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§1. Introduction

Let M(R) be the family of non-constant meromorphic functions on a Rie-
mann surface R, and P(f) be the number of values, which are not taken by
feMR). Then we put

P(R)= sup P(f),
SEM(R)
which is called the Picard constant of R. In general P(R)=2 for every open

Riemann surface R.
An n-sheeted algebroid surface is a proper existence domain of an n-valued
algebroid function, which is defined by the following equation :

So(@)y*—=Sy(2)y™ 1+ - H (=118, 1(2)y+(—1)"Sa(2)=0,

where S;(z) /=0, 1, ---, n) are entire functions having no common zeros, all of

which are not polynomials.
By Selberg’s theory of algebroid functions [7], P(R)<2n for every n-sheeted

algebroid surface R.
If Si(z)/Sy(z) (for all 7) are of finite order, then we call that the surface is

of finite order.

In the following we shall consider 3-sheeted algebroid surfaces, that is, the
case of n=3, with S,(z)=1.

In [5] Ozawa and the first author listed up all of the 3-sheeted algebroid
surfaces with P(y)=5 and showed that “if R is of finite order” their Picard
constants are equal to 5 with three exceptional cases.

In this paper we shall prove that the assumption :

“R is of finite order”

can be taken off in the above result.
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Let R be a Riemann surface defined by
) y*—S1(2)y*+Sa(2)y —Ss(2)=0,

where S;(z) (=1, 2, 3) are entire functions. If P(y)=5, then R must be one
of the following three cases ([5]):

CASE (i) Si(@)=y,
Sa(2)=2y0e"” +,
Ss(z2)=y;

where v, (#0), v, ¥, and y, (#0) are constants and H is a non-constant entire
function with H(0)=0. Furthermore its discriminant Dy is

) DR=4J’0893H+C23}0292H+ClyoeH+Co ,

where ,, i, { (#0) are constants, which are suitable polynomials of y,, y,
and Ys.

CASE (ii) Si@)=yoe +y,
Sa(2)=y,
Sa(Z)=y3

where y, (#0), y;, y. and y; (s+0) are constants and H is a non-constant entire
function with H(0)=0. Furthermore its discriminant Dy is

Dr=4y°e** + L, 3.2 +{,y.e7+, ,

where {;, {, {, (#0) are constants, which are suitable polynomials of y,, v,
and y,.

CASE (iii) Si(2)=2a;+ y,e?
Se(@)=a,*+(a,+as)y.e”
Sy(z)=a,a,y.e”

where y,, a;, @, and a, are non-zero constants and H is a non-constant entire
function with H(0)=0. Furthermore its discriminant Dy is

3 Dr=y,e"(C:y,°e*F +Leyo e + L1 y0e" +L,)

where {; (#0), &, ¢ and {, (+0) are constants, which are suitable polynomials
of a,, a, and a,.
Now we prove the following

THEOREM. Let R be the surface defined by (1) with P(y)=5, that is, one
of the above three cases. If either {,#0 or {;#0 then P(R)=5.



144 KAZUNARI SAWADA AND KAZUYA TOHGE

We assume that the reader is familiar with the Nevanlinna-Selberg theory
of meromorphic functions and algebroid functions and notations, 7'(r, f), m(», f),
N(r, 0, f), N(r, o, f), S(r, f) etc (cf. [1], [3], [7D.

§2. Transformation formula of discriminants

Let R be the surface defined by (1) with P(y)=5. We suppose that there
exists an entire function f on R such that P(f)=6. Then we have the fol-
lowing

LEMMA 1 ([5]). The above function f is representable as

4) f=fotf1y+ 132,
where f,o, f1 and f, are meromorphic functions on C having poles at most at

zeros of H'.

Then f satisfies the following equation ([5]):
[P=U(2)f*+U,(z) f—Us(2)=0,

where U,(z) (=1, 2, 3) are entire functions, which can be expressed by f,, fi.
f2, S1, S, and S;. We denote the proper existence domain of f by S. Then
Ozawa and the first author proved that the discriminant Dg of S is ([5]):

5) Ds:’—bxzxo‘eu"f“ﬂsxose""‘l‘7727502@2L+7]1xoel'+ Mo

where b, (#0), xo (#0), 93, 12, 1, 7o (0) are constants and L is a non-constant
entire function with L(0)=0.

Furthermore the following equation holds (transformation formula of dis-
criminants) :

(6) Ds=Dg-G?,
where
@) G=f 4252 fo+(S:*+S2) f1f2*+(S5:S.—Sy) f2° .

To prove the theorem, we need further investigation of the counting func-
tions of poles and zeros of G.

§3. Poles and zeros of G

First of all, we consider the counting function of poles of G. We prove
the following
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LEMMA 2.
8 N(r, o, G)X3N(r, 0, H)=0(og T(r, e¥)+log r)
as r—oo, vré&£E (E: of finite linear measure)

Proof. Let z, be a pole of G of order p. Since Dy and Dy are entire
functions on C, z, is a zero of Dy by (6). On the other hand Dy has the fol-
lowing form:

Dr=4y,*(e” —0d,)(e" —d,)(e" —3y),

if R is the surface of the case of (i), (ii),
and

DR:§3yo4eH(eH —0)(e”=8,)(e" —3s),
if R is the surface of the case of (iii).

Hence we may assume that z, is a zero of ¢?—§,. By the expression (7) of G,
zo is a pole of either f, or f,. Therefore z, is a zero of H’ by Lemma 1.
This suggests

N(r, o, G)EN(r, 0, H').

And if z, is a zero of H’ of order n, then
H(z)=H(zy)+(z—2z,)" " h(z), h(zy)#0
and
e”—&l.—_e”‘zw {e(z—zo)"+171(z)_l}

=(z—2z9)" '™ 0 h(z,)(14+0(1)) .

Therefore Dy has the zero z, of order at most 3(n+1) by the form of Dg.
Hence we have, by (6)

3(n+1)—2p=0
and

P= %(n—i—l)éf%n .

Therefore
N(r, o, G)S3N(r, 0, H)=0(log T(r, e®)+log 7).

In the last estimation we need “the estimation of logarithmic derivatives”.
Next we consider the counting function of zeros of G. We have

LEMMA 3. The function y, defined by (1) with P(y)=5, is an entirve function
on S and has the following form:

©)] y=got+g./+g.1*

where g, (1=0, 1, 2) are meromorphic functions on C and every zero of G s a
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pole of at least one of g, (=0, 1, 2).
Proof. By (1) and (4)
[i=fot f1y+ f20)?
=fo*+2f1/2Ss+ [2"S:Ss
+02fof1—2f1f2Se+(Sa—S5:S2) f2* 1y
HL P42 o fot2f1f2S1+(S,P—=S0) 27 ]y

=F+Fy+Fy*.
Hence

[
Uk Fy F, FzJ |_y2 Ly?
Then the determinant of A is
det (A)=f,F,— f,F,
:f13+2f12f251+(512+Sz)f1f22+(stz—sa)f23 .

Therefore det (4) coincides the function G and det (A) (=G) is not identically
equal to zero, by (6). Then

y=go+g:f+g:/%,

where
1
go:‘G"’(—foF2+f2Fo)
(10) —‘iF
gl—‘G 2
1
gz:“é‘fz .

These expressions of g, (¢=0, 1, 2) hold for all z&C, since every zero of G is
at most a pole of g, (=0, 1, 2).

Let us consider the expressions (10) more precisely. We assume that every
zero of G is a regular point of g, (=0, 1, 2).

Let z, be a zero of G of order n. By g.=--(1/G)f., 2z, is a zero of f,.
Then let m, be the order of the zero z, of f,. And by (7) z, is a zero of f,,
too. Therefore the order of the zero z, of f, is denoted by m,. We may
assume that m,=n>1 and m,>1.

CASE 1). We assume that m;=m,. Then by
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G:f13+2f12f251+(512+Sz)f1f22+(5152—53)f23 s
the order of the z, of G is =3m,>n. This is a contradiction.

CASE 2). Next we assume that m;<m,. Then the order of the zero z, of
G is equal to 3m, (=n<m,).
On the other hand, if f, is regular at z,, then by

F=f 24210 fo42f1/:5:+(5°=S,) f2*,

the order of the zero z, of F, is equal to 2m, (<n). This contradicts the re-
gularity of g,=F,/G at z,.

Therefore we assume that z, is a pole of f, of order p (=1). Let us denote
the order of the zero z, of F, by ord (z,, F;), then

ord (zy, Fy)=m,—p<2m,<n, if m,— p<2m,
and
ord (z,, Fy)=2m,<n, if my—p>2m, .

These contradict our assumption that g, is regular at z,.
Therefore we consider the case that m,—p=2m,, that is, p=m,—2m,
(my>2m,). By the form of F,,

fPH2fofe=Arz—2)*+ - (kzn),
since we have

ord (zo, f1)=2m,<n,

ord (zo, 2fof2)=my—p=2m,<n
and
ord{z,, 2f,f2S:+(S,*—S,) f2* =2m,+m,>3m,=n .

On the other hand by
—foF2+f2Fo=—fo{—fofz+(2fof2+f12)}
- {2f1f251+(312—s2)f2}f0

+ F22(2F1S5+ f25:Ss),
we have

ord (zo, — foFo+ foFo)=my—p—p=my—2p<n .
This contradicts the regularity of g,=(—fF,+ f.F,)/G at z,.

Above lemma suggests that R is conformally equivalent to S. if P(R)=6.
Next we need the following

LEMMA 4 ([5]). Let g be an entire function on S. Then g must have the
following form:
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g=go+ 8. f+g.f",

where g, (1=0,1,2) are meromorphic functions on C having poles at most at
zeros of L’. (L 1s the function in the equation (5).)

Therefore every zero of G must be a zero of L’ by Lemma 3 and Lemma
4, that is,
N@r, 0, &)SN@, 0, L").

Now let z, be a zero of G of order ¢, then z, is a zero of Dg by (6).
On the other hand Dg has the form:

Dg=—b2x,*(e"—&)(e"—&)(eF—&)(e"—&,).

Therefore we may assume that z, is a zero of e*—¢&,. Further if z, is a zero
of L’ of order n, then

ef =& =(z—zy)""e" 0 {(z,)(1+0(1)),

where /(z) is an entire function with /(z,)#0. Hence the order of the zero z,
of Dg is at most 4(n+1) and by (6) we have

4(n+1)=2¢q
and
g=2(n+1)<4n .

Therefore, using the estimation of logarithmic derivatives, we obtain the fol-
lowing

LEMMA 5.
(11) N(r, 0, G)SAN(r, 0, L")=0(log T(», e¥)+log 7)
as r—oo, r&E (E is a set of v of finite linear measure.)

Then considering the counting functions of zeros of both sides of (6), we
have

12) AT (r, e¥)~N(r, 0, Dg)~N(r, 0, Dg)~3T(r, %),
by (8) and (11).

§4. Representation of G in terms of its zeros and poles
We need the following

LEMMA 6 ([2]). Let {ay,} be n sequences (1<pu<n) of complex numbers
satisfying 1=<|ay .1 <1as,,|< -, lim |a,, ,| =40 for each p.
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Then we can construct Weierstrass products P, of the {a, .} (1=p=n)
with the following property: There exists a set £ in [1, o) of infinite linear
measure such that

{121 log*m(r, P,)
#=t

e —>0  as r—+oo, refd.
=N, 0, P)
=

Therefore we can construct the Weierstrass products P, @ of zeros and
poles of G, respectively, satisfying
log “m(r, P)-+log m(r, Q) _
= M NGO, PYENGL 0, Q)
(re)
where {2 is a set of » of infinite linear measure.

Here if G has a finite number of zeros and poles, then P and @ are poly-
nomials. In this case the formulation of Theorem returns back to the case in
[5], hence we may assume that G has an infinite number of zeros or poles.

Now G must have the following form:

[)
Ly
G=—e",

Q

where M is an entire function with M(0)=0. And then the transformation
formula of discriminants (6) becomes
PZ

(6)’ Ds=Dg- ‘Q"g e*,
where

Ds:—‘—b12X04€4L+03X0323L+ﬁzx0292L+7]1x0@L+7]0
and

Dp=4y32e* T +{ v e+ L v,e®+{, in the case of (i), (ii),

Dr=y,e® sy’ +Lvo%e® +8 v +&,) in the case of (iii).
For simplicity’s sake we put the above equation (6)' by

Aot + Aze®l+ A0 4+ Aol + 4,
(14)

:(3363H+Bze211+31211+30) g_;‘ezﬂﬂaﬁ ,
where 6=0 in the case of (i), (ii) and 6=1 in the case of (iii), and A,4,B,B,+0.

In the following we consider only the case of 0=0. The same discussion
holds for the case of d=1.



150 KAZUNARI SAWADA AND KAZUYA TOHGE
§5. Borel’s unicity theorem

We need the following

LEMMA 7 ([8]). Let ay(z), a:(z), -+, an(z) (a,(2)%0, v=1) be meromorphic
functions and g,(z), g.(2), -+, g.(2) be non-constant entire functions satisfying

S log T(r, a.)
lim 2=t

L R |
= g\ ="
75 Max g i, o)

where 2 1s a set of infinite linear measure. Suppose that the identity

n
2 az)et 0 =a,(z)

holds, then there exist n constants (c,, -+, ¢,)#(0, -+, 0) such that

n
SN eyay(2)es @ =0
y=1

First of all we assume that SH-+2M=constant, 2H-+2M=~constant, H+2M
#*constant and 2Mz=constant. Then by Lemma 7 and (13), (14), there exist
eight constants (¢, -, ¢,)#(0, ---, 0) such that

(15) csAsett4-c,Aselt+csAse?t e A et

2
=(c4B3e*® +cyBye? +c, Bie +-¢,B,) -g—ez‘” .
2

Here without loss of generality we may set the following condition (A):
A:c¢,=0 (=7,6,5,4,3 and 2),
if the corresponding coefficients A, (=3, 2, 1),
B, (k=2, 1) are equal to 0.
By eliminating (P?/Q%e?¥ from (14) and (15),
(Asetl+ Aot + Ao+ Aol + Ag)(caBse* 4¢3 Bye*™ +-c, Bre” + ¢, B,)

=(csAse* L+ Agett+coAse +c5 A ) (Bse® + Bye*™ + Bre" 4- By)
and

(16) ((24—CS)A4Bse4L+3H+(64——C7>A33323L+3H+(C4—Cg)flngeZL+3H

+(C4—Cs)AlBaeL+3H+C4AoBze3H+ o (e —eg)AuBoet 4 (c1—cq) Ay Byt
+(Cl—‘ce)AzBoe2L+(cl—‘Cs)AlBoeL+51AoBo:0-
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Here we need the following

LEMMA 8 ([4]). Let {a;} be a set of non-zero constants and {g;} a set of
functions satisfying

P
2 a;g,=1.
7=1

Then
P
215(0, gasp—1,
Py

where 6(0, g;) denotes the Nevanlinna-deficiency.
By the above lemma and (16), there exist only two possibilities :

CASE (1) all coefficients of left side of (16) vanish,
and
CASE (2) there exist two integers n, m (n-m=0) such that

n-L+m-H=0. (Since L(0)=0 and H(0)=0.)

If the case of (2) holds, we have 4L =-+3H because of (12). Hence let us
consider the case of (1). Then we have

ci1=cs by A;B,#0, c,=cs by A;B;+0
and
¢;=0 by A,B,+0.

Therefore we have ¢;=c,=cs=0. In this case, by (15), we have

2
a7 eL(c7A3e2L+csAzeL—Fc5A1)zeH(caBze”-i—czBl)—gz-em .
If ¢;B;-c,B,#0 then
PZ
N(r, 0, e#(c B,e¥” +chl)—Q7e“’)~T(r, efl) (rekE).
On the other hand
2T(r, eb)
N, 0, eL<C7AseZL+CeAzeL+CsA1))N T(r, el)
=0.
This contradicts (12), whence follows either ¢;B,=0 or ¢,B,=0. In this case,
by (17), we have either

N(r, 0, eX(c Az +csArel+csA))=0,
if 6332:(), CgBl#:O or C3BZ"+‘?0, CzBl‘::O,
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or
er(c Ase*t +ceAset+c;A)=0, if ¢3By=c,B,=0.

In the former case we have that just one of c¢;A;, csd,, csA, is not equal to 0
and the others vanish. Then we have P?/Q?=constant and, by Lemma 8 and
(14), we have at least one of SH+2M, 2H+2M, H+2M, 2M must be a constant.
In the latter case we have c¢;B.=c,B,=c;A;=c A,=cs;A4,=0 and ¢,=c,=cy=0.
This contradicts the condition (A).

Therefore we consider the cases:
(i) 3H+2M=0, (ii) 2H+2M=0, (ii)) H+2M=0 and (iv) 2M=0.
CASE (i). 2M=—3H. Then (14) reduces to

2
Prf(Boe”“’+Ble*21’+Ble"’)—(/{4e”‘+fl,r,e”‘—)—/lze“—!— Aeh)

Q2
P2
:AO—ngE‘.
By Lemma 7, there exist seven constants (c;, -+, ¢,)#(0, -+, 0) such that
2
—%fe'ﬁ(clBoe“2H+CZBle*H+CSBZ)=eL(c4A4e3L+c;,A,-,e2L+csA2eL+c7/11),
Then
e 2T(r, o)
N(r, 0, f7e“H(clBoe‘2”+cZBle'”+cslﬁz)>~ T(r, ™)
? S(r, )
and
3T(r, e¥)
L
N(r, 0, e*(ciAse?t+cs Aye?  +codse e A))~ Z;E: iLi
S(r, e*).

By (12) there exists only one possibility :

N(r, 0, —ge-ﬂ<c130e-2”+c23,e-"+c332>):5(r, e¥)
and
N(r, 0, el(c, Al +csAse?l+coAzel + ¢, A))=S(r, eb).
Here we may assume that
(¢1B,, €aBy, ¢3Bs, ¢ Ay, ¢sAs, ceAs, ¢:AD#(0,0, -+, 0)

because of the same reason as in the condition (A). Therefore we have only
one possibility :
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just two constants of ¢,B,, ¢,B,, ¢;3, are equal to 0
and
just three constants of ¢,A,, csAs, ¢eAs, ¢,4, are equal to 0.
Hence, by (12), we have
P2
o
¢, By#0, ¢.B,=c,B,=0, ¢,A,#0, c;dy=ceds=c,A,=0

=constant=d (+0), say,

and
4L =—-3I.

Then (14) reduces to
d(BoeﬁaH‘{"Ble_Z”""Bge_H)‘(flge_sHﬁLflge_(B“)H+[’12€~<3/2)H+A'/118_(3/4)”>

:f/lo*—‘Bgd
and
(dBU—Aq)e““’—%dBle‘“’—)— dee’H»—/136“(9/4’}{—Age'(am”*;”lle”(s“)H

=A4,—B.d .
By Lemma 8 and Hz%constant, we have

dBy—Ay=dB,=dB,=A;,=4,=4,=4,—B,d=0,
that is,
A,/By=A,/Bs;=d (#0) and A;=A,=A,=B,=B,=0.

CASE (ii). 2M=-—2H. Then (14) becomes

2
(18) 71(;‘2'(30@‘2”+Ble"’-|—Bge”) — (At A+ Aol 4 Ajeh)
PZ
=A,— B, ot

By H, Lz*constant and Lemma 7, there exist seven constants (¢, -+, ¢,)#
©, ---, 0) such that

PZ
.QZ

Hence we have

e (c Byt 4, Bref ¢, By)=el(c, A+ Aol 4-codset+c, A).

[ 37T (r, &™)

P2 ZT(T’, QH)
N<r, 0, ‘@ie 2”(c333e3”+CZBle”+ClBo)>’V1 T(r, o™)
S(r, ef)

and
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3T (r, ek)
2T (r, e%)
T(r, e¥)
S(r, et).

N(r, 0, 9L(¢4A433L+CsAzeZL“'i‘CsAzeL’*‘C7A1)>"V

By (12) we have

PZ
N(r, 0, -Qfe‘z”(cngeSH—kchle”+clBO)>:S(r, et

2

and
N(r, 0, ef(csAse’t+4cs Ase*l+coAsel+c,4,)=S(r, ).

Therefore we have

just two constants of ¢;B;, ¢, B, ¢,B, are equal to 0
and
just three constants of c¢,A,, ¢sAs, ¢sAs, ¢, A, are equal to 0.

In this case we have P?/Q*=d (#0) and (18) gives
T(r, e¥)~m-T(r, e)
with m=4, 3, 2, 3/2, 1, 1/2. 'This contradicts (12).

CASE (iii). 2M=—H. Then we have, by Lemma 7,
vg—:e"”(clBo—i—czBzeaH—i—csBae“"):eL(c,/Le“—{-calv@lse“%-ce/lze”—i—cw’ll).
This gives us a contradiction by the same method as in the case of (ii).
CASE (iv). M=0. Then we have, by Lemma 7,
—g;e”(cnge“’—l-csze”+clBl):e"(c4A4e3L+csAse“+csAzeL—f—mAl)
with (¢y, ¢, =+, ¢2)#(0, 0, ---, 0). Then, by the same method as in the case of
(i), there is only one possibility :
¢y By=c,B,=0, c;As=cedy=c,A,=0

and
2

Therefore, by the same method as in the case of (i), we have

=constant=d, say, (d=0), 3H=4L.

Ay By=A/By=d and A,=4,=4,=B,=B8,=0.



THREE-SHEETED ALGEBROID SURFACES 155

§6. Proof of Theorem

Let R be the surface defined by (1) with P(y)=5. If P(R)=6, then there
exists an entire function f on R of P(f)=6. Then f defines a 3-sheeted alge-
broid surface with P(f)=6, S, say, and further the following equation

holds.

.l)s—_—"‘DR‘C;2

By the result in §5, we have {,=0 and {,=0 in the equation (2), (3).

This result contradicts our assumption :

(8]

either {;#0 or & +0.
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