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§ 1. Introduction

Let JM(R) be the family of non-constant meromorphic functions on a Rie-
mann surface R, and P(f) be the number of values, which are not taken by

Then we put
P(Λ)= sup P ( / ) ,

fJHOi

which is called the Picard constant of R. In general P(R)^2 for every open
Riemann surface R.

An n-sheeted algebroid surface is a proper existence domain of an n-valued
algebroid function, which is defined by the following equation:

S0(z)yn-S1(z)yn'1 + ••• +(-l)n-1Sn-1(z)y + (-l)nSn(z)=0,

where St(z) (/=0, 1, ••• , ή) are entire functions having no common zeros, all of
which are not polynomials.

By Selberg's theory of algebroid functions [7], P(R)^2n for every ?i-sheeted
algebroid surface R.

If Si(z)/S0(z) (for all i) are of finite order, then we call that the surface is
of finite order.

In the following we shall consider 3-sheeted algebroid surfaces, that is, the
case of 72=3, with S0(z)=l.

In [5] Ozawa and the first author listed up all of the 3-sheeted algebroid
surfaces with P(y)=5 and showed that "if R is of finite order" their Picard
constants are equal to 5 with three exceptional cases.

In this paper we shall prove that the assumption:

"R is of finite order"

can be taken off in the above result.
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Let R be a Riemann surface defined by
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(1) y8-S1(2r)^ i+

where Si(z) (i — 1, 2, 3) are entire functions. If P(y)=5, then R must be one
of the following three cases ([5]):

CASE (i) { S1(z)=y1

S2(z)=yoe
H+y2

where y0 (ΦQ), yu y2 and y3 (Φθ) are constants and H is a non-constant entire
function with //(0)=0. Furthermore its discriminant DR is

where ζ2, d, ζ0 (^0) are constants, which are suitable polynomials of yu y2

and ys.

CASE (ii) sι(z)=yoe
H+y1

where y0 (Φθ), yu y2 and yz (Φθ) are constants and H is a non-constant entire
function with //(0)=0. Furthermore its discriminant Z)Λ is

where ζ2, d, ζ0 (^0) are constants, which are suitable polynomials of ylt y2

and yz.

CASE (iii) Sι(z)=2azΛ-y,eH

S2(z)=a,2+(aι-{-a2)y0e
H

where y0, alf a2 and α3 are non-zero constants and H is a non-constant entire
function with H(Q)—0. Furthermore its discriminant D* is

where ζ3 (=£0), ζ2, d and ζ0 (^0) are constants, which are suitable polynomials
of au a2 and α3.

Now we prove the following

THEOREM. Let R be the surface defined by (1) with P(y)=5, that is, one
of the above three cases. If either ζ2φ0 or ζiΦO then P(R)=5.
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We assume that the reader is familiar with the Nevanlinna-Selberg theory
of meromorphic functions and algebroid functions and notations, T(r, / ) , m{r, /),
N(r, 0, /) , N(r, oo, /), S(r, f) etc (cf. [1], [3], [7]).

§2. Transformation formula of discriminants

Let R be the surface defined by (1) with P(y)=5. We suppose that there
exists an entire function f on R such that P(/)=6. Then we have the fol-
lowing

LEMMA 1 ([5]). The above function f is representable as

(4) f=fo+fiy+fty*.

where f0, fx and f2 are meromorphic functions on C having poles at most at
zeros of Hf.

Then / satisfies the following equation ([5]):

where Ut(z) (/=1, 2, 3) are entire functions, which can be expressed by f0, flt

f2, Slt S2 and 53. We denote the proper existence domain of / by S. Then
Ozawa and the first author proved that the discriminant Ds of S is ([5]):

(5) Ds=-b1We'L+ηzXo*e*L+ηtXote*L+η1xoe
L+ηo

where bγ OO), x0 OO), 773, η2, ηu η0 (Φθ) are constants and L is a non-constant
entire function with L(0)=0.

Furthermore the following equation holds (transformation formula of dis-
criminants) :

(6) Ds=DR.G>,

where

(7) G = / 1

3 + 2 S 1 / 1

2 / 2 + ( S 1

2 + S 2 ) / 1 / 2

2 + ( S 1 S 2 - S 3 ) / 2

3 .

To prove the theorem, we need further investigation of the counting func-
tions of poles and zeros of G.

§3. Poles and zeros of G

First of all, we consider the counting function of poles of G, We prove
the following
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LEMMA 2.

(8) N(r, oo, G)£3N(r, 0, H')=O(\og T{r, eH)+\og r)

as r-*oo, r^E {E : of finite linear measure)

Proof. Let z0 be a pole of G of order />. Since DR and Z)s are entire
functions on C, z0 is a zero of D# by (6). On the other hand DR has the fol-
lowing form:

DR=4y0\eH-δι)(eH-δt)(eH-δi),

if R is the surface of the case of (i), (ii),
and

D
R
^ζsyo*e

H
(e

H
-δ

ί
)(e

II
-δ

2
Xe

H
-δ,),

if R is the surface of the case of (iii).

Hence we may assume that z0 is a zero of eH—δι. By the expression (7) of G,
Zo is a pole of either fλ or f2. Therefore z0 is a zero of H' by Lemma 1.
This suggests

N(r, co, G)<N(r, 0, Hf).

And if Zo is a zero of //' of order n, then

H{z)=H(
and

Therefore DΛ has the zero z0 of order at most 3(n + l) by the form of
Hence we have, by (6)

and

Therefore

iV(r, oo, G)^3iV(r, 0, //')=O(log T(r, eH)+\og r).

In the last estimation we need "the estimation of logarithmic derivatives".

Next we consider the counting function of zeros of G. We have

LEMMA 3. The function y, defined by (1) with P(y)=5, is an entire function
on S and has the following form:

(9) y=go+

where gt (t=0, 1, 2) are meromorphic functions on C and every zero of G is a
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pole of at least one of gx (*=0, 1, 2).

Proof. By (1) and (4)

+ [/i 2 +2/ 0 / 2 +2/ 1 / 2 S 1 Hr(S 1

2 -S 2 )/ 2

2 ] 3 ; 2

Hence

1

^0

0

/ l

0

/ .

F2_

1

y

_3^ 2 J

"1

Then the determinant of A is

d e t ( i 4 ) = / 1 F 8 - / ί F 1

Therefore detCA) coincides the function G and det 04) (=G) is not identically
equal to zero, by (6). Then

where

(10)

.1,

These expressions of ^ t (ι=0, 1, 2) hold for all z e C , since every zero of G is
at most a pole of g\ (/=0, 1, 2).

Let us consider the expressions (10) more precisely. We assume that every
zero of G is a regular point of gx (*'=0, 1, 2).

Let z0 be a zero of G of order n. By g2 = — (l/G)/2, z0 is a zero of / 2 .
Then let m2 be the order of the zero z0 of / 2 . And by (7) z0 is a zero of fu

too. Therefore the order of the zero z0 of f x is denoted by m^ We may
assume that m{^n>\ and ra^l.

CASE 1). We assume that mχ^w2. Then by
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G=f1*+2f1*fiSl+(Si*+Si)f1f2*+(S1S2-S1l)f2\

the order of the z0 of G is ^3m2>n. This is a contradiction.

CASE 2). Next we assume that mι<m2. Then the order of the zero zQ of
G is equal to 3m! (—n^m2).

On the other hand, if fQ is regular at z0, then by

F 2 - / 1

2 + 2 / 0 / 2 + 2 / 1 / 2 5 1 + ( S 1

2 - S 2 ) / 2

2 ,

the order of the zero z0 of F2 is equal to 2m! (<w). This contradicts the re-
gularity of gι—F2/G at z0.

Therefore we assume that zQ is a pole of / 0 of order p (^1). Let us denote
the order of the zero z0 of F2 by ord (z0, F2), then

ord (z0, F2)=m2 — p<2mι<n , if m2 —
and

ord (20, F2)=2m1<n , if m2 — p>2mι.

These contradict our assumption that gx is regular at z0.
Therefore we consider the case that m2 — p = 2mlt that is, p~m2—2mι

(m2>2m1). By the form of F2,

since we have

ordOo, f1

2)=2rn1<n ,

ord(^0, 2f^f2)—m2 — p—2rnι

and
ord{z0, 2/ 1 / 2 5 1 +(S 1

2 -S 2 )/ 2

On the other hand by

-foF2+f2F0=-f0{~

-{2/ 1 / 2 S 1 +(S 1

2 -S 2 )/ 2 }/ ϋ

4-/2

2(2/1S3+/2S1S3),
we have

ord(^0, —foF2-\-f2Fo)=m2 — p-~p=m2—2p<n .

This contradicts the regularity of gQ—{—fF2-\-f2FQ)/G at z0.

Above lemma suggests that R is conformally equivalent to S. if P(R)=6.
Next we need the following

LEMMA 4 ([5]). Let g be an entire function on S. Then g must have the
following form:
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where gx (&=0, 1, 2) are meromorphic functions on C having poles at most at
zeros of V'. (L is the function in the equation (5).)

Therefore every zero of G must be a zero of U by Lemma 3 and Lemma

4, that is,

N{r, 0, G)^N(r,Q, U).

Now let z0 be a zero of G of order qy then z0 is a zero of Ds by (6).
On the other hand Ds has the form:

Therefore we may assume that zQ is a zero of eL~ξlm Further if z0 is a zero
of U of order n, then

where ί(z) is an entire function with l(zo)Φθ. Hence the order of the zero z0

of Ds is at most 4(n + l) and by (6) we have

and

Therefore, using the estimation of logarithmic derivatives, we obtain the fol-
lowing

LEMMA 5.

(11) N(r, 0, G)^4N(r, 0, Z/)=O(log T(r, eL)+log r)

G S T'—>oo, r ^ E (E is a set of r of finite linear measure.)

Then considering the counting functions of zeros of both sides of (6), we
have

(12) 4T(r, eL)^N{r, 0, Ds)^N{r, 0, DR)^3T(r, eH),

by (8) and (11).

§4 . Representation of G in terms of its zeros and poles

We need the following

L E M M A 6 ([2]). Let {av>μ\ be n sequences (l^μ<n) of complex numbers
satisfying l g | ahμ\ ^ \a2.μ\ < •••, lim | α V f j U | = + oo for each μ.
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Then we can construct Weierstrass products Pμ of the {av>μ\
with the following property: There exists a set Ω in [1, oo) of infinite linear
measure such that

Σ log+m(r, Pμ)
-μ~ — > 0 as r— + oo, r <= Ω .
Σ N(r, 0, Pμ)

μ = l

Therefore we can construct the Weierstrass products P, Q of zeros and
poles of G, respectively, satisfying

^ J )+i°r m[r, Q)

( g ; N(r,0,P)+N(r,0,Q) ~Ό'
where Ω is a set of r of infinite linear measure.

Here if G has a finite number of zeros and poles, then P and Q are poly-
nomials. In this case the formulation of Theorem returns back to the case in
[5], hence we may assume that G has an infinite number of zeros or poles.

Now G must have the following form:

where M is an entire function with M(0)=0. And then the transformation
formula of discriminants (β) becomes

(6)' Ds=DR-~~e*<\

where

Ds=-b1

ΐxli

4eiL+ηsx0

:ίe:ιL+η2x0'
2eΐL+η1xlίe

L+η0

and

DΛ=iya

ieIH+ζtyt

1βtB+ζ1yte
H+Zt in the case of (i), (ii),

DR=ylίe
H(ζ3yo3e"I+ζ,y0V"+ζ1y0e

H+ζ0) in the case of (iii).

For simplicity's sake we put the above equation (6)' by

(14)

where 3=0 in the case of (i), (ii) and δ=l in the case of (iii), and A4A0B3B0Φθ.
In the following we consider only the case of 3=0. The same discussion

holds for the case of δ=l.
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§ 5. BorePs unicity theorem

We need the following

LEMMA 7 ([8]). Let ao(z), a^z), ••• , an(z) (av(z)^Q, v^l) be meromorphic

functions and gι{z), g2(z), ••• , gn{z) be non-constant entire functions satisfying

Σ log T(r, av)

r̂ o° Max logra(r, eg

v)
 = '

where Ω is a set of infinite linear measure. Suppose that the identity

holds, then t h e r e e x i s t n constants ( c u ••• , c n ) Φ ( Q , ••• , 0 ) such t h a t

First of all we assume that 3//+2Mξέconstant, 2//+2M^constant, H+2M

^constant and 2M^constant. Then by Lemma 7 and (13), (14), there exist

eight constants (c8, •••, cjφφ, •••, 0) such that

(15)

Here without loss of generality we may set the following condition (A):

A: Cj=0 ( / = 7 , 6 , 5 , 4 , 3 and 2),

if the corresponding coefficients Aτ ( ί=3, 2, 1),

5^ (/?=2, 1) are equal to 0.

By eliminating (P2/Q2)e2M from (14) and (15),

and

(16)
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Here we need the following

LEMMA 8 ([4]). Let {QLJ} be a set of non-zero constants and {gj\ a set of
functions satisfying

Then

. 7 = 1

where δ(0, gj) denotes the Nevanlinna-deficiency.

By the above lemma and (16), there exist only two possibilities:

CASE (1) all coefficients of left side of (16) vanish,

and

CASE (2) there exist two integers n, m (n-mφfy such that

Π'L+mΉ=0. (Since L(0)=0 and i/(0)=0.)

If the case of (2) holds, we have 4L~±3H because of (12). Hence let us
consider the case of (1). Then we have

and
d = 0 by A0B0Φθ .

Therefore we have Ci=c4 = cs

:=0. In this case, by (15), we have

If c3B2-c2BίΦθ then

N(r, 0, eH(c3B2e
H +c2B1)

]~2-e2M^T(r, eH) ( r e £ ) .

On the other hand

N{r, 0,

2T(r, eL)

T(r, eL)

= 0 .

This contradicts (12), whence follows either czB2=0 or c2Bί—0. In this case,
by (17), we have either

N(r, 0, βL(c1A3e
iL + cβΛie

L + c5A1))=0 f

if c3B2=0, c2B^0 or c3B2Φθ, c2B^0,
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or
if

In the former case we have that just one of c7A3, c6A2, cδAi is not equal to 0
and the others vanish. Then we have P2/ζ)2ΞΞconstant and, by Lemma 8 and
(14), we have at least one of 3//+2M, 2H+2M, H+2M, 2M must be a constant.
In the latter case we have c2B2=c2Bι = c7As^=c6A2 = c5Aι=0 and Ci=c4=c8=0.
This contradicts the condition (A).

Therefore we consider the cases:

(i) 3//+2M=ΞO, (ii) 2#+2A/==0, (iii) //+2M=0 and (iv) 2M=0.

CASE (i). 2M=-3H. Then (14) reduces to

Q2

— Ao U 3 7 ^ .

B y L e m m a 7, t h e r e e x i s t s e v e n c o n s t a n t s ( c l t ••• , cΊ)Φ(0, ••• , 0 ) s u c h t h a t

Then

and

iv(r, 0,

N(r, 0,

By (12) there exists only one possibility:

N(r, 0,

and
JV(r, 0, 6L(c 4^ 4e 3 LH

Here we may assume that

{cxB0, c2Bu csB2, iy csAs, c6A2

2T(r, eH)

T(r, eH)

S{r, e11),

3T{r, eL)
2T(r, eL)

T(r, eL)
Sir, eL).

=S(r, eH)

, 0, ••• , 0)

because of the same reason as in the condition (A). Therefore we have only

one possibility:
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just two constants of cλBQi c2Blf c3B2 are equal to 0

just three constants of c4Λ4, cδA3, c6A2, c7A1 are equal to 0.

Hence, by (12), we have

P2

yy2 Ξconstant— d (Φ0), say,

153

and

Then (14) reduces to

and

= A0-B3d .

By Lemma 8 and //^constant, we have

that is,

A,/B0=A0/Bs=d (Φθ) and Aι — A2=As=Bl = B2=0.

C A S E (ii). 2M——2H. Then (14) becomes

By H, L^constant and Lemma 7, there exist seven constants {cu ••• , cΊ)--

(0, ••• , 0) such that

Hence we have

N(r, 0,

and

~

3T(r, eH)
2T(r, eH)

T(r, eπ)
S(r, e11)
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3Γ(r,
?T(r

N(r, 0, eL(ciAte
ίL+ctAte*L+c.Ate

L+c,Aι))~ ) '
1 \K, β )

S(r, eL).
By (12) we have

N(r, 0, ^e-iH(ciBΛe'H + ciB1e
H + cιB0))=S(rf eH)

and

N(r, 0, eL(c4Ate
9L-{-cδA9β

2L+c6Λ2e
L + c7A1)) = S(rf eL).

Therefore we have

just two constants of c3B3, c2Bu dB0 are equal to 0
and

just three constants of cAA4f c5A3, c6A2, cΊAι are equal to 0.

In this case we have P2/Q2=d (Φθ) and (18) gives

T(r, eH)^m T(r, eL)

with 771=4, 3, 2, 3/2, 1, 1/2. This contradicts (12).

CASE (iii). 2M= — H. Then we have, by Lemma 7,

This gives us a contradiction by the same method as in the case of (ii).

CASE (iv). M Ξ O . Then we have, by Lemma 7,

- ^ " ( ^ s ^ + ̂ ^ + ^ β ^

with {cu c2, ••• , cΊ)Φ(0, 0, ••• , 0). Then, by the same method as in the case of
(i), there is only one possibility:

and

P 2

77jfΞ constant = d, say, (dφO), 3//=4L.

Therefore, by the same method as in the case of (i), we have

AJB3=A0/B0=d and A1=A2=A3=B1 = B2=0.
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§6. Proof of Theorem

Let R be the surface denned by (1) with P(y)=5. If P(/?)=6, then there
exists an entire function / on R of P(/)=6. Then / defines a 3-sheeted alge-
broid surface with P(/)=6, S, say, and further the following equation

holds. By the result in §5, we have ζ2=0 and d = 0 m the equation (2), (3).
This result contradicts our assumption:

either ζ^O or ζ 2 ^ 0 .
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