Y. ANDO KODAI MATH. J. 15 (1992), 310-311

CORRECTION TO: "COHOMOLOGY OF A HOPF ALGEBRA OVER Z_2 "

By Yutaka Ando

M. Tezuka [2] pointed out that there are some errors in calculations in [1]. The following is the correction of our calculations.

Denote $a_0(a_1c_0^2+c_1a_0^2)$ by s_1 and $(b_1c_0^2+c_1b_0^2)b_0$ by s_2 . Then we have the following

Lemma 5.1.1.

- (1) $ds_1 = a_1^2 a_0 b_0^2$, $ds_2 = b_1^2 a_0^2 b_0$.
- (2) $d(c_1a_0c_0^2) = b_1s_1 + a_1c_1a_0b_0^2$, $d(c_1c_0^2b_0) = a_1s_2 + b_1c_1a_0^2b_0$.

Proof. (1) $ds_1 = a_0(a_1 \cdot dc_0^2 + dc_1 \cdot a_0^2) = a_1^2 a_0 b_0^2$. ds_2 can be obtained similarly. (2) As $d(c_1 c_0^2) = c_1 \cdot dc_0^2 + dc_1 \cdot c_0^2 = c_1(a_1 b_0^2 + b_1 a_0^2) + a_1 b_1 c_0^2 = b_1(a_1 c_0^2 + c_1 a_0^2) + a_1 c_1 b_0^2$, we can get $d(c_1 a_0 c_0^2) = a_0 \cdot d(c_1 c_0^2) = b_1 a_0(a_1 c_0^2 + c_1 a_0^2) + a_1 c_1 a_0 b_0^2 = b_1 s_1 + a_1 c_1 a_0 b_0^2$. Another equation can be obtained similarly. q.e.d.

In the spectral sequence $\{E_r(\Lambda), d_r\}$, this lemma shows that $d_2s_1=d_2s_2=0$, which mean that s_1 and s_2 survives in E_3 , and that $d_2(c_1a_0c_0^2)=b_1s_1$ and $d_2(c_1c_0^2b_0)=a_1s_2$ which mean that there are relations b_1s_1 and a_1s_2 in E_3

Thus we get

$$E_3 \cong \mathbb{Z}_2[a_0, a_1, b_0, b_1] \otimes \mathbb{Z}_2[c_1^2, c_0^4, s_1, s_2]/R$$

where R is an ideal generated by the following relations:

 $a_0b_0, a_1b_1, a_1b_0^2 + a_0^2b_1, b_1s_1, a_1s_2, b_0s_1, a_0s_2, s_1s_2$ $s_1^2 + a_0^2a_1^2c_0^4 + a_0^6c_1^2, s_2^2 + b_0^2b_1^2c_0^4 + b_0^6c_1^2.$

The above lemma also shows that $s_1 + a_1^2 c_0 b_0$ and $s_2 + a_0 c_0 b_1^2$ are permanent cycles.

Subsequently the main result in [1] is restated as follows:

THEOREM 5.2. As an algebra over Z_2

Received December 16, 1991.

CORRECTION TO

 $Cotor^{A}(Z_{2}, Z_{2}) \cong Z_{2}[u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}, z_{1}, z_{2}]/R$

where $u_1 = \{a_0\}$, $u_2 = \{a_1\}$, $v_1 = \{b_0\}$, $v_2 = \{b_1\}$, $w_1 = \{c_0^4 + c_1 d\alpha^2\}$, $w_2 = \{c_1^2\}$, $z_1 = \{a_0(a_1c_0^2 + c_1a_0^2) + a_1^2c_0b_0\}$, and $z_2 = \{(b_1c_0^2 + c_1b_0^2)b_0 + a_0c_0b_1^2\}$ denote the respective cohomology classes of their representative cocycles, and R denotes the ideal generated by

 $u_1v_1, u_2v_2, u_1^2v_2 + u_2v_1^2, v_2z_1, u_2z_2, v_1z_1, u_1z_2, z_1z_2,$

 $z_1^2 + u_1^2 u_2^2 w_1 + u_1^6 w_2, z_2^2 + v_1^2 v_2^2 w_1 + v_1^6 w_2.$

References

- [1] Y. ANDO, Cohomology of a Hopf algebra over \mathbb{Z}_2 , Kodai Math. J., 12 (1989), 332-338.
- [2] M. Tezuka, Cohomology of Unipotent Algebraic and Finite Groups and the Steenrod Algebra, Preprint.

Department of Mathematics Tokyo University of Fisheries 4-5-7, Kohnan, Minato-ku, Tokyo, Japan