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1. Introduction.

Recently we have huge amount of research papers concerning semi-linear
elliptic boundary value problems. See, for example Berestychi-Lions-Peletier
[3], Dancer [4], Lin [5], Ni-Serrin [6], Rabinowitz [14], Wang [15] and the
literatures cited there.

In this paper we want to discuss the following quantitative result for non-
linear eigenvalue problem with the Robin condition.

Let ΩczR2 be a bounded domain with smooth boundary dΩ. Let w be a

fixed point in Ω. Let B{ε w) denote the ball of center w with radius ε. We

remove B(e; w) from Ω and we get Ωε=Ω\B(ε; w). We write B(ε; w) as Bε.
Fix />e=(l, oo). We ήx k>0. We put

(1.1). λ(ε)=mf(\n \lu\*dx + k[ u*dσλ,

where X={u^H\Ωs\ w=0 on dΩ and u^O in Ωε, ||w||z,p+iα?ε) = l}. We see that
there exists at least one solution vε of the above problem which attains (l.l)β.

We see that vε satisfies

-Avε(x)=λ(ε)vε(x)p

vε(x)=0

kvε(x)+^—vε(χ)—0 χζΞdB(ε; w).

Here d/dvx denotes the derivative along the exterior normal vector with respect
to Ωε.

We write

(1.2) Λ = i n f ί \Ίu\2dx,
u^YjΩ

where F={w; we#J(β), u^O in Ω, \\U\\LP^\Q^=1} . There exists at least one
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positive solution v which attains (1.2). It satisfies — Δv—λvv in Ω, v=0 on dΩ.
Main result of this paper is the following.

THEOREM. Assume that the positive function uε which attains (l.l) e is unique
for 0 < ε < l . Assume also that the positive function u which attains (1.2) is unique.
Assume that Ker(Δ+pλ(ε)u*-ι)={Q) for 0 < e < l . Assume that \\uf-up\\Lξωε^0
for some q>l and sup ε2\\uf \\LQCΩ^ is finite for fixed large q. Under these assump-
tions, we have

(1.3) λ(ε)-λ=2πkεu(w)2+o(ε).

Remark. Here the operator A+pλ(ε)u?~1 means the operator associated with
the boundary condition with respect to (l.l) e. The inequality λ(ε)^λ+O(ε) is
easy to show. Let Xε(x) be the characteristic function of Ωε. Then we put
F8(x)=X8(x)u(x). Then,

=λ+O(s).

There are many papers concerning eigenvalues of the Laplacian under sin-
gular variation of domains. See Ozawa [8], [9], [10], [11], Besson [2] and the
literature cited there.

Our proof of Theorem is given by a systematic use of the Hadamard varia-
tional formula developed by Osawa [7] and the techniques in Ozawa [10]. The
authors think that the techniques developed in this paper have wide class ap-
plications to investigation of semi-linear boundary value problems.

We quote the following theorem from Osawa [7]. It should be remarked
that more general theorem is treated in [7].

THEOREM ([7]). Fix ε. Assume that positive minimizer uε associated with
(l.l)e is unique and Ker{A+pλ{ε)uΓ1)^. Then,

(1.4) -jj-λ(ε)=-\
oε j

where Hχ~ — ε~ι is the first mean curvature of the boundary point with respect to
the interior normal vector at x. Here V denotes the gradient operator on the
tangent line.

Thus,

where

= —f \Vut\
2dσx, I2(t)=2\ (λ(t)/(p+l)M+1dσx

JoBt JdBt
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uidσx, I<(t)= + k\ t-ιu\dσx.
dBt j3Bt

2. Preliminary Lemma.

LEMMA 2.1. Fix L(ΞC°°(dBε). Let u be the solution of

(2.1) Au(x)=0 x(=Ω\B(ε;w)

Then, u{x) satisfies

(2.2) \u(x)\^CεMax\L(θ)\
Θ

u(x)=L(θ) x = w+ε(cos θ, sin θ).

for any αe(0, 1/2), σ>0.

Proof. We put

f(x)=aQ\ogr+ ΣφjCOSjθ+CjSinjθX-j)-1^.

Then, it satisfies Af(x)=o x^R2\Bε. We expand L(θ) in a Fourier series

L(θ)=so+Σϊ (sj cos jθ+tj sin jθ).

Therefore,

G o — ^ " 1

We see that

observing

Σ(s
0

Then, we solve Δi>(jt)=O, x e β and v(x)~f(x) for xtΞdΩ. And we put

We solve
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We continue this procedure, then we get u(x)=f(x)—v(x)+fi2\x) ••• satisfies
(2.1). Observing this step, we get

1/2

(2.3)

( / °°
|s.l+(Σ

We use

fs2j+ή)=[2*L(θ)2dθ£2πmaxL(θ)2.
Jo 0

Therefore, we get the first part of (2.2). By the above construction of u we
see that

for a>0.
We have the inequality

( oo xl/2 / oo

Σyi+β(s5+Φ) ^ ( Σ y
7 = 1 / \j = l

for « G ( 0 , 1/2).
We know that //^(SO-norm of /z is equivalent to the following norm. See

Adams [1].

Thus, we have

for any σ>0. Summing up these facts we get the second part of (2.2).

3. Approximation of the Geen function.

This section is heavily depend on the previous paper of one of the authors
[10]. We introduce the following kernel pe(x, y).

(3.1) />,(*, y)=G(x, y)+g(ε)G{x, w)G(w, y)+h(ε)(lwG{x, w), !wG{w, y)>,

where
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for orthnomal frame (wlf w2) of R2 and where

(3.2) g{ε)^-{γ-{2π)~1 log ε+(k 2π)"1ε"1)"1

and

Here

γ= lim(G(x, w)+(2π)-1\og\x-w\).
x-*w

Let G8(x, y) be the Green function of the Laplacian in Ωε associated with
the boundary conditions

G8(x, y)=0

h

We put

kGε(x, y)+ΊΓ-G9(x, y)=0

)=[ G.(x, y)f{y)dy
JίJε

PJ(x)=\ p,(χ, y)f(y)dy.

We want to prove the following. We put Qεf(x)=Pεf(x)—Gεf(x).
There exists a constant C independent of ε such that

(3.4) max\kQεf(x)+J-Qεf(x)

(3.5) max \lQtf(x)\£Ce<l-*a><*\\f\\MiQ9>
x<EdBε

for any αe(0, 1/2), q>8.

Proof of (3.4), (3.5). Since Gεf{x) satisfies the third boundary condition,
then we have only to calculate

(3.6) kP.f(x)+-£-P.f(x)

on dBε. First we get

(3.7) P s / W - G / W + ^ ε X - ^ ) - 1 log ε+γ+O(ε))Gf(w)

lwS(x, w), VwG(w, y)>

on x = w+(ε, 0). Here we notice the formulas
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(3.8) <VwG(xf w), lwG(w, jy)>,^+ce,o)

^ (x, w), lwG(w, y

(3.9) -=— <ΊwG(x, w), lwG(w, 3θ>ι,=«,+cβ,o>

d d
——(2τr)~1ε~2-^—G(w, y)~\~~*\—^wS(x, w), VwG(w, y)y*

By using relations (3.2), (3.3), (3.8), (3.9) we get the equation

(3.10) (3.6)=k(Gf(x)-Gf(w)+g(ε)O(l)Gf(w)

— k~ι-~—Gf(x)-\-k~1-^—Gf(w)+h(ε)<ywS(x, w), ^wGf(w)}

d
— k^1h(ε)^—<ywS(x, w), ΊwGf(w)y.

OXi

We know that

g(e)=- (2πk)ε+O(ε*\\ogε\)

h(ε)=2πε2+O(εz).

Therefore, we have (3.4).
Next we want to estimate

(3.11)

We have

(3.12) (

for ^>8. It should be remarked that ||6r/||<72csi) can not be estimated by
C\\f\\Lqωs) for any q. Thus, we used delicate technique of considering

. Summing up (2.2), (3.4), (3.12) we get (3.5).

4. Proof of Theorem.

First we consider the term U(t). We have Ut—v{t)Λ-λ{t)PtUp

t> where

Therefore,

where

ϋBt
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dBt

We want to estimate /i,i(ί) We know that

satisfies

x<=dBt

by (3.4), (3.5) for large fixed q.
On the other hand ut=λ(t)(Gt-Pt)up

t+λ(t)Ptu
p

t. We see that

(Gt-Pt)up

t\£Ctmax\L(θ)\
Θ

for large q and we see that

PtUp

t\ £* \Gup

t\ + \g(ε)\ IG(x, w)\ \Gup

t(w)\ + \ h(ε)\ \lG(x, w)\ \lGύv

t(w)\ .

Here ύt is the extension of ut which is zero outside Ωt. Since we have
l|WilLp+ici2£)=l, we get H G M ^ I K C ' . Therefore, \Ptu

p

t\^Cff by observing

L/Cp + l )

and
<C't~cp~~ι:>KP+i:>

Summing up these fact we get

By the assumption of Theorem we get

(4.1) sup sup \ut(x)\<C'<oo .
1 χeΩt

Then,

(4.2) max\V(t)(θ)\^C"t
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(4.3) max \lΫ(t)(x)| £c*fcl-a<o/3.
x<ΞdBt

Therefore, 7lt 1(f)=O(ί 1 + 8 c l- 2 α ) 8" 1)

We know that

(4.4) f \VPtuPt\
2dσx£c(\ \lGuPt\

2dσx+g{t)2\ \G{xy w)Gu?t(w)\2dσx

JdBt \JdBt JdBt

G(x, w),
dBt

The first term in the right hand side of (4.4) is O(t). The second term in the
right hand side of (4.4) is O(g(ty)tr2=O(t). The third term in the right hand
side of (4.4) is 0{h{tf)t~H=0{t). Here we used the fact that \l!wG(x, u/)| =
O(t~2). Therefore, h{t)=O(t). Thus,

(4.5) \*Ut)dt=O(**).
Jo

Second we consider the term I2(t). By (4.1) we have I2(t)—O(t). Thus,

(4.6) \Ί2(t)dt=O(e2).
Jo

Similarly λve have

(4.7)

We would like to consider the integral of 74(ί) from 0 to ε which is a main
term of our analysis. We have ut—λ(t)Gtu

p

t we get 74(ί)=O(l). Thus, we have

(4.8) \Ί4(f)dt=O(e).
Jo

Summing up these estimates we have

(4.9) λ(ε)-λ=O(ε).

We need more delicate analysis to get Theorem. We have

(4.10) ([ uidσx)=Ut)+Ut)+IΊ(t),

where

JdBt

I6(t)=2λ(t)2\
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JdBt

Since we have (3.4), Lemma 2.1 we get

Therefore,

(4.11) U) {
\JdBt

by the Schwartz inequality. We have

(4.12) Λ(ί)=

We want to calculate /5(0

(
dBt

+2λ{tf\ Gup

t(x)g(t)G(x, w)Gύ%w)dσx
JdBt

+2λ(t)2[ Gup

t(x)h{t)(lwG(x, w), lwGuϊ&w)ydσx
JdBt

Λ-λ(tfg(tf\ G(x, w)\Gu*lXw)2dax

+2λ(t)g(t)Kt)[ G(x, w)Gup

t(w)<lwG(x, w\ lwGu*t(w))dσx
JdBi

<VwG(x, w),

=/8(ί)+/9(ί)+ +Λs(ί).

We have /9(f)=O(i2|logf|), /1^ί)=O(ί»), /u(i)=O(f(logi)2), I^t)=O(f\\ogt\),
In(t)-O(f). Since we have (4.9) we get

Thus,

Thus, lt(t)=O(f). Therefore,

h(t)=kλzfι\ Gu?t(x)2dσx+O(t).

Summing up these facts we get
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dBt

By the assumption of Theorem we have Gup

t(x)—Gup(x)=o(l) uniformly for x.

Therefore we get Theorem.

5. Comments.

We know that the condition

in Theorem can be replaced by

(5.1) sup sup \u£(x)\<C<-\-c>o .

The author conjectures that (5.1) follows from other conditions in Theorem.
Our proof of Theorem of this paper is quite different from the proof of

Theorem 1 (with σ=0) in Ozawa [11]. Our proof of this paper used Hadamard's
variational formula for non-linear eigenvalue in [7].

The authors want to get the asymptotic estimate of eigenvalues of q-

Laplacian under singular variation of domains. Here this problem is related to
minimizing problem of

inf f \lu\Hx,
« G l JΩ

where ^={ | |M| | L P + 1 ( f l ) = l, u<=Wuq(Ω), u=Q on dΩ\. However the Euler equa-
tion is complicated compared with the case q=2. Can one get any result?
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Addendum: Right hand side of formula (3.4) should be corrected as
Cεh\\f\\L

pcΩe) for h<l and large q. And it suffices to get our Theorem, if an
assumption of Theorem, which is

for large q is replaced by

for any h<\ and large q.




