A REMARK ON THREE-SHEETED ALGEBROID SURFACES WHOSE PICARD CONSTANTS ARE FIVE Dedicated to Professor Mitsuru Ozawa on his 70th birthday KAZUNARI SAWADA AND KAZUYA TOHGE #### § 1. Introduction Let $\mathcal{M}(R)$ be the family of non-constant meromorphic functions on a Riemann surface R, and P(f) be the number of values, which are not taken by $f \in \mathcal{M}(R)$. Then we put $$P(R) = \sup_{f \in \mathcal{M}(R)} P(f) ,$$ which is called the Picard constant of R. In general $P(R) \ge 2$ for every open Riemann surface R. An n-sheeted algebroid surface is a proper existence domain of an n-valued algebroid function, which is defined by the following equation: $$S_0(z)y^n - S_1(z)y^{n-1} + \cdots + (-1)^{n-1}S_{n-1}(z)y + (-1)^nS_n(z) = 0$$ where $S_i(z)$ $(i=0, 1, \dots, n)$ are entire functions having no common zeros, all of which are not polynomials. By Selberg's theory of algebroid functions [7], $P(R) \leq 2n$ for every *n*-sheeted algebroid surface R. If $S_i(z)/S_0(z)$ (for all i) are of finite order, then we call that the surface is of finite order. In the following we shall consider 3-sheeted algebroid surfaces, that is, the case of n=3, with $S_0(z)\equiv 1$. In [5] Ozawa and the first author listed up all of the 3-sheeted algebroid surfaces with P(y)=5 and showed that "if R is of finite order" their Picard constants are equal to 5 with three exceptional cases. In this paper we shall prove that the assumption: "R is of finite order" can be taken off in the above result. Received November 4, 1993. Let R be a Riemann surface defined by (1) $$y^3 - S_1(z)y^2 + S_2(z)y - S_3(z) = 0,$$ where $S_i(z)$ (i=1, 2, 3) are entire functions. If P(y)=5, then R must be one of the following three cases ([5]): CASE (i) $$\begin{cases} S_{1}(z) = y_{1} \\ S_{2}(z) = y_{0}e^{H} + y_{2} \\ S_{3}(z) = y_{3} \end{cases}$$ where $y_0 \neq 0$, y_1 , y_2 and $y_3 \neq 0$ are constants and H is a non-constant entire function with H(0)=0. Furthermore its discriminant D_R is $$(2) D_R = 4 v_0^3 e^{3H} + \zeta_2 v_0^2 e^{2H} + \zeta_1 v_0 e^H + \zeta_0 ,$$ where ζ_2 , ζ_1 , ζ_0 ($\neq 0$) are constants, which are suitable polynomials of y_1 , y_2 and y_3 . CASE (ii) $$\begin{cases} S_{1}(z) = y_{0}e^{H} + y_{1} \\ S_{2}(z) = y_{2} \\ S_{3}(z) = y_{3} \end{cases}$$ where $y_0 \ (\neq 0)$, y_1 , y_2 and $y_3 \ (\neq 0)$ are constants and H is a non-constant entire function with H(0)=0. Furthermore its discriminant D_R is $$D_R = 4 y_0^3 e^{3H} + \zeta_2 y_0^2 e^{2H} + \zeta_1 y_0 e^H + \zeta_0$$ where ζ_2 , ζ_1 , ζ_0 ($\neq 0$) are constants, which are suitable polynomials of y_1 , y_2 and y_3 . CASE (iii) $$\begin{cases} S_{1}(z) = 2a_{3} + y_{0}e^{H} \\ S_{2}(z) = a_{3}^{2} + (a_{1} + a_{2})y_{0}e^{H} \\ S_{3}(z) = a_{1}a_{2}y_{0}e^{H} \end{cases}$$ where y_0 , a_1 , a_2 and a_3 are non-zero constants and H is a non-constant entire function with H(0)=0. Furthermore its discriminant D_R is (3) $$D_R = y_0 e^H (\zeta_3 y_0^3 e^{3H} + \zeta_2 y_0^2 e^{2H} + \zeta_1 y_0 e^H + \zeta_0)$$ where ζ_3 ($\neq 0$), ζ_2 , ζ_1 and ζ_0 ($\neq 0$) are constants, which are suitable polynomials of a_1 , a_2 and a_3 . Now we prove the following THEOREM. Let R be the surface defined by (1) with P(y)=5, that is, one of the above three cases. If either $\zeta_2 \neq 0$ or $\zeta_1 \neq 0$ then P(R)=5. We assume that the reader is familiar with the Nevanlinna-Selberg theory of meromorphic functions and algebroid functions and notations, T(r, f), m(r, f), N(r, 0, f), $N(r, \infty, f)$, S(r, f) etc (cf. [1], [3], [7]). #### § 2. Transformation formula of discriminants Let R be the surface defined by (1) with P(y)=5. We suppose that there exists an entire function f on R such that P(f)=6. Then we have the following LEMMA 1 ([5]). The above function f is representable as $$(4) f = f_0 + f_1 y + f_2 y^2,$$ where f_0 , f_1 and f_2 are meromorphic functions on C having poles at most at zeros of H'. Then f satisfies the following equation ([5]): $$f^3 - U_1(z) f^2 + U_2(z) f - U_3(z) = 0$$ where $U_i(z)$ (i=1, 2, 3) are entire functions, which can be expressed by f_0 , f_1 , f_2 , S_1 , S_2 and S_3 . We denote the proper existence domain of f by S. Then Ozawa and the first author proved that the discriminant D_S of S is ([5]): (5) $$D_{S} = -b_{1}^{2} x_{0}^{4} e^{4L} + \eta_{3} x_{0}^{3} e^{3L} + \eta_{2} x_{0}^{2} e^{2L} + \eta_{1} x_{0} e^{L} + \eta_{0}$$ where b_1 ($\neq 0$), x_0 ($\neq 0$), η_3 , η_2 , η_1 , η_0 ($\neq 0$) are constants and L is a non-constant entire function with L(0)=0. Furthermore the following equation holds (transformation formula of discriminants): $$(6) D_{\mathcal{S}} = D_{\mathcal{R}} \cdot G^2,$$ where (7) $$G = f_1^3 + 2S_1 f_1^2 f_2 + (S_1^2 + S_2) f_1 f_2^2 + (S_1 S_2 - S_3) f_2^3.$$ To prove the theorem, we need further investigation of the counting functions of poles and zeros of G. #### § 3. Poles and zeros of G First of all, we consider the counting function of poles of G. We prove the following LEMMA 2. (8) $$N(r, \infty, G) \leq 3N(r, 0, H') = O(\log T(r, e^H) + \log r)$$ as $r \to \infty$, $r \notin E$ (E: of finite linear measure) *Proof.* Let z_0 be a pole of G of order p. Since D_R and D_S are entire functions on C, z_0 is a zero of D_R by (6). On the other hand D_R has the following form: $$D_R = 4y_0^3(e^H - \delta_1)(e^H - \delta_2)(e^H - \delta_3)$$, if R is the surface of the case of (i), (ii), and $$D_{\it R} = \zeta_3 y_0^4 e^{\it H} (e^{\it H} - \delta_1) (e^{\it H} - \delta_2) (e^{\it H} - \delta_3)$$, if R is the surface of the case of (iii). Hence we may assume that z_0 is a zero of $e^H - \delta_1$. By the expression (7) of G, z_0 is a pole of either f_1 or f_2 . Therefore z_0 is a zero of H' by Lemma 1. This suggests $$\overline{N}(r, \infty, G) \leq \overline{N}(r, 0, H')$$. And if z_0 is a zero of H' of order n, then $$H(z) = H(z_0) + (z - z_0)^{n+1} h(z)$$, $h(z_0) \neq 0$ and $$e^{H} - \delta_{1} = e^{H(z_{0})} \left\{ e^{(z-z_{0})^{n+1}h(z)} - 1 \right\}$$ $$= (z-z_0)^{n+1} e^{H(z_0)} h(z_0) (1+o(1)) \; .$$ Therefore D_R has the zero z_0 of order at most 3(n+1) by the form of D_R . Hence we have, by (6) $$3(n+1)-2p \ge 0$$ and $$p \leq \frac{3}{2}(n+1) \leq 3n.$$ Therefore $$N(r, \infty, G) \leq 3N(r, 0, H') = O(\log T(r, e^H) + \log r)$$. In the last estimation we need "the estimation of logarithmic derivatives". Next we consider the counting function of zeros of G. We have LEMMA 3. The function y, defined by (1) with P(y)=5, is an entire function on S and has the following form: $$y = g_0 + g_1 f + g_2 f^2$$ where g_i (i=0, 1, 2) are meromorphic functions on C and every zero of G is a pole of at least one of g_i (i=0, 1, 2). Proof. By (1) and (4) $$\begin{split} f^2 &= (f_0 + f_1 y + f_2 y^2)^2 \\ &= f_0^2 + 2f_1 f_2 S_3 + f_2^2 S_1 S_3 \\ &+ [2f_0 f_1 - 2f_1 f_2 S_2 + (S_3 - S_1 S_2) f_2^2] y \\ &+ [f_1^2 + 2f_0 f_2 + 2f_1 f_2 S_1 + (S_1^2 - S_2) f_2^2] y^2 \\ &= F_0 + F_1 y + F_2 y^2 \,. \end{split}$$ Hence $$\begin{bmatrix} 1 \\ f \\ f^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ f_0 & f_1 & f_2 \\ F_0 & F_1 & F_2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ y \\ y^2 \end{bmatrix} \equiv A \cdot \begin{bmatrix} 1 \\ y \\ y^2 \end{bmatrix}.$$ Then the determinant of A is $$\det(A) = f_1 F_2 - f_2 F_1$$ $$= f_1^3 + 2 f_1^2 f_2 S_1 + (S_1^2 + S_2) f_1 f_2^2 + (S_1 S_2 - S_3) f_2^3.$$ Therefore $\det(A)$ coincides the function G and $\det(A)$ (=G) is not identically equal to zero, by (6). Then $$y = g_0 + g_1 f + g_2 f^2$$, where (10) $$\begin{cases} g_0 = \frac{1}{G}(-f_0F_2 + f_2F_0) \\ g_1 = \frac{1}{G}F_2 \\ g_2 = -\frac{1}{G}f_2. \end{cases}$$ These expressions of g_i (i=0, 1, 2) hold for all $z \in C$, since every zero of G is at most a pole of g_i (i=0, 1, 2). Let us consider the expressions (10) more precisely. We assume that every zero of G is a regular point of g_i (i=0, 1, 2). Let z_0 be a zero of G of order n. By $g_2 = -(1/G)f_2$, z_0 is a zero of f_2 . Then let m_2 be the order of the zero z_0 of f_2 . And by (7) z_0 is a zero of f_1 , too. Therefore the order of the zero z_0 of f_1 is denoted by m_1 . We may assume that $m_2 \ge n \ge 1$ and $m_1 \ge 1$. CASE 1). We assume that $m_1 \ge m_2$. Then by $$G = f_1^3 + 2f_1^2 f_2 S_1 + (S_1^2 + S_2) f_1 f_2^2 + (S_1 S_2 - S_3) f_2^3$$ the order of the z_0 of G is $\ge 3m_2 > n$. This is a contradiction. CASE 2). Next we assume that $m_1 < m_2$. Then the order of the zero z_0 of G is equal to $3m_1$ ($= n \le m_2$). On the other hand, if f_0 is regular at z_0 , then by $$F_2 = f_1^2 + 2f_0f_2 + 2f_1f_2S_1 + (S_1^2 - S_2)f_2^2$$, the order of the zero z_0 of F_2 is equal to $2m_1$ (< n). This contradicts the regularity of $g_1 = F_2/G$ at z_0 . Therefore we assume that z_0 is a pole of f_0 of order $p \geq 1$. Let us denote the order of the zero z_0 of F_2 by ord (z_0, F_2) , then ord $$(z_0, F_2) = m_2 - p < 2m_1 < n$$, if $m_2 - p < 2m_1$ and ord $$(z_0, F_2) = 2m_1 < n$$, if $m_2 - p > 2m_1$. These contradict our assumption that g_1 is regular at z_0 . Therefore we consider the case that $m_2-p=2m_1$, that is, $p=m_2-2m_1$ $(m_2>2m_1)$. By the form of F_2 , $$f_1^2 + 2f_0f_2 = A_k(z-z_0)^k + \cdots \quad (k \ge n)$$ since we have ord $$(z_0, f_1^2) = 2m_1 < n$$, ord $$(z_0, 2f_0f_2) = m_2 - p = 2m_1 < n$$ and ord $$\{z_0, 2f_1f_2S_1 + (S_1^2 - S_2)f_2^2\} \ge m_1 + m_2 > 3m_1 = n$$. On the other hand by $$-f_0F_2+f_2F_0 = -f_0\{-f_0f_2+(2f_0f_2+f_1^2)\}$$ $$-\{2f_1f_2S_1+(S_1^2-S_2)f_2\}f_0$$ $$+f_2^2(2f_1S_2+f_2S_1S_3).$$ we have ord $$(z_0, -f_0F_2+f_2F_0)=m_2-p-p=m_2-2p< n$$. This contradicts the regularity of $g_0 = (-fF_2 + f_2F_0)/G$ at z_0 . Above lemma suggests that R is conformally equivalent to S. if P(R)=6. Next we need the following LEMMA 4 ([5]). Let g be an entire function on S. Then g must have the following form: $$g = g_0 + g_1 f + g_2 f^2$$, where g_i (i=0, 1, 2) are meromorphic functions on C having poles at most at zeros of L'. (L is the function in the equation (5).) Therefore every zero of G must be a zero of L' by Lemma 3 and Lemma 4, that is, $$\overline{N}(r, 0, G) \leq \overline{N}(r, 0, L')$$. Now let z_0 be a zero of G of order q, then z_0 is a zero of D_S by (6). On the other hand D_S has the form: $$D_S = -b_1^2 x_0^4 (e^L - \xi_1)(e^L - \xi_2)(e^L - \xi_3)(e^L - \xi_4).$$ Therefore we may assume that z_0 is a zero of $e^L - \xi_1$. Further if z_0 is a zero of L' of order n, then $$e^{L} - \xi_1 = (z - z_0)^{n+1} e^{L(z_0)} l(z_0) (1 + o(1))$$ where l(z) is an entire function with $l(z_0) \neq 0$. Hence the order of the zero z_0 of D_S is at most 4(n+1) and by (6) we have $$4(n+1) \ge 2q$$ and $$q \leq 2(n+1) \leq 4n$$. Therefore, using the estimation of logarithmic derivatives, we obtain the following LEMMA 5. (11) $$N(r, 0, G) \leq 4N(r, 0, L') = O(\log T(r, e^{L}) + \log r)$$ as $r \to \infty$, $r \notin E$ (E is a set of r of finite linear measure.) Then considering the counting functions of zeros of both sides of (6), we have (12) $$4T(r, e^{L}) \sim N(r, 0, D_{S}) \sim N(r, 0, D_{R}) \sim 3T(r, e^{H}),$$ by (8) and (11). # $\S 4$. Representation of G in terms of its zeros and poles We need the following LEMMA 6 ([2]). Let $\{a_{\nu,\mu}\}$ be n sequences $(1 \le \mu \le n)$ of complex numbers satisfying $1 \le |a_{1,\mu}| \le |a_{2,\mu}| \le \cdots$, $\lim_{n \to \infty} |a_{\nu,\mu}| = +\infty$ for each μ . Then we can construct Weierstrass products P_{μ} of the $\{a_{\nu,\mu}\}$ $(1 \leq \mu \leq n)$ with the following property: There exists a set Ω in $[1,\infty)$ of infinite linear measure such that $$\begin{array}{c} \sum\limits_{\mu=1}^n \log^+\!m(r,\,P_\mu) \\ \frac{n}{n} \,N(r,\,0,\,P_\mu) \end{array} \longrightarrow 0 \qquad \text{as } r {\rightarrow} + \infty, \ r {\in} \varOmega \ .$$ Therefore we can construct the Weierstrass products P, Q of zeros and poles of G, respectively, satisfying (13) $$\lim_{\substack{r \to \infty \\ (r \in Q)}} \frac{\log^+ m(r, P) + \log^+ m(r, Q)}{N(r, 0, P) + N(r, 0, Q)} = 0,$$ where Ω is a set of r of infinite linear measure. Here if G has a finite number of zeros and poles, then P and Q are polynomials. In this case the formulation of Theorem returns back to the case in [5], hence we may assume that G has an infinite number of zeros or poles. Now G must have the following form: $$G = \frac{P}{Q}e^{M}$$, where M is an entire function with M(0)=0. And then the transformation formula of discriminants (6) becomes $$D_{\mathbf{S}} = D_{\mathbf{R}} \cdot \frac{P^2}{Q^2} e^{2M} ,$$ where $$D_{S} = -b_{1}^{2}x_{0}^{4}e^{4L} + \eta_{3}x_{0}^{3}e^{3L} + \eta_{2}x_{0}^{2}e^{2L} + \eta_{1}x_{0}e^{L} + \eta_{0}$$ and $$D_{R} = 4y_{0}^{3}e^{3H} + \zeta_{2}y_{0}^{2}e^{2H} + \zeta_{1}y_{0}e^{H} + \zeta_{0} \text{ in the case of (i), (ii),}$$ $$D_{R} = y_{0}e^{H}(\zeta_{3}y_{0}^{3}e^{3H} + \zeta_{2}y_{0}^{2}e^{2H} + \zeta_{1}y_{0}e^{H} + \zeta_{0}) \text{ in the case of (iii).}$$ For simplicity's sake we put the above equation (6)' by $$\begin{aligned} A_4 e^{4L} + A_3 e^{3L} + A_2 e^{2L} + A_1 e^L + A_0 \\ = (B_3 e^{3H} + B_2 e^{2H} + B_1 e^H + B_0) \frac{P^2}{Q^2} e^{2M + \delta H} \,, \end{aligned}$$ where δ =0 in the case of (i), (ii) and δ =1 in the case of (iii), and $A_4A_0B_3B_0\neq 0$. In the following we consider only the case of δ =0. The same discussion holds for the case of δ =1. ## § 5. Borel's unicity theorem We need the following LEMMA 7 ([8]). Let $a_0(z)$, $a_1(z)$, \cdots , $a_n(z)$ ($a_{\nu}(z) \not\equiv 0$, $\nu \ge 1$) be meromorphic functions and $g_1(z)$, $g_2(z)$, \cdots , $g_n(z)$ be non-constant entire functions satisfying $$\lim_{\substack{r \to \infty \\ (r \in \mathcal{Q})}} \frac{\sum_{\nu=1}^n \log T(r, a_{\nu})}{\max_{1 \le \nu \le n} \log m(r, e^{g_{\nu}})} \le 1,$$ where Ω is a set of infinite linear measure. Suppose that the identity $$\sum_{\nu=1}^{n} a_{\nu}(z) e^{g_{\nu}(z)} \equiv a_{0}(z)$$ holds, then there exist n constants $(c_1, \dots, c_n) \neq (0, \dots, 0)$ such that $$\sum_{\nu=1}^{n} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)} \equiv 0.$$ First of all we assume that 3H+2M \equiv constant, 2H+2M \equiv constant, H+2M \equiv constant and 2M \equiv constant. Then by Lemma 7 and (13), (14), there exist eight constants $(c_8, \cdots, c_1) \neq (0, \cdots, 0)$ such that (15) $$c_8 A_4 e^{4L} + c_7 A_3 e^{3L} + c_6 A_2 e^{2L} + c_5 A_1 e^L$$ $$= (c_4 B_3 e^{3H} + c_3 B_2 e^{2H} + c_2 B_1 e^H + c_1 B_0) \frac{P^2}{Q_2} e^{2M}.$$ Here without loss of generality we may set the following condition (A): $$A: c_j=0$$ $(j=7, 6, 5, 4, 3 \text{ and } 2),$ if the corresponding coefficients A_i $(i=3, 2, 1),$ B_k $(k=2, 1)$ are equal to 0. By eliminating $(P^2/Q^2)e^{2M}$ from (14) and (15), $$(A_4e^{4L} + A_3e^{3L} + A_2e^{2L} + A_1e^L + A_0)(c_4B_3e^{3H} + c_3B_2e^{2H} + c_2B_1e^H + c_1B_0)$$ $$= (c_8A_4e^{4L} + c_7A_3e^{3L} + c_6A_2e^{2L} + c_5A_1e^L)(B_3e^{3H} + B_2e^{2H} + B_1e^H + B_0)$$ and $$\begin{split} (16) \qquad & (c_4-c_8)A_4B_3e^{4L+3H} + (c_4-c_7)A_3B_3e^{3L+3H} + (c_4-c_6)A_2B_3e^{2L+3H} \\ & + (c_4-c_5)A_1B_3e^{L+3H} + c_4A_0B_3e^{3H} + \cdots + (c_1-c_8)A_4B_0e^{4L} + (c_1-c_7)A_3B_0e^{3L} \\ & + (c_1-c_6)A_2B_0e^{2L} + (c_1-c_5)A_1B_0e^L + c_1A_0B_0 = 0 \; . \end{split}$$ Here we need the following LEMMA 8 ([4]). Let $\{\alpha_j\}$ be a set of non-zero constants and $\{g_j\}$ a set of functions satisfying $$\sum_{j=1}^{p} \alpha_j g_j = 1.$$ Then $$\sum_{j=1}^{p} \delta(0, g_j) \leq p-1$$, where $\delta(0, g_j)$ denotes the Nevanlinna-deficiency. By the above lemma and (16), there exist only two possibilities: CASE (1) all coefficients of left side of (16) vanish, and CASE (2) there exist two integers $n, m \ (n \cdot m \neq 0)$ such that $$n \cdot L + m \cdot H \equiv 0$$. (Since $L(0) = 0$ and $H(0) = 0$.) If the case of (2) holds, we have $4L \equiv \pm 3H$ because of (12). Hence let us consider the case of (1). Then we have $$c_1 = c_8$$ by $A_4 B_0 \neq 0$, $c_4 = c_8$ by $A_4 B_3 \neq 0$ and $$c_1 = 0$$ by $A_0 B_0 \neq 0$. Therefore we have $c_1=c_4=c_8=0$. In this case, by (15), we have (17) $$e^{L}(c_{7}A_{3}e^{2L}+c_{6}A_{2}e^{L}+c_{5}A_{1})=e^{H}(c_{3}B_{2}e^{H}+c_{2}B_{1})\frac{P^{2}}{Q^{2}}e^{2M}.$$ If $c_3B_2 \cdot c_2B_1 \neq 0$ then $$N(r, 0, e^H(c_3B_2e^H + c_2B_1)\frac{P^2}{Q^2}e^{2M})\sim T(r, e^H) \qquad (r \in E).$$ On the other hand $$N(r, 0, e^{L}(c_{7}A_{3}e^{2L} + c_{6}A_{2}e^{L} + c_{5}A_{1})) \sim \begin{cases} 2T(r, e^{L}) \\ T(r, e^{L}) \\ \equiv 0. \end{cases}$$ This contradicts (12), whence follows either $c_3B_2=0$ or $c_2B_1=0$. In this case, by (17), we have either $$\begin{split} N(r,\,0,\,e^L(c_7A_3e^{2L}+c_6A_2e^L+c_5A_1)) \equiv &0\;,\\ &\text{if}\;\; c_3B_2 = &0,\; c_2B_1 \neq 0\;\;\text{or}\;\; c_3B_2 \neq &0,\;\; c_2B_1 = &0\;, \end{split}$$ or $$e^{L}(c_{7}A_{3}e^{2L}+c_{6}A_{2}e^{L}+c_{5}A_{1})\equiv 0$$, if $c_{3}B_{2}=c_{2}B_{1}=0$. In the former case we have that just one of c_7A_3 , c_6A_2 , c_5A_1 is not equal to 0 and the others vanish. Then we have $P^2/Q^2\equiv \text{constant}$ and, by Lemma 8 and (14), we have at least one of 3H+2M, 2H+2M, H+2M, 2M must be a constant. In the latter case we have $c_3B_2=c_2B_1=c_7A_3=c_6A_2=c_5A_1=0$ and $c_1=c_4=c_8=0$. This contradicts the condition (A). Therefore we consider the cases: (i) $$3H+2M\equiv 0$$, (ii) $2H+2M\equiv 0$, (iii) $H+2M\equiv 0$ and (iv) $2M\equiv 0$. CASE (i). 2M = -3H. Then (14) reduces to $$\frac{P^2}{Q^2}(B_0e^{-3H} + B_1e^{-2H} + B_1e^{-H}) - (A_4e^{4L} + A_3e^{3L} + A_2e^{2L} + A_1e^{L})$$ $$= A_0 - B_3 \frac{P^2}{Q^2} \, .$$ By Lemma 7, there exist seven constants $(c_1, \dots, c_7) \neq (0, \dots, 0)$ such that $$\frac{P^2}{Q^2}e^{-H}(c_1B_0e^{-2H}+c_2B_1e^{-H}+c_3B_2)=e^L(c_4A_4e^{3L}+c_5A_3e^{2L}+c_6A_2e^L+c_7A_1).$$ Then $$N\Big(r,\,0,\,\frac{P^{2}}{Q^{2}}e^{-H}(c_{1}B_{0}e^{-2H}+c_{2}B_{1}e^{-H}+c_{3}B_{2})\Big) \sim \left\{ \begin{array}{l} 2T(r,\,e^{H}) \\ T(r,\,e^{H}) \\ S(r,\,e^{H})\,, \end{array} \right.$$ and $$N(r,\,0,\,e^L(c_4A_4e^{3L}+c_5A_3e^{2L}+c_6A_2e^L+c_7A_1)) \sim \begin{cases} 3T(r,\,e^L)\\ 2T(r,\,e^L)\\ T(r,\,e^L)\\ S(r,\,e^L)\,. \end{cases}$$ By (12) there exists only one possibility: $$N(r, 0, \frac{P^2}{Q^2}e^{-H}(c_1B_0e^{-2H}+c_2B_1e^{-H}+c_3B_2))=S(r, e^H)$$ and $$N(r, 0, e^{L}(c_{4}A_{4}e^{3L}+c_{5}A_{3}e^{2L}+c_{6}A_{2}e^{L}+c_{7}A_{1}))=S(r, e^{L}).$$ Here we may assume that $$(c_1B_0, c_2B_1, c_3B_2, c_4A_4, c_5A_3, c_6A_2, c_7A_1) \neq (0, 0, \dots, 0)$$ because of the same reason as in the condition (A). Therefore we have only one possibility: just two constants of c_1B_0 , c_2B_1 , c_3B_2 are equal to 0 and just three constants of c_4A_4 , c_5A_3 , c_6A_2 , c_7A_1 are equal to 0. Hence, by (12), we have $$\begin{split} &\frac{P^2}{Q^2} \equiv \text{constant} = d \ (\neq 0), \text{ say,} \\ &c_1 B_0 \neq 0, \quad c_2 B_1 = c_3 B_2 = 0, \quad c_4 A_1 \neq 0, \quad c_5 A_3 = c_6 A_2 = c_7 A_1 = 0 \end{split}$$ and $$4L \equiv -3H$$. Then (14) reduces to $$\begin{split} &d(B_0e^{-3H} + B_1e^{-2H} + B_2e^{-H}) - (A_4e^{-3H} + A_3e^{-(9/4)H} + A_2e^{-(3/2)H} + A_1e^{-(3/4)H}) \\ &= A_0 - B_3d \end{split}$$ and $$\begin{split} (dB_0-A_1)e^{-3H}+dB_1e^{-2H}+dB_2e^{-H}-A_3e^{-(9/4)H}-A_2e^{-(3/2)H}-A_1e^{-(3/4)H}\\ =&A_0-B_3d\;. \end{split}$$ By Lemma 8 and $H \not\equiv \text{constant}$, we have $$dB_0 - A_4 = dB_1 = dB_2 = A_3 = A_2 = A_1 = A_0 - B_3 d = 0$$, that is, $$A_1/B_0 = A_0/B_3 = d \ (\neq 0)$$ and $A_1 = A_2 = A_3 = B_1 = B_2 = 0$. CASE (ii). 2M = -2H. Then (14) becomes (18) $$\begin{split} \frac{P^2}{Q^2}(B_0e^{-2H} + B_1e^{-H} + B_3e^{H}) - (A_4e^{4L} + A_3e^{3L} + A_2e^{2L} + A_1e^{L}) \\ = A_0 - B_2\frac{P^2}{Q^2} \,. \end{split}$$ By H, $L\not\equiv$ constant and Lemma 7, there exist seven constants $(c_1, \cdots, c_7) \neq (0, \cdots, 0)$ such that $$\frac{P^2}{Q^2}e^{-2H}(c_3B_3e^{3H}+c_2B_1e^H+c_1B_0)=e^L(c_4A_4e^{3L}+c_5A_3e^{3L}+c_6A_2e^L+c_7A_1).$$ Hence we have $$N(r, 0, \frac{P^{2}}{Q^{2}}e^{-2H}(c_{3}B_{3}e^{3H}+c_{2}B_{1}e^{H}+c_{1}B_{0})) \sim \begin{cases} 3T(r, e^{H}) \\ 2T(r, e^{H}) \\ T(r, e^{H}) \\ S(r, e^{H}) \end{cases}$$ and $$N(r, 0, e^{L}(c_{4}A_{4}e^{3L} + c_{5}A_{3}e^{2L} + c_{6}A_{2}e^{L} + c_{7}A_{1})) \sim \begin{cases} 3T(r, e^{L}) \\ 2T(r, e^{L}) \\ T(r, e^{L}) \\ S(r, e^{L}) \end{cases}.$$ By (12) we have $$N(r, 0, \frac{P^2}{Q^2}e^{-2H}(c_3B_3e^{3H}+c_2B_1e^H+c_1B_0))=S(r, e^H)$$ and $$N(r, 0, e^{L}(c_4A_4e^{3L}+c_5A_3e^{2L}+c_6A_2e^{L}+c_7A_1))=S(r, e^{L}).$$ Therefore we have just two constants of c_3B_3 , c_2B_1 , c_1B_0 are equal to 0 and just three constants of c_4A_4 , c_5A_3 , c_6A_2 , c_7A_1 are equal to 0. In this case we have $P^2/Q^2=d \ (\neq 0)$ and (18) gives $$T(r, e^H) \sim m \cdot T(r, e^L)$$ with m=4, 3, 2, 3/2, 1, 1/2. This contradicts (12). CASE (iii). 2M = -H. Then we have, by Lemma 7, $$\frac{P^2}{Q^2}e^{-H}(c_1B_0+c_2B_2e^{2H}+c_3B_3e^{3H})=e^L(c_1A_4e^{3L}+c_5A_3e^{2L}+c_6A_2e^L+c_7A_1).$$ This gives us a contradiction by the same method as in the case of (ii). CASE (iv). $M\equiv 0$. Then we have, by Lemma 7, $$\frac{P^2}{O^2}e^H(c_3B_3e^{2H}+c_2B_2e^H+c_1B_1) = e^L(c_4A_4e^{3L}+c_5A_3e^{2L}+c_6A_2e^L+c_7A_1)$$ with $(c_1, c_2, \dots, c_7) \neq (0, 0, \dots, 0)$. Then, by the same method as in the case of (i), there is only one possibility: $$c_2B_2=c_1B_1=0$$, $c_5A_3=c_6A_2=c_7A_1=0$ and $$\frac{P^2}{O^2} \equiv \text{constant} = d, \quad \text{say}, \quad (d \neq 0), \quad 3H = 4L.$$ Therefore, by the same method as in the case of (i), we have $$A_4/B_3 = A_0/B_0 = d$$ and $A_1 = A_2 = A_3 = B_1 = B_2 = 0$. ### § 6. Proof of Theorem Let R be the surface defined by (1) with P(y)=5. If P(R)=6, then there exists an entire function f on R of P(f)=6. Then f defines a 3-sheeted algebroid surface with P(f)=6, S, say, and further the following equation $$D_S = D_R \cdot G^2$$ holds. By the result in § 5, we have $\zeta_2=0$ and $\zeta_1=0$ in the equation (2), (3). This result contradicts our assumption: either $$\zeta_1 \neq 0$$ or $\zeta_2 \neq 0$. # REFERENCES - [17] HAYMAN, W.K., Meromorphic functions, Clarendon Press, London, 1964. - [2] Mues, E., Über die Nullstellen homogener Differentialpolynome, Manuscripta Math., 23 (1978), 325-341. - [37] NEVANLINNA, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, 2nd edition, Gauthier-Villars, Paris, 1929. - [4] Nino, K. and M. Ozawa, Deficiencies of an entire algebroid function, Kōdai Math. Sem. Rep., 22 (1970), 98-113. - [5] OZAWA, M. AND K. SAWADA, Three-sheeted algebroid surfaces whose Picard constants are five, Kodai Math. J., 17 (1994), 101-124. - [6] REMOUNDOS, G., Extension aux fonctions algébroides multiformes du théorème de M. Picard et de ses généralisations. Mém. Sci. Math., 23, Gauthier-Villars, Paris, 1927. - [7] Selberg, H., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale, Avh. Norske Vid. Akad. Oslo, 8 (1934), 1-72. - [8] Tohge, K., Meromorphic functions covering certain finite sets at the same points, Kodai Math. J., 11 (1988), 249-279. DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN COLLEGE OF TECHNOLOGY SHINAGAWA, TOKYO, JAPAN FACULTY OF TECHNOLOGY KANAZAWA UNIVERSITY KANAZAWA, ISHIKAWA, JAPAN