $\tau^p \cap \partial \Delta^k = v_0$. Let $\alpha: \sigma^p \to \tau^p$ be the linear map such that $\alpha(v_0) = v_0$ and $\alpha(v_i) = u_i$ for $i=1, 2, \dots, p$. We introduce an equivalence relation \sim on Δ^k as follows: $x \sim y$ if x = y or if $\alpha(x) = y$ for $x \in \sigma^p$. Let $\hat{\Delta}^k$ be the quotient space Δ^k / \sim and $h_{\Delta}: \Delta^k \to \hat{\Delta}^k$ the projection. Let $i: \partial \Delta^k \to \Delta^k$ and $j: \Delta^k \to \Delta^n$ be the inclusions. We need the following lemma to prove Lemma 1:

LEMMA 3. Let Δ^n , Δ^k , σ^p and τ^p be simplexes such that $\sigma^p \ll \Delta^k \ll \Delta^n$ and that τ^p is a linear subspace of Δ^k as aboves, and let $\hat{\Delta}^k$ be the quotient space Δ^k / \sim . Then there exists a PL-embedding $g_{\Delta}: \hat{\Delta}^k \to \Delta^n$ such that $g_{\Delta} \circ h_{\Delta} \circ i = j \circ i$ and $g_{\Delta}(\hat{\Delta}^k - h_{\Delta} \circ i(\partial \Delta^k)) \subset \operatorname{Int} \Delta^n$.

Proof. Let τ^p be as aboves. Let τ' be any *p*-simplex $\langle v_0, u'_1, \cdots, u'_p \rangle$ which is linear embedding in Δ^k such that $\tau' \cap \partial \Delta^k = v_0$. Then there exists a *PL*-homeomorphism $h: \Delta^k \to \Delta^k$ such that

- (1) $h \mid \partial \Delta^k$ is the identity,
- (2) $h(\tau^p) = \tau'$,
- (3) $h(u_i) = u'_i$ for $i=1, 2, \dots, p$, and
- (4) $h | \tau^p : \tau^p \rightarrow \tau'$ is linear.

By the above, we may prove the lemma for a certain τ^p . First we define τ^p as follows. Let G be the barycenter of Δ^k . Put $u_0 = v_0$. We denote by Int X the interior of X. For $i=1, 2, \dots, k$, we choose points u_i in $Int\langle v_i, G \rangle$. We define τ^p by $\tau^p = \langle u_0, u_1, \cdots, u_p \rangle$. Next, to construct $g_{\Delta} : \hat{\Delta}^k \to \Delta^n$, we construct a subset $\hat{\Delta}'$ of Δ^n which is *PL*-homeomorphic to $\hat{\Delta}^k$. Let G_0 be the barycenter of the simplex $\langle v_{k+1}, v_{k+2}, \dots, v_n \rangle$. Let G_1 be a point in Int $G_0 * \Delta^k$, where X * Yis the join of X and Y. Put $a'_0 = v_0$. For $i=1, 2, \dots, k$, let a'_i be a point in Int $\langle G_1, v_i \rangle$. We denote by A^k the simplex $\langle a'_0, a'_1, \cdots, a'_k \rangle$. Let G_2 be a point in Int $G_1 * A^k$. Put $b'_0 = v_0$. Put $B^k = \langle b'_0, b'_1, \dots, b'_k \rangle$. For $i=1, 2, \dots, k$, we define b'_i by $b'_i = \langle G_2, v_i \rangle \cap A^k$. For $i=0, 1, \dots, p$, put $u'_i = v_i$. For $i=p+1, p+2, \dots, k$, let u'_i be a point in Int $\langle b'_i, v_i \rangle$. We denote by C^k the simplex $\langle u'_0, u'_1, \cdots, u'_k \rangle$. We define $\hat{\Delta}'$ by $\hat{\Delta}' = (G_1 * \partial \Delta^k - \operatorname{Int}(G_1 * \partial A^k)) \cup (A^k - \operatorname{Int} B^k) \cup (G_2 * \partial C^k - \operatorname{Int}(G_2 * \partial B^k))$ $\cup C^k$. Put $a_0 = b_0 = v_0$. For $i = 1, 2, \dots, k$, we choose different points a_i, b_i in $Int\langle v_i, u_i\rangle \text{ such that } \langle b_0, b_1, \cdots, b_k\rangle \prec \langle a_0, a_1, \cdots, a_k\rangle. Put A = \langle a_0, a_1, \cdots, a_k\rangle,$ $B = \langle b_0, b_1, \dots, b_k \rangle$, $C = \langle u_0, u_1, u_2, \dots, u_k \rangle$. Then we have the decomposition of Δ^k as follows:

 $\Delta^{k} = (\Delta^{k} - \operatorname{Int} A) \cup (A - \operatorname{Int} B) \cup (B - \operatorname{Int} C) \cup C.$

AKINORI MATSUI

Considering the construction of $\hat{\Delta}'$ and the decomposition of Δ^k , we can construct a PL-homeomorphism $g'_{\Delta}: \hat{\Delta}^k \to \hat{\Delta}'$ such that, for $i=0, 1, \dots, k$,

- (1) $g'_{\Delta}(h_{\Delta}(a_{\iota})) = a'_{\iota}$
- (2) $g'_{\Delta}(h_{\Delta}(b_i)) = b'_i$
- (3) $g'_{\Delta}(h_{\Delta}(u_{\iota})) = u'_{\iota}$
- (4) $g'_{\Delta} \circ h_{\Delta} \circ i = h_{\Delta} \circ i$.

We define $g_{\Delta}: \hat{\Delta}^k \to \Delta^n$ by $g_{\Delta} = j' \circ g'_{\Delta}$, where $j': \hat{\Delta}' \subset \Delta^n$ is the inclusion. Then $g_{\Delta} \circ h_{\Delta} \circ i = j \circ i$ and $g_{\Delta}(\hat{\Delta}^k - h_{\Delta} \circ i(\partial \Delta^k)) \subset \operatorname{Int} \Delta^n$. q.e.d.

4. Proof of Lemma 2

We need the following lemma at the induction step in the proof of Lemma 2.

LEMMA 4. Let $g: Z \to X$ be a PL-embedding of compact mod 2 Euler spaces of pure dimension. Let α be a homology element of $H_p(Z; \mathbb{Z}_2)$. Suppose that 0 , where dim <math>X = n and dim Z = k. Then there exist compact k-dimensional mod 2 Euler space Y of pure dimension and futhermore a homotopy equivalence $h: Z \to Y$ and a PL-embedding $f: Y \to X$ such that $h_*(\alpha) = s_p(Y)$, $h_*(s_i(Z)) = s_i(Y)$ for $p < i \le k$ and $f \circ h$ is homotopic to g.

The following lemma (cf. Lemma 2.4 in [5]) is immediately induced from the definition of Stiefel-Whitney homology classes and homology groups. So we omit the proof.

LEMMA 5. Let $h: K \to L$ be a surjective simplicial map, where Z = |K| and Y = |L| are compact mod 2 Euler spaces with same pure dimension. Let $c = \sum_{\lambda \in \Lambda} \sigma_{\lambda}$ be a mod 2 p-cycle, where $\{\sigma_{\lambda}\}_{\lambda \in \Lambda}$ is a set of p-simplexes in K. Suppose that $\#h^{-1}(y) \equiv 0 \pmod{2}$ for $y \in h(\bigcup_{\lambda \in \Lambda} \operatorname{Int} \sigma_{\lambda})$ and $\#h^{-1}(y) \equiv 1 \pmod{2}$ for $y \in h(Z - \bigcup_{\lambda \in \Lambda} \sigma_{\lambda})$. Then $h_*(s_i(Z)) = s_i(Y)$ for i > p and $h_*(s_p(Z) - [c]) = s_p(Y)$, where [c] is a homology class in $H_p(Z; Z_2)$ defined by the chain c.

Proof of Lemma 4. Let T be a triangulation of X and let K be the subcomplex which is a triangulation of g(Z). We may suppose that $\text{Link}(\sigma; T) \cap$ $\text{Link}(\sigma', T)=\emptyset$ for different k-simplexes σ and σ' in K. Let c be a mod 2 cycle which is a sum of p-simplexes of K, such that $[c]=s_p(Z)-\alpha$ in $H_p(Z; Z_2)$. Let T' and K' be the barycentric subdivision of T and K, respectively. Let $c'=\sum_{\lambda\in\Lambda}\sigma_{\lambda}^{p}$ be the barycentric subdivision of c. For each $\lambda\in\Lambda$, choose a k-simplex Δ_{λ}^{k} in K' and an n-simplex Δ_{λ}^{n} in T'-K' such that $\sigma_{\lambda}^{n} \prec \Delta_{\lambda}^{k} \prec \Delta_{\lambda}^{n}$. Let v_{λ} be a vertex of σ_{λ}^{p} . Choose p-simplex τ_{λ}^{p} linearly embedded in Δ_{λ}^{k} such that $\tau_{\lambda}^{p} \cap \partial \Delta_{\lambda}^{k} = v_{\lambda}$. As in Lemma 3, let $\hat{\Delta}_{\lambda}^{k}$ be the quotient space of Δ_{λ}^{k} and $h_{\lambda}: \Delta_{\lambda}^{k} \to \hat{\Delta}_{\lambda}^{k}$ the projection. Furthermore let $g_{\lambda}: \hat{\Delta}_{\lambda}^{k} \to \Delta_{\lambda}^{n}$ be the PL-embedding as in Lemma 3. Put $Y = (Z - \bigcup_{\lambda \in \Lambda} \Delta_{\lambda}^{k}) \cup (\bigcup_{\lambda \in \Lambda} \hat{\Delta}_{\lambda}^{k})$. Then Y is a mod 2 Euler space of pure dimension. Define $h: Z \to Y$ by $h | \Delta_{\lambda}^{k} = h_{\lambda}$ for $\lambda \in \Lambda$ and $h | (Z - \bigcup_{\lambda \in \Lambda} \Delta_{\lambda}^{k})$ is the identity. By the construction, h is a homotopy equivalence. Furthermore we

484

have that $\#h^{-1}(y)\equiv 0 \pmod{2}$ for $y \in h(\bigcup_{\lambda \in A} \operatorname{Int} \sigma_{\lambda}^{p})$ and $\#h^{-1}(y)\equiv 1 \pmod{2}$ for $y \in h(Z - \bigcup_{\lambda \in A} \sigma_{\lambda}^{p})$. By Lemma 5, we have $h_{*}(s_{i}(Z))=s_{i}(Y)$ for $p < i \leq k$ and $h_{*}(\alpha)=h_{*}(s_{p}(Z)-[c'])=s_{p}(Y)$. Define a PL-map $f:Y \to X$ by $f|\hat{\Delta}_{\lambda}^{k}=g_{\lambda}$ for $\lambda \in A$ and $f|(Z - \bigcup_{\lambda \in A} \Delta_{\lambda}^{k})=g|(Z - \bigcup_{\lambda \in A} \Delta_{\lambda}^{k})$. By the construction, we have $h \circ f$ is homotopic to g.

Proof of Lemma 2. For $i=1, 2, \dots, k-1$, let β_{k-i} be a homology element of $H_{k-i}(Z; \mathbb{Z}_2)$. By the induction on *i*, we prove Lemma 2. By Lemma 4, there exist a k-dimensional compact mod 2 Euler space Y_1 , and a homotopy equivalence $h_1: Z \to Y_1$ and PL-embedding $g_1: Y_1 \to X$ such that $g_1 \circ h_1$ is homotopic to g, $h_{1*}(s_k(Z)) = s_k(Y_1)$ and $h_{1*}(\beta_{k-1}) = s_{k-1}(Y_1)$. Next we assume that i < k-1and that there exist a k-dimensional compact mod 2 Euler space Y_i of pure dimension, and furthermore a homotopy equivalence $h_i: Z \rightarrow Y_i$ and PL-embedding $g_i: Y_i \rightarrow X$ such that $g_i \circ h_i$ is homotopic to g_i , $h_{i*}(s_k(Z)) = s_k(Y_i)$ and $h_{i*}(\beta_i) =$ $s_i(Y_i)$ for $k-i \leq j < k$. By Lemma 4, there exist a k-dimensional compact mod 2 Euler space Y_{i+1} of pure dimension and furthermore a homotopy equivalence $h'_{i+1}: Y_i \to Y_{i+1}$ and PL-embedding $g_{i+1}: Y_{i+1} \to X$ such that $g_{i+1} \circ h'_{i+1}$ is homotopic to g_i , $h'_{i+1*}(s_j(Y_i)) = s_j(Y_{i+1})$ for $k - i \le j \le k$ and $h'_{i+1*}(h_{i*}(\beta_{k-i-1})) = s_{k-i-1}(Y_{i+1})$. Put $h_{i+1} = h'_{i+1} \circ h_i : Y \to Y_{i+1}$. Then $g_{i+1} \circ h_{i+1}$ is homotopic to g and $h_{i+1*}(\beta_j) =$ $s_j(Y_{i+1})$ for $k-i-1 \leq j \leq k$. Then, for $i=1, 2, \dots, k-1$, there exist k-dimensional compact mod 2 Euler spaces Y_i of pure dimension, and homotopy equivalences $h_i: Z \to Y_i$ and *PL*-embeddings $g_i: Y_i \to X$ such that $g_i \circ h_i$ are homotopic to g_i $h_{i*}(s_k(Z)) = s_k(Y_i)$ and $h_{i*}(\beta_i) = s_j(Y_i)$ for $k - i \leq j < k$. Put $Y = Y_{k-1}$, $f = g_{k-1}$: $Y \rightarrow X$ and $h = h_{k-1} : Z \rightarrow Y$. Then $f \circ h = g$, $h_*(\beta_j) = s_j(Y)$ for $1 \leq j \leq k-1$ and $h_*(s_k(Z)) = s_k(Y).$ q.e.d.

References

- E. AKIN, Stiefel-Whitney homology classes and cobordism, Trans. Amer. Math, Soc., 205 (1975), 341-359.
- [2] J. CHEEGER, A combinatrial formula for Stiefel-Whitney classes, Topology of Manifolds, Cantrel and Edwards, eds., Markham Publ., 1970, 470-471.
- [3] S. HALPERIN AND D. TOLEDO, Stiefel-Whitney homology classes, Ann. of Math., 96 (1972), 511-525.
- [4] A. MATSUI, Stiefel-Whitney homology classes of Z₂-Poincaré-Euler spaces, Tôhoku Math. J., 35 (1983), 321-339.
- [5] A. MATSUI AND H. SATO, Stiefel-Whitney homology classes and homotopy type of Euler spaces, J. Math. Soc. Japan, 37 (1985), 437-453.
- [6] A. MATSUI, Stiefel-Whitney homology classes and odd maps, Topology and Computer Science, Kinokuniya, 1987, 337-346.
- [7] A. MATSUI, Intersection formla for Stiefel-Whitney homology classes, Tôhoku Math. J., 40 (1988), 315-322.
- [8] C. MCCRORY, Cone complexes and PL-transversality, Trans. Amer. Math. Soc., 207 (1975), 269-291.
- [9] J. MILNOR AND J. STASHEFF, Characteristic Classes, Ann. of Math. Studies, 76, Princeton Univ. Press., 1974.

AKINORI MATSUI

[10] D. VELJAN, Axioms for Stiefel-Whitney homology classes of some singular spaces, Trans. Amer. Math. Soc., 277 (1983), 285-305.

> Department of Mathematics Faculty of Education Fukushima University Fukushima 960–12 Japan

486