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0. Introduction

Legendre varieties and Lagrange varieties appear in many areas, for instance, geo-
metric optics [A][J2], generalized Cauchy problem for Hamilton-Jacobi equations [G2]
[13], projective geometry [SI], microlocal analysis [P][DP], moduli problem of vector
bundles on complex surfaces [Y], symplectic topology [Gl] and so on.

In this survey we treat Legendre and Lagrange varieties admitting some parametriza-
tions in complex analytic or C°° category. Then our study fits with the framework of
the theory of singularities of differentiate mappings [AGV][B][D][GWPL][W].

First we introduce the notion of a "front hypersurface" by the property that the Nash
modification projects to the hypersurface itself finitely to one. The Nash modification, in
this case, is the closure of the lifting of the regular points set to the projective cotangent
bundle of the manifold where the hypersurface lies in: The projective cotangent bundle
is identified with the totality of contact elements (tangent hyperplanes) of the base
space and it has the natural contact structure [A][SI]. The tangent hyperplanes to the
regular points of a front hypersurface form a Legendre submanifold, that is, the maximal
dimensional integral submanifold of the contact distribution defined over the projective
cotangent bundle and the closure of this natural lifting might be regarded as a Legendre
variety. In fact, a definition of Legendre variety is that it contains an open dense Legendre
submanifold. The Legendre variety thus obtained by Nash modification has singularities
in general. If the Nash modification is non-singular, then the hypersurface turns out the
projection of a Legendre submanifold. Then the front hypersurface is called a wave front
set [A][Z1]. Remark that, for a generic Legendre submanifold, the projection is finite
to one. In the above definition of front hypersurfaces we allow singularities for Nash
modification, and to make the definition non-trivial, we add the finiteness condition.
(See [LT] for the general theory of limits of tangent spaces.)

We utilize parametrizations of varieties to formulate the notion above mentioned
as follows: A mapping / from an n-dimensional manifold N to an n + 1-dimensional
manifold B (say, of class (7°° or complex analytic) is called a front mapping if the set of
regular points of / is dense in TV, and, for each point x £ TV, the images of the tangent
spaces of regular points converge to a tangent hyperplane Tx C Tj(x)B as regular points
tend to x, and the tangent hyperplanes {Tx} depend smoothly or holomorphically on
the points x G TV. Then we have a C°° or holomorphic lifting f of f to the projective
cotangent bundle PT*B. This lifting is an integral mapping in the sense that the image
/*(TXTV) of tangent space to each point x G TV is contained in the contact distribution of
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PT*B. We call / the Nash lifting of /. Under this formulation, if a front mapping / is
finite to one, then the image of / projects finitely to one by the projection from PT* B
to B] this formulation therefore fits to the naive consideration mentioned before.

A front hypersurface or a front mapping appears also as the "graph" of a Lagrange
variety ([G2]). So we turn our attention to Lagrange varieties. In general, a subset in a
symplectic manifold is called a Lagrange variety if the regular points set is open dense
and it is a Lagrange submanifold, that is, the maximal dimensional integral submanifold
where the symplectic form vanishes. A type of Lagrange variety in the cotangent bundle
T*X of a manifold X is the graph of a closed "multivalued" one form on M. The
graph of a closed one form on a manifold (in the usual sense) is an example of Lagrange
submanifold of the cotangent bundle. Another important example is the conormal bundle
of a submanifold: In general the conormal bundles of varieties with singularities form
another class of Lagrange varieties in a cotangent bundle. (For the general theory of
Lagrangian varieties, see the excellent survey [G2].)

We shall study also Lagrange varieties through parametrizations of them. (For stud-
ies from the viewpoint of "generating families", see [Z2][ZR][J1][JZ].) A C°° or holo-
morphic mapping / from an n-dimensional manifold TV to a 2n-dimensional symplectic
manifold (M,ω) with a symplectic form ω is called an isotropic mapping if the pull-
back /*ω is the zero form. In other word, an isotropic mapping is a parametrization of
"integral variety" of the differential equation ω — 0 on M. (For the general theory of
symplectic manifolds, see [AM][W], for instance.)

If M is the cotangent bundle T*X over a manifold X and the symplectic form ω
is the exterior differential da of the canonical (Louville) form α, then, by Poincare's
Lemma, there exists a function e locally in N such that the exterior differential de is
equal to the pullback f*a. We call e a generating function of /. Remark that, if the
singular locus of ττo / is nowhere dense, where π is the projection from T*X to X, then
a isotropic lifting / is uniquely determined from its generating function. The graph of /
is the front mapping (ττo/, e) from N to X x C. Notice that the Nash lifting of (ττo/, e)
is equal to the integral mapping (/, e) from N to T*X x C, which is identified with an
affine part of PT*(X x C).

The classification of front mappings (in the sense of [DP]), induces the Lagrange
classification of isotropic mappings through their graphs: Two isotropic map-germs /
and /' are Lagrange equivalent if and only if their graphs (/,e) and (f\e'} are strict
right-left equivalent and it is also equivalent to their Nash liftings are strict Legendre
equivalent. Here the word "strict" means that the diffeomorphism of X x C in the usual
definition of the equivalences should be an isomorphism of the additive C line bundre
X x C over X.

In recent work [14] [15] [16], we classify front mappings and therefore Legendre and
Lagrange varieties. (See also [I2][I3].) Then we always encounter a certain module de-
scribing the ramification of a finite mapping. We also utilize this module to classify
differential equations [HIIY]. Let / be a germ of front mapping from TV, x to B Then
there exists a coordinate ( 2 / 1 , . . . ,2/n+ι) around (J3,/(x)) such that the tangent hyper-
plane Tx is defined by dyn+ι = 0 in Tf(x)B. If we write / = (#ι,. . . ,gn, h) under this
coordinate, then, since / is a front map-germ, we see that dh = a\dgι + 4- β>ndgnι for
some C°° or holomorphic function-germs α i , . ., αn on N, x. We are thus led to consider
the module of all functions h such that the exterior derivative of h is a functional linear
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combination of the exterior derivatives of g\ , . . . , gn . We call this module the ramification
module of the map-germ g = (g\ , . . . , gn).

We study on the "finiteness" of the ramification module in §1.
A classification of front mappings, Legendre varieties and Lagrange varieties under

some restrictions are given in §2. (For the detailed proof, see [16]).
Another important example of front hypersurfaces is the developable of a curve in an

affine space or in an projective space: The ruled surface by the tangent lines to a space
curve is called the tangent developable surface of the curve. In general the developable
of a curve in (n -f- l)-dimensional projective space is defined as the hypersurface "ruled"
by osculating (n — l)-subspaces to the curve. These singular hypersurfaces appear also
in singular solutions of homogeneous Monge- Ampere equations and give examples for
"isotropic" deformations of plane curve singularities. The developable are in some sense
quite special front varieties in general. However we achieve the classification of devel-
opables for rather general cases: We give the local classification of developables in the
complex category in §3. (For the similar result in C°° category, see [I4][I5].)

Hereafter all mappings, diffeomorphisms and vector fields are assumed of class C°°
or holomorphic according to the context.

This paper is written under the stimulation of the Hanoi workshop: I would like to
thank the organizers for the nice hospitality. I would like to thank also Professors D.
Mond, S. Izumiya and J. Steenbrink for helpful information.

1. Ramification module

Let X be a germ of complex analytic space and g = (9ι> ι9p) : X — *• Cp

be a finite holomorphic map-germ. Let Ωl

x denote the germ of sheaf of holomorphic
differential i-forms on X. Then Ω = ΩX = ]Γ^ Ω^ is a graded differential C?χ-algebra
with the differential d. Consider the graded differential ideal / generated by dg\ , . . . , dgp

in ΩX. Then d : Ω// — »• Ω// is a #*(9p-homomorphism. In fact, for a form ω on X and
a function a on Cp , we have

d(a o g - ω) = (/^ T — o g dgj )ω + ao g dω = ao g dω, mod. /.

Moreover d : #*(Ω/7) — »• #*(Ω/7) is an 0p-homomorphism.
We then set Ttg - M°(g*(Ω/I),d) = Ker(d : g*Oχ — > ^(Ω//)1). Remark that

Op C Tig C g*Oχ. We further set Tl~ = Kg/Op. We call Hg (resp. ftj) the ramifi-
cation module (resp. reduced ramification module) of g. We denote Rg (resp. R~) the
corresponding stalk at the base point of the germ X. (The notation Rg is borrowed
from [M'2]. In [13] [14] [15] , we used the notation Hg instead. Similar modules are also
considered in [S][M2][Z2] from various motivations.)

PROPOSITION 1.1. Hg (resp. Tl~ ) is a coherent Op -module.

Proof. Since (^(Ω//) is Op-coherent, the cohomology 7ί = Ker d/ Im d of the
complex (<7*(Ω//),d) is also Op- coherent.

COROLLARY 1.2. I f l , ΛI, . ., hr generate Rg as Op-module, then (flf Λi , .. ., hr) :
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X — > CP x Cr is an inactive map-germ, (cf. [M' 2] [II] [12]).

Proof. Since Hg is coherent, 1, Λ I , . . . , hr generate Tig locally. Take y E Cp near 0.
Then

p
Kg,y = {k<= Cy,ω I dk €

contains #*Cχ, where Cx is the constant sheaf. So ftι,...,ftr separate the points of

Next we turn to the C°° case. Let g : Rn,0 — > Rp,0 be a finite C00 map-germ.
(The ring En of C°° function-germs on Rn,0 is finite over Ep via #*.) We set kr g =
dim Ker T0g. To show Rg = {h £ En \ dh £ £?=i Endgi} is a finite j&p-module is
unsolved yet in C°° case. But in particular case kr g ^ 1, we have

THEOREM 1.3. Let g : Rn, 0 —> Rp, 0 be a finite C°° map-germ. If kr g < 1,
Rg is a finitely generated Ep-module via g*. Therefore S C Rg generates Rg over Ep if
and only if S generates Rg/mpRg over R.

To prove Theorem 1.3, we link to the unfolding theory of map-germs [GWPL] and
we will recover a new aspect of the unfolding theory.

An unfolding of a map-germ g is a triple (G; i, j) of a map-germ G : R^, 0 —> Rp, 0,
and immersions i : Rn, 0 —>• R^, 0 and j : Rp, 0 —> Rp, 0 such that the following is a
fiber square:

R^O —ί?—> Rp,0

i

Rn,0

LEMMA 1.4. Let (G]iJ) be an unfolding of g. Then i* : EN —> En induces
i* : RG —»• Rg which is a homomorphism over j* : Ep —> EP} that is, i*{(G*a)h} =
g*(j*a)i*h,a£EP,heRG.

Proof. Let h G RG . Then d(hoi) = (̂  atdGt)oi = £ α/otd(G/ot) =
Since each jι° g £ Rg, we have d(Λ o i) belongs to ̂  Endgt. Thus hoi £ Rg.

We call (G]i,j) an admissible unfolding if i* : ΛG —> Λ^ is surjective.
The following is easy to verify:

LEMMA 1.5. If(G]iJ) is admissible, and RG is finite over Ep, then Rg is finite
over

PROPOSITION 1.6. // kr g ^ 1; then any unfolding of g is admissible.
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Proof. Let (G]i,j) be an unfolding of g. Then, for some coordinates, G : Rn x

Rm ) 0 _^ Rp χ Rm ) Q with G(X)λ) = (Gλ(χ),λ),i(x) - (x,0) and j(y) = (y,0).

Further, 0(x) = (x',<£(x',ί)) and GA(#) = (x',φχ(x',t)), where x' = (xi,. . . ,xn-ι) and
* = xn. Remark that h £ Rg if and only if dh/di = adφ/dt for some a £ En. Define

A G^n+m, by

h =

Then h € RG and
Λt

t * A = / a
Jo

Example 1.7. Let </ = (a??,-^) and ^ ~ (xι + λx2,#2>λ) Then the restriction
RG — > Λ0 is not surjective. So the unfolding G of 0 is not admissible.

Remark 1.8. If an unfolding G' : RN,Q — > Rp,0 of g is equivalent ([GWPL]) to
G, then #£> is isomorphic to RG over a ring isomorphism of Ep.

Proof of Theorem 1.3. By Lemma 1.5, Proposition 1.6 and Remark 1.8, it suffices to
check for the stable mapping of type Af. : g = (a?ι, . . . ,x n_ι,t f c

Then this fact is proved in [Il]p2][I3] already.

COROLLARY 1.9. Let g : Rn,0 — > Rn,0 (reap, g : Cn,0 — > Cn,0 J 6e α
C00 (resp. holomorphic) map-germ of form g(x',t) — (x /,w(x /,^)) of multiplicity k + 1,
where x1 = (xi, . . . , xn_ι). TΛen α subset S of Rg generates Rg over En (resp. On) via
g* if and only if the set {ordth(Q,t) \ h G 5} contains {0, Ar + 2, . . . ,2Ar + 1}.

2. Classification of generic front hypersurfaces

Let / : Nn — » Bn+1 be a (7°° front mapping. Then there exists a unique integral
lifting / : N — > PT* B (the Nash lifting of /). Thus we have an injective mapping
M : CψR(N, B) — > Cf°(N, PT*J5), Λ^(/) = /, where CfR(N, B) is the set of C°° front
mappings from N to B and Cj°(N, PT* B}, is the set of C°° integral mappings from TV
to PT* B. We give the induced topology on C^R(N, B) from the Whitney C°° topology
ofC?(N,PT*B) C C°°(NίPTB).

We will give a generic classification of front mappings of kernel rank at most one in
the C00 case. We set

C^R(N, B)1 = {fe C?R(N, B) I kr fx< 1, for any x G N}.

Let / G Cj?Λ(JV, J3)1. We shall impose some genericity conditions to /. Then / is
reduced to some normal form. (For this point, the reduction is valid also in holomorphic
case).

First, under a genericity condition, for any x G TV, the germ fx is right- left equivalent
to (g(x',i),h(x',t)) : Rn,0 — > Rn x R,0 with g(x',t) = (x',u(x',t)) where x' =
(xi, . , x n_ι) and iί = e(fc+ 1) + xιe(A! — 1) -h + Xfc_ιe(l), dh/dt = wdu/dt for some
^ G £"«',<, 0 ̂  A ̂  n. Here we set e(i) = ΐ/il. Then we see Λ G Rg. (See §1.) Then w is
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uniquely determined from h. By Corollary 1.9, we have

k * d
dt.

f* d
h = AQ o g + Y^ Aj o g u3 , where u3 = I e(j)—

j=ι Jo όi

Remark that ordttij(0,ί) = k + j + 1, (1 < j < k). Then we see

w = (dAQ/dqn) °9 + Σ(dAj /dqn) ogUj

Thus, for 1 ̂  j ^ k, djw/dtf = A3 o g, mod. (xi, . . . , x/b-i,*) C #n Next we impose
the generic condition on (K, w): For some -ί, O ^ ^ ^ n — Ar,

dw/Qt(0) = - - - = tfw/dt'Q) = 0, d/+1u;/α/+1(0) 7^ 0,

and that

(dti/Λ, . . . , 0*tι/Λ* βti /Λ, . . . , tfw/dt1)

is a submersion.
Now we introduce the local models /n fc / : Rn,0 — > Rn+1,0 by fnkt(x'^} =

(^,11, A),

and A =
^=k

THEOREM 2.1. TΛere exisίs an open dense subset G C CJ^JV,!?)1 sucΛ ώαf, /or
f £ & and for any x G N, the germ fx : N,x — >• J5 25 C00 nght leβ equivalent to

Remark 2.2. The multiplicity of /n,jk,£ is equal to fc + 1 and the multiplicity of the
Nash lifting / Λ j jb } / is equal to ί-\- 1. So the local models are inequivalent to each other.
We call the singularity fn,k,ι of front mapping of type Ak+1,1, when n is fixed. Then the

ι)0 singularities are just the usual Ak+i singularities of wave front sets [AGV].

COROLLARY ,2.3. For a genenc integral mapping F : N — » PT*B with the kernel
rank π o F ^ 1? and for any x 6 N, Fx is Legendre equivalent to one 0//n,jb,/,0 ^ ^ ̂

Outline of the proof of Theorem 2.1. If fc ̂  ^, then fx is equivalent to /n^^ as
proved in [13]. If i < &, then /^ is equivalent in this case to (g, h) with

A = xkv>t + x*+ιu/+ι + . . . + Xfc+^-i^i + a

?

for some a E Rg with 5α/Λ G t^E^jdu/dt. Write α = tι/+ι + /?. Set, for s G R,

As = Xjfet l/ + ---- h Zjb+£-lUl + W£+l + Sβ.

Then we claim that the family of front map-germs (g,hs) is trivial. To see this, write

Jk-l

tldu/dt = y^ α, j o gdu/dxj -f 6; o gdu/dt + c o #,
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for some αz ; , 6Z , c £ my . Then set
k-l

Xz = (f - hi o g)d/di - ]Γ Oij

~which is 0-lowerable: ^X, = g+Y,, Y, = Y~aijd/dyj + cd/dyn, with X, (0) =
0, ϊi(0) = 0. Moreover the k + 1 elements

v , V Λ

'
generate Rg over flf*£"y by Corollary 1.9. Therefore β = Xhs + α0 ° 9, where

for some dj,bp £ my,Q ^ j ^ 1,1 ^ p ̂  k — I. Thus the triviality is shown similarly as
in [15]. Therefore fx = (0,ftι) is equivalent to fn,k,ι = (<7,^o) as required.

Remark 2.4. To trivialize the family (#,Λ5), we need only additive R line bundle
isomorphisms Rn xR — > Rn,(τ/ι, . . . ,2/ n >2/n+ι) l~> (ί/i) ?2/n) We then obtain a result
on the classification of isotropic mappings through their graphs.

COROLLARY 2.5. For a genenc isotropic mapping f : N — > T*X with kr π o / <
1, the Lagrange equivalence classes of f X } ( x G -X"), are determined by the multiplicities
o f f x andπofx. (cf.

Remark 2.6. The transversality theorem holds for integral mappings to a contact
manifold and for isotropic mappings to a symplectic manifold of kernel rank at most one.
Then we have the generic Legendre classification of integral mappings F : N — > PT* B
of kernel rank at most one for n — dim AT ^ 3:

n = 1 : AI, ̂ 2,
n — 2: Moreover ^3,^2,1,
n — 3: Moreover A^,A$^,D±.

3. Singularities of developables

In [14] [15], we study the local C°° classification of singularities appearing in devel-
opables. This result unifies and generalizes the previous results of Cleave, Gaffney, du
Plessis, ArnoΓd, Shcherbak and Mond. (See [MΊ][S1][S2].)

Here we state the similar result in complex analytic category: Consider a holomorphic
curve 7 : M — »• CPn+1, where M is a one-dimensional complex manifold and n ^ 1.
We call the germ jp at a point p £ M of finite osculation-type (or simply, of finite type)
A = (αi, 02, . . . , αn+ι) if there exist a holomorphic coordinate t of (M,p) and an affine
coordinate (a?ι, . . . , xn+ι) of CPn+1 centered at γ(p) such that 7 is represented by

a ! = taί + o(*αι), . . . xn+1 = ία»+l + o(ta»+*),

where each αz is a natural number and 1 ̂  a\ < < αn+ι . Then we write type(7P) = A.
For each p £ M where jp is of finite type and for each ί, (0 ̂  i ̂  n + 1), there exists

the most osculating linear subspace to 7 at p in T7(p)CPn+1 of dimension i. We call it the
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osculating z-subspace and denote by 0i(7,p). This subspace is identified with {#, +ι —
. . = χn = 0} under the above affine representation of yp. The corresponding projective
subspace of CPn+1 through j(p) of dimension i is also denoted by O»(7,p). The type of a
curve describes the order of tangency to each osculating subspace, and it is the simplest
local projective invariant of the curve. Further we define the osculating i-bundle Oi(j) =

(7>P) *n *he pullhack bundle γ""1TCPn+1. The natural parametrization dev(γ) :

—> CPn+l defined by (p,g) ι-> q, where q € On-ι(τ,p)(C CPn+1), is called
also a developable of 7.

The developable of 7 is a front mapping: The Nash lifting of dev(7) to PT*CPn+1

is in fact the projective conormal bundle of the dual curve 7* : M —> cpn+i* jn the

dual projective space CPn+1* defined by 7*(p) = On(7,p) through the identification
prp+Qpn+l cat prp* Qpn+1*

The germ dev(7)p of dev(7) at (p, 0) is determined up to the projective equiva-
lence by the projective class of jp. Instead, we consider a weaker equivalence, that is,
holomorphic right-left equivalence: dev(7)p is holomorphically equivalent to dev(7/)ί>/
if there exist holomorphic diffeomorphisms σ : On_ι(7), (p,0) —* On-ι(7/),(p, 0) and
T : CPn+1,7(p) —> CPn+1,7(p) such that rodev(γ)p = dev(y)p/oσ. Then it is natural
to ask whether or not a type of a curve-germ jp determines the holomorphic right-left
equivalence class of map-germ dev(7)p : A type A of a curve-germ is called determinative
if type(7p) = type(7^,) implies that dev(7)p is equivalent to dev(7/)p/.

The following result gives the complete characterization of determinative types:

THEOREM 3.1. A type A of a holomorphic curve-germ in CPn+1 is determinative
if and only if A is one of following types:

(I)nr A = ( l ,2 , . . . ,n ,n + r), r = l , 2 , . . . ,
(II); , A = ( l , 2 , . . . J i ϊ t + 2 , . . . l n + l,n + 2), 0 < i < n - 1,

(IΠ)n A = (3,4,...,n + 2,n + 3),
(IV)m A = (2,2m + 1), m = 2 ,3 , . . . , (V) A = (3,5), (VI) A = (1,3,5).
Further, in this case, for any jp of type A, the map-germ dev(j)p is holomorphi-

cally right-left equivalent to (z', U(x',t), Ur(x'>t)) : Cn,0 —> Cn+1,0, where (x1 , t ] =
(xi, . . . txn-ι,t) is a coordinate o/(Cn,0),

αn! (αn-αι)! n (α n-α n_ι)! '

r = αn+ι — an and

Remark 3.2. For plane curves, that A = (01,02) is determinative means that
type(7p) = type(7p/) implies the curve-germs (7)ί>,(7/)p/ themselves are holomorphically
equivalent, and the determinative types are (1,1 + r), r = 1 ,2, . . . , (2, 3), (3,4), (2,2m +
1), m — 2,3, . . . and (3, 5). For space curves, the determinative types are

(l,2,2 + r),r= 1,2,.. . ,(2,3,4),(1,3,4),(3,4,5) and (1,3,5).

In [S2], it is observed that the developable of a curve of type (IV): (1,3,5) is equivalent
to the variety of irregular orbits of the finite reflection group H$ in C3.
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Remark 3.3. We naturally associate Theorem 3.1 with the ADE-classifica,tiou of
Dynkin diagrams, finite reflection groups or a simple singularities ([AGV][G'])r We do
not know however the hidden mathematics behind Theorem 3.1.

Proof of Theorem 3.1. The proof is translated word by word from the proof in the
C°° case [14] [15] except that we need to use the result in §1.
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