NONLINEAR ERGODIC THEOREMS OF ALMOST-ORBITS OF NON-LIPSCHITZIAN SEMIGROUPS

TAE HWA KIM

Abstract

In this paper, we shall establish the weak convergence and nonlinear ergodic theorems for reversible semigroups of weakly asymptotically non-expansive type in Banach spaces.

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $s \mapsto a \cdot s$ and $s \to s \cdot a$ from G to G are continuous. G is called right reversible if any two closed left ideals of G have nonvoid intersection. In this case, (G, \geqslant) is a directed system when the binary relation " \geqslant " on G is defined by

$$t \geqslant s$$
 if and only if $\{s\} \cup \overline{Gs} \supseteq \{t\} \cup \overline{Gt}$, $s, t \in G$.

Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups (see [7, p. 335]). Left reversibility of G is defined similarly. G is called reversible if it is both left and right reversible.

Let G be a semitopological semigroup with a binary relation " \geqslant " which directs G. Let C be a nonempty closed convex subset of a real Banach space E and let a family $\Im = \{S(t): t \in G\}$ be a (continuous) representation of G as continuous mappings on C into C, i.e., S(ts)x = S(t)S(s)x for all $t, s \in G$ and $x \in C$, and for every $x \in C$, the mapping $t \mapsto S(t)x$ from G into C is continuous. A representation $\Im = \{S(t): t \in G\}$ of G on C is called reversible [resp., right (left) reversible] In this paper, we also consider a non-Lipschitzian semigroup of mappings: a representation $\Im = \{S(t): t \in G\}$ of G on C is said to be a semigroup of weakly asymptotically

^{*}Supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1990. AMS Subject Classification (1980): 47H10

Keywords and phrases. Weak convergence, nonlinear ergodic theorem, almost-orbit, weakly asymptotically nonexpansive type, asymptotic center. Received May 20, 1991; January 14, 1992.

nonexpansive type (simply, w.a.n.t.) on C if, for each $x \in C$ and each bounded subset D of C,

$$\lim_{t} \sup_{y \in D} (\|S(t)x - S(t)y\| - \|x - y\|) \leq 0.$$

Immediately, we can see that the semigroups of w.a.n.t. include all semigroups of nonexpansive mappings with directed systems. In particular, if $\mathfrak{F}=\{S(t):t\in G\}$ is a Lipschitzian representation of G with an additional condition, i.e., $\limsup k_t \leq 1$ (see [15]), then it is obviously of w.a.n.t. In cases where G=N, S=S(1), we have $S(n)=S^n$ for each $n\in N$, where N denotes the set of natural numbers. Then, when the semigroup $\mathfrak{F}=\{S(n):n\in N\}$ is of w.a.n.t., $S:C\to C$ is simply said to be a mapping of w.a.n.t. For a mapping $S:C\to C$ of a.n.t., see Kirk [9]. And we say that a function $u:G\to C$ is an almost-orbit of $\mathfrak{F}=\{S(t):t\in G\}$ (see [13], [15]) if G is right reversible and

$$\lim_{t} (\sup_{s \in G} ||u(st) - S(s)u(t)||) = 0.$$

In [15], Takahashi-Zhang established the weak convergence of an almostorbit of a noncommutative Lipschitzian semigroup in a Banach space. In [11], Lau-Takahashi also proved the nonlinear ergodic theorems for a noncommutative nonexpansive semigroup in the space. In this paper, we first shall establish a fixed point theorem for an almost-orbit $\{u(t):t\in G\}$ of the reversible semigroup $\mathfrak{F}=\{S(t):t\in G\}$ of w.a.n.t. in a uniformly convex Banach space, which generalizes the commutative version due to Kiang-Tan [8], and also prove the equivalent conditions of weak convergence of the almost-orbit $\{u(t):t\in G\}$ of $\mathfrak{F}=\{S(t):t\in G\}$, which extend the results due to Miyadera [12] and Emmanule [3, Theorem 2]. Next, we shall carry over the weak convergence and nonlinear ergodic theorems due to Lau-Takahashi [11], Takahashi-Zhang [15] to those for the right reversible semigroup $\mathfrak{F}=\{S(t):t\in G\}$ of w.a.n.t. Our proofs employ the methods of [8], [11], [12], and [15].

2. Fixed Point Theorem

Let C be a nonempty closed convex subset of a real Banach space E and let G be a semitopological semigroup with a binary relation " \geqslant " which directs G.

DEFINITION 2.1. A family $\mathfrak{F} = \{S(t) : t \in G\}$ of continuous mappings from C into itself is said to be a (continuous) representation of G on C if \mathfrak{F} satisfies the following:

- (a) S(ts)x = S(t)S(s)x for all $t, s \in G$ and $x \in C$;
- (b) for every $x \in C$, the mapping $t \mapsto S(t)x$ from G into C is continuous.

DEFINITION 2.2. Let $\Im = \{S(t) : t \in G\}$ be a representation of G on C. \Im is said to be a semigroup of weakly asymptotically nonexpansive type (simply,

w.a.n.t.) on C if, for each $x \in C$ and each bounded subset D of C,

(2.1)
$$\inf_{s \in G} \sup_{t \ge s} \sup_{y \in D} (\|S(t)x - S(t)y\| - \|x - y\|) \le 0.$$

Immediately, we can see that the semigroups of w.a.n.t. indude all semigroups of nonexpansive mappings with directed systems. In particular, if $\mathfrak{Z} = \{S(t): t \in G\}$ is a Lipschitzian representation of G with an additional condition, i.e., $\limsup_t k_t \leq 1$ (see [15]), then it is obviously of w.a.n.t. In cases where G=N, S=S(1), we have $S(n)=S^n$ for each $n\in N$, where N denotes the set of natural numbers. Then, when the semigroup $\mathfrak{Z} = \{S(n): n\in N\}$ is of w.a.n.t., $S: C \to C$ is simply said to be a mapping of w.a.n.t. For a mapping $S: C \to C$ of a.n.t., see Kirk [9].

DEFINITION 2.3. Let G be right reversible and let $\mathfrak{F} = \{S(t): t \in G\}$ be as in Definition 2.1. A function $u: G \to C$ is called an *almost-orbit* of $\mathfrak{F} = \{S(t): t \in G\}$ (see [13], [15]) if

(2.2)
$$\lim_{t} \sup_{s \in G} ||u(st) - S(s)u(t)|| = 0.$$

Now let $\{x_{\alpha}\}$ be a bounded net in C. Then we define

$$(2.3) r(x, \{x_{\alpha}\}) = \lim_{\alpha} \sup \|x - x_{\alpha}\|,$$

$$(2.4) r=r(C, \{x_{\alpha}\})=\inf\{r(x, \{x_{\alpha}\}): x \in C\},$$

and

$$(2.5) A(C, \{x_{\alpha}\}) = \{z \in C : r(z, \{x_{\alpha}\}) = r(C, \{x_{\alpha}\})\}.$$

Then, any element of $A(C, \{x_{\alpha}\})$ is called to be an asymptotic center of the net $\{x_{\alpha}\}$ in C. It is well known that if C is weakly compact and convex, then $A(C, \{x_{\alpha}\}) \neq \emptyset$ and if E is uniformly convex, then $A(C, \{x_{\alpha}\})$ is a singleton set and it will be simply denoted by the unique element; see [4].

From now on, unless other specified, let G, E, C, and $\Im = \{S(t): t \in G\}$ be as in Definition 2.2 and $F(\Im)$ denote the set of all common fixed points of $\Im = \{S(t): t \in G\}$ in C, i.e., $F(\Im) = \{x \in C: S(t)x = x \text{ for all } t \in G\}$. We begin with the following:

LEMMA 2.4. Let G be right reversible and let E be uniformly convex. If $\{u(t): t \in G\}$ is a bounded almost-orbit of $\mathfrak{F} = \{S(t): t \in G\}$ and $r = r(C, \{u(t)\}) = 0$, then $\lim_{t \to \infty} S(s)u(t) = c \in F(\mathfrak{F})$ for each $s \in G$, where $c = A(C, \{u(t)\})$.

Proof. Since $r=r(c, \{u(t)\})=0$, clearly $c=\lim_t u(t)=\lim_t u(st)$ for each $s\in G$. Let $s, t\in G$. Then we obtain

$$||c - S(s)u(t)|| \le ||c - u(st)|| + ||u(st) - S(s)u(t)||$$

$$\le ||c - u(st)|| + \phi(t),$$

where $\phi(t) = \sup_{s \in G} ||u(st) - S(s)u(t)||$. Since $\{u(t): t \in G\}$ is an almost-orbit of $\mathfrak{J}=\{S(t):t\in G\}$, $\lim_t\phi(t)=0$, and now taking $\lim_t\sup$ in both sides, we obtain $\lim_t S(s)u(t) = c, \text{ and hence } S(s)c = S(s)(\lim_t u(t)) = \lim_t S(s)u(t) = c, \text{ i.e., } c \in F(\mathfrak{F}).$ This completes the proof.

We say that $\mathfrak{F} = \{S(t) : t \in G\}$ is proximately nonexpansive (see [8] if for every $x \in C$, and every $\beta > 0$, there exists $t_0 \in G$ such that $||S(t)x - S(t)y|| \le$ $(1+\beta)\|x-y\|$ for all $t \ge t_0$, and for any $y \in C$. If $\mathfrak{Z} = \{S(t) : t \in G\}$ is proximately nonexpansive, then it is of w.a.n.t. Indeed, let $x \in C$ and D a bounded subset of C. Then, for given $\varepsilon > 0$, take $\beta = \frac{\varepsilon}{M}$, where $M = \sup_{y \in D} ||x - y||$.

In order to measure the degree of strict convexity (rotundity) of E, we define its modulus of convexity $\delta: [0, 2] \rightarrow [0, 1]$ by

(2.6)
$$\delta(\varepsilon) = \inf \left\{ 1 - \frac{1}{2} \|x + y\| : \|x\| \le 1, \|y\| \le 1, \text{ and } \|x - y\| \ge \varepsilon \right\}.$$

The characteristic of convexity ε_0 of E is also defined by

(2.7)
$$\varepsilon_0 = \varepsilon_0(E) = \sup \{ \varepsilon : \delta(\varepsilon) = 0 \}.$$

It is well-known (see [4]) that the modulus of convexity δ satisfies the following properties:

- (a) δ is increasing on [0, 2], and moreover strictly increasing on $[\varepsilon_0, 2]$;
- (b) δ is continuous on [0, 2) (but not necessarily at $\epsilon=2$);

(2.8)
$$\begin{cases} \delta & \text{is continuous off } [0, 2) \text{ (but not necessaring } (0, 2)] \\ (0, 3) & \text{if and only if } E \text{ is strictly convex;} \\ (1, 3) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 3) & \text{if and } \lim_{\varepsilon \to 2^{-}} \delta(\varepsilon) = 1 - \frac{1}{2} \varepsilon_{0}; \\ (2, 4) & \text{if and } \lim_{\varepsilon \to 2^{-}} \delta(\varepsilon) = 1 - \frac{1}{2} \varepsilon_{0}; \\ (2, 4) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 5) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 6) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 6) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 6) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 6) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 7) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (2, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (3, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (4, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (6, 8) & \text{if and only if } E \text{ is strictly convex;} \\ (8) & \text{if and only if } E \text{ is strictly convex;} \\ (8) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strictly convex;} \\ (9) & \text{if and only if } E \text{ is strict$$

A Banach space E is said to be uniformly convex if $\delta(\varepsilon) > 0$ for all positive ε ; equivalently ε₀=0. Obviously, any uniformly convex space is both strictly convex and reflexive. By properties above, we can see that if E is uniformly convex, then δ is strictly increasing and continuous on [0, 2] (see also [1]).

Now we can present a fixed point thorem for an almost-orbit $\{u(t): t \in G\}$ of the reversible semigroup $\mathfrak{F} = \{S(t) : t \in G\}$ of w.a.n.t. in a uniformly convex Banach space, which generalizes the commutative version due to Kiang-Tan [8; Theorem 1].

Theorem 2.5. Let G be reversible and let E be uniformly convex. If an almost-orbit $\{u(t): t \in G\}$ of $\mathfrak{F} = \{S(t): t \in G\}$ is bounded, then $A(C, \{u(t)\}) = c \in F(\mathfrak{F})$. *Proof.* If $r=r(C, \{u(t)\})=0$, the result follows from Lemma 2.4. Assume r>0 and we set

$$d(c) = \limsup_{s} ||c - S(s)c||$$
.

Then, $d(c) < \infty$. In fact, since $\mathfrak{J} = \{S(t) : t \in G\}$ is of w.a.n.t., for $c \in C$ and $D = \{u(t) : t \in G\}$,

$$\lim_{t} \sup_{y \in D} \sup_{(|S(t)c - S(t)y|| - ||c - y||) \leq 0.$$

For $s, t \in G$, we have

$$\begin{split} &\|c - S(t)c\| \leq \|c - u(ts)\| + \|u(ts) - S(t)(u(s))\| + \|S(t)u(s) - S(t)c\| \\ &\leq \|c - u(ts)\| + \phi(s) + \|S(t)c - S(t)u(s)\| \\ &\leq 2(\|c\| + M) + \phi(s) - \sup_{u \in D} (\|S(t)c - S(t)y\| - \|c - y\|), \end{split}$$

where $M = \sup_{t \in G} \|u(t)\| < \infty$ and $\phi(s) = \sup_{t \in G} \|u(ts) - S(t)u(s)\|$. Since $\lim_s \phi(s) = 0$, taking $\limsup_t \text{ at first and next } \limsup_s \text{ in both sides, we obtain}$

$$d(c) \leq 2(||c|| + M) < \infty$$
.

If d(c)=0, then, since G is right reversible, we obtain $S(t)c=\lim_s S(t)S(s)c=\lim_s S(ts)c=\lim_s S(s)c=c$ for each $t\in G$, i.e., $c\in F(\mathfrak{F})$. Hence, it suffices to show that d(c)=0. If not, let ε be such that $0<\varepsilon< d(c)$. Then, for each $\alpha\in G$, there is $s_\alpha\in G$ such that $s_\alpha\succ \alpha$ and

$$||c-S(s_{\alpha})c|| > \varepsilon$$
.

Since E is uniformly convex, choose d>0 so small that

$$(r+d)\left[1-\delta\left(\frac{\varepsilon}{r+d}\right)\right] < r$$
,

where δ is the modulus of convexity of E. For this d>0, by (2.1) with $c \in C$ and $D=\{u(s): s \in G\}$, (2.2), and (2.3), there exists $\alpha \in G$ such that

$$||S(t)c-S(t)y|| \le ||c-y|| + \frac{d}{3}$$

$$\sup_{s \in G} ||u(st) - S(s)u(t)|| < \frac{d}{3},$$

and

$$||c-u(t)|| < r + \frac{d}{3}$$
,

for all $t \ge \alpha$ and all $y \in D$. Then, for this α , we can also choose $s_{\alpha} \in G$ with $s_{\alpha} \ge \alpha$ and

$$||c-S(s_{\alpha})c|| > \varepsilon$$
.

Then, for all $t \ge \alpha$, we have

$$||u(s_{\alpha}t) - S(s_{\alpha})c||$$

$$\leq ||u(s_{\alpha}t) - S(s_{\alpha})u(t)|| + ||S(s_{\alpha})u(t) - S(s_{\alpha})c||$$

$$< \frac{d}{3} + ||u(t) - c|| + \frac{d}{3} < r + d.$$

Let $b_0 = s_\alpha \alpha$ and $t > b_0$. Then, since G is left reversible, we obtain

$$\sup_{t>b_0} ||u(t)-S(s_\alpha)c|| = \sup_{t>a} ||u(s_\alpha t)-S(s_\alpha)c|| < r+d.$$

Clearly, we obtain

$$\sup_{t>h_0} ||c-u(t)|| < r+d$$
.

By the definition of δ (see (e) of (2.6)), it follows that

$$\sup_{t \geq b_0} \left\| u(t) - \frac{1}{2} (c + S(s_\alpha)c) \right\| \leq (r + \sigma) \left[1 - \delta \left(\frac{\varepsilon}{r + \sigma} \right) \right].$$

Setting $z = \frac{1}{2}(c + S(s_{\alpha})c) \in C$, it implies that

$$r \le r(z, \{u(t)\}) \le \sup_{t \ge b_0} ||u(t) - z||$$

$$\leq (r+\sigma) \left[1 - \delta \left(\frac{\varepsilon}{r+\sigma} \right) \right] < r,$$

which gives a contradiction. The proof is completed.

3. Weak Convergence

In this section, we present the weak convergence of almost-orbits $\{u(t)|t\in G\}$ of the reversible semigroup $\mathfrak{F}=\{S(t)\colon t\in G\}$ of w.a.n.t. For a function $u:G\to C$, let $\omega_w(u)$ denote the set of all weak limits of subnets of the net $\{u(t)\colon t\in G\}$ and we set

(3.1)
$$E(u) = \{ y \in C : \lim ||u(t) - y|| \text{ exists} \}.$$

Then, the following lemma is crucial for our arguement:

LEMMA 3.1. Let G be right reversible and let $\{u(t): t \in G\}$, $\{v(t): t \in G\}$ almost-orbits of $\mathfrak{F} = \{S(t): t \in G\}$. Then the limit of $\|u(t) - v(t)\|$ exists. In particular, $F(\mathfrak{F}) \subseteq E(u)$.

Proof. Since $\Im = \{S(t): t \in G\}$ is of w.a.n.t., it follows that, for each

 $s \in G$ and $D = \{v(s)\}$,

$$\lim_{t} \sup(\|S(t)u(s) - S(t)v(s)\| - \|u(s) - v(s)\|) \leq 0,$$

Therefore, for each $s, t \in G$,

$$||u(ts)-v(ts)|| \le ||u(ts)-S(t)u(s)|| + ||S(t)u(s)-S(t)v(s)|| + ||S(t)v(s)|| - v(ts)||$$

$$\le \phi(s) + (||S(t)u(s)-S(t)v(s)|| - ||u(s)-v(s)||) + ||u(s)-v(s)|| + \phi(s),$$

where $\phi(s) = \sup_t \|u(ts) - S(t)u(s)\|$, $\psi(s) = \sup_t \|v(ts) - S(t)v(s)\|$. At first, taking $\limsup_t \|u(ts) - S(t)u(s)\|$, we get

$$\lim_{t} \sup \|u(t) - v(t)\| \leq \lim_{t} \sup \|u(ts) - v(ts)\| \leq \phi(s) + \phi(s) + \|u(s) - v(s)\|.$$

Since $\{u(t): t \in G\}$, $\{v(t): t \in G\}$ are almost-orbits of $\mathfrak{F} = \{S(t): t \in G\}$, $\lim_s \phi(s) = 0$ and $\lim_s \phi(s) = 0$, and now taking $\lim_s \inf$ in both sides, $\lim_t \|u(t) - v(t)\|$ exists. Now let $z \in F(\mathfrak{F})$ and put $v(t) \equiv z$ for all $t \in G$. Then $\{v(t): t \in G\}$ is an almost-orbit and hence the limit of $\|u(t) - z\|$ exists, i.e., $z \in E(u)$.

When $\{x_{\alpha}\}$ is a net in a Banach space E and $x \in E$, $x_{\alpha} \to x(x_{\alpha} \to x)$ means the strong (weak) convergence to x of the net $\{x_{\alpha}\}$, respectively.

Recall that a Banach space E is said to satisfy *Opial's condition* if, for any net $\{x_{\alpha}\}$ in E with $x_{\alpha} \rightarrow x \in E$,

(3.2)
$$\limsup_{\alpha} \|x_{\alpha} - x\| < \limsup_{\alpha} \|x_{\alpha} - y\|, \quad \forall y \neq x \in E.$$

(see [10, Lemma 2.1]). For any sequence in E, see [14, Lemma 1]. For more details, see also [3] and [5]. We are now ready to prove the equivalent conditions of weak convergence for the almost-orbit $\{u(t): t \in G\}$ of the reversible semigroup $\Im = \{S(t): t \in G\}$ of w.a.n.t., which extends the results due to Miyadera [12] and Emmanuele [3, Theorem 2].

THEOREM 3.2. Let G be reversible and let E be uniformly convex with Opial's condition. Let $u = \{u(t) : i \in G\}$ be an almost-orbit of $\mathfrak{F} = \{S(t) : t \in G\}$. Then the following conditions are equivalent

- (i) $w-\lim_{t} u(t) exists;$
- (ii) $F(\mathfrak{Z}) \neq \emptyset$ and $\omega_w(u) \subseteq F(\mathfrak{Z})$;
- (iii) $E(u) \neq \emptyset$ and $\omega_w(u) \subseteq E(u)$.

Proof. Since E is uniformly convex and $\{u(t): t \in G\}$ is bounded in C by (i), by Theorem 2.5., there exists a unique asymptotic center $A(C, \{u(t)\}) = c \in F(\mathfrak{F})$. Then, Opial's condition also gives that c = w- $\lim_t u(t)$. Hence we have

 $\omega_w(u) = \{c\} \subseteq F(\mathfrak{F})$. Thus (i) implies (ii). By Lemma 3.1., clearly (ii) implies (iii). Also to show that (iii) implies (i), apply the method of Theorem 1 due to Emmanuele [3].

LEMMA 3.3. Let G be right reversible and let E be uniformly convex. Let $u = \{u(t): t \in G\}$ be an almost-orbit of $\mathfrak{F} = \{S(t): t \in G\}$. Suppose $F(\mathfrak{F}) \neq \emptyset$ and let $y \in F(\mathfrak{F})$ and $0 < \alpha \leq \beta < 1$. Then, for any $\varepsilon > 0$, there is $t_0 \in G$ such that

$$||S(t)(\lambda u(s)+(1-\lambda)y)-(\lambda S(t)u(s)+(1-\lambda)y|| < \varepsilon$$

for all t, $s \ge t_0$ and $\lambda \in [\alpha, \beta]$.

Proof. Since $F(\mathfrak{J})\neq\emptyset$, we may assume that $\{u(t):t\in G\}$ is bounded, and hence $D=\{\lambda u(t)+(1-\lambda)y:t\in G,\,0\leq\lambda\leq1\}$ is bounded. Let $\varepsilon>0$ and let $r=\lim_t\|u(t)-y\|$ by Lemma 3.1. If r=0, since $\mathfrak{J}=\{S(t):t\in G\}$ is of w.a.n.t. on C, for $y\in C$ and D, there exists $t_0\in G$ such that

$$||y-S(t)z|| < ||y-z|| + \frac{\varepsilon}{4}$$

and

$$||u(t)-y|| < \frac{\varepsilon}{4}$$
 for $t \geqslant t_0$ and $z \in D$.

Hence, for $s, t \ge t_0$ and $0 \le \lambda \le 1$, we have

$$\begin{split} & \|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)\| \\ & \leq & \|S(t)(\lambda u(s) + (1-\lambda)y) - y\| + \lambda \|S(t)u(s) - y\| \\ & \leq & 2\Big(\lambda \|u(s) - y\| + \frac{\varepsilon}{4}\Big) < \varepsilon \,. \end{split}$$

Now, let r>0. Then we can choose d>0 so small that

$$(r+d)\left[1-c\delta\left(\frac{\varepsilon}{r+d}\right)\right]=r_0< r.$$

where δ is the modulus of convexity of E and $c=\min\{2\lambda(1-\lambda): \alpha \leq \lambda \leq \beta\}$. For k>0 with $k<\min\{d/2, (r-r_0)/2\}$, as the above, there exists $t_0 \in G$ such that

$$r-a<\|u(t)-y\|< r+k,$$

 $||y-S(t)z|| < ||y-z|| + \frac{c}{4}d$, for $t \ge t_0$, $z \in D$,

and

$$||u(ts)-S(t)u(s)|| < a$$
, for $s \ge t_0$, $t \in G$.

Suppose that

$$||S(t)(\lambda u(s)+(1-\lambda)y)-(\lambda S(t)u(s)+(1-\lambda)y)|| \ge \varepsilon$$

for some $s, t \ge t_0$ and $\lambda \in [\alpha, \beta]$. Put $z = \lambda u(s) + (1 - \lambda)y$, $u = (1 - \lambda)(S(t)z - y)$ and $v = \lambda(S(t)u(s) - S(t)z)$. Then, it follows that

$$||u|| \le (1-\lambda) \Big(||y-z|| + \frac{c}{4}d \Big)$$

$$\begin{split} &= (1-\lambda) \Big(\lambda \|u(s) - y\| + \frac{c}{4} d \Big) \\ &< (1-\lambda) \Big(\lambda \Big(r + \frac{d}{2} \Big) + \frac{c}{4} d \Big) \\ &< \lambda (1-\lambda) (r+d) \end{split}$$

and

$$||v|| < \lambda(1-\lambda)(r+d)$$
.

We also have that

$$||u-v|| = ||S(t)z - (\lambda S(t)u(s) + (1-\lambda)y)|| \ge \varepsilon$$

and $\lambda u + (1-\lambda)v = \lambda(1-\lambda)(S(t)u(s)-y)$. By lemma in [6], we have

$$\begin{split} \lambda(1-\lambda)\|S(t)u(s)-y\| &= \|\lambda u + (1-\lambda)v\| \\ &\leq \lambda(1-\lambda)(r+d) \bigg[1 - 2\lambda(1-\lambda)\delta\Big(\frac{\varepsilon}{r+d}\Big) \bigg] \\ &\leq \lambda(1-\lambda)r_0\,, \end{split}$$

and hence $||S(t)u(s)-y|| \le r_0$. Thus it follows that

$$||u(ts)-y|| \le ||u(ts)-S(t)u(s)|| + ||S(t)u(s)-y||$$

 $< a+r_0 < r-a$,

which gives a contradiction and the proof is complete.

For $x, y \in E$, we denote by [x, y] the set $\{\lambda x + (1-\lambda)y : 0 \le \lambda \le 1\}$. For $D \subset E$, $\overline{co}D$ denotes the closed convex hull of D. The following lemma was proved by Lau-Takahashi [11, Lemma 3].

LEMMA 3.4. Let E be uniformly convex with a Fréchet differentiable norm and let $\{x_{\alpha}\}$ be a bounded net in C. Let $z \in \bigcap_{\beta} \overline{co}\{x_{\alpha} : \alpha \geqslant \beta\}$, $y \in C$ and $\{y_{\alpha}\}$ a net of elements in C with $y_{\alpha} \in [y, x_{\alpha}]$ and

$$||y_{\alpha}-z|| = \min\{||u-z|| : u \in [y, x_{\alpha}]\}.$$

If $y_{\alpha} \rightarrow y$, then y=z.

By using Lemma 3.3 and Lemma 3.4, we obtain the similar result as Theorem 2 in [15] for an almost-orbit $\{u(t): t \in G\}$ of the right reversible semigroup $\mathfrak{F} = \{S(t): t \in G\}$ of w.a.n.t. on C in a uniformly convex Banach space E with a Fréchet differentiable norm.

THEOREM 3.5. Let G be right reversible and let E be uniformly convex with a Fréchet differentiable norm. Suppose that $u = \{u(t) : t \in G\}$ is an almost-orbit of $\mathfrak{Z} = \{S(t) : t \in G\}$ and $F(\mathfrak{Z}) \neq \emptyset$. Then the set $\bigcap_{s \in G} \overline{co} \{u(t) : t \geqslant s\} \cap F(\mathfrak{Z})$ consists of at most one point.

Proof. Since $F(\mathfrak{J})\neq\emptyset$, we may assume that $\{u(t):t\in G\}$ is bounded. Let $W(u)=\bigcap_{s\in G}\overline{co}\{u(t):t\geqslant s\}$. Suppose that $x,\ y\in W(u)\cap F(\mathfrak{J})$ and $x\neq y$. Put z=(x+y)/2 and $r=\lim_s \|u(s)-y\|$ by Lemma 3.1. Since $z\in W(u)$, we have $\|z-y\|\le r$. For each $s\in G$, choose $z(s)\in [u(s),z]$ such that

$$||z(s)-y|| = \min\{||v-y|| : v \in [u(s), z]\}.$$

By the definition of z(s), we have $\|z(s)-y\| \leq \left\|\frac{z(s)+z}{2}-y\right\| \leq \|z-y\|$ for all $s \in G$. Therefore, if $\liminf_s \|z(s)-y\| = \|z-y\|$, then $\{z(s)\}$ converges strongly to z. Otherwise, there exists some $\varepsilon > 0$ and $s_\alpha \in G$ such that $s_\alpha \geqslant \alpha$ and $\|z(s_\alpha)-z\| > \varepsilon$, for every $\alpha \in G$. Then, by the definition of δ (see (e) of (2.6)), we have

$$\left\| \frac{1}{2} (z(s_{\alpha}) + z) - y \right\| \leq \|z - y\| \cdot \left[1 - \delta \left(\frac{\varepsilon}{\|z - y\|} \right) \right]$$

for every α . It follows from the definition of $z(s_{\alpha})$ and the uniform convexity of E that

$$\lim \inf_{s} ||z(s) - y|| \le \lim \sup_{\alpha} ||z(s_{\alpha}) - y||$$

$$\le ||z - y|| \cdot \lceil 1 - \delta(\varepsilon/||z - y||) \rceil < ||z - y||,$$

which contradicts the assumption. So, $\lim_{s} z(s) = z$. Therefore, by Lemma 3.4, we obtain z = y and this contradicts $x \neq y$. To complete the proof, we suppose that

$$\lim_{s} \inf \|z(s) - y\| < \|z - y\|.$$

Then, for every $\alpha \in G$, there exist c>0 and $t_{\alpha} \in G$ with $t_{\alpha} \geqslant \alpha$ such that

$$||z(t_{\alpha})-y||+c<||z-y||$$

and there exists $\alpha_0 \in G$ such that

$$r<\|u(\alpha)-y\|+\frac{c}{2}$$
,

for every $\alpha \geqslant \alpha_0$. Put $z(t_\alpha) = a_\alpha u(t_\alpha) + (1 - a_\alpha)z$ for every α . Then there is $\beta > 0$ and $\gamma < 1$ such that $\beta \leq a_\alpha \leq \gamma$ for every $\alpha \geqslant \alpha_0$. In fact, if there exists a_α such that $(1 - a_\alpha)M < \frac{c}{2}$, where $M \geq \sup_{t \in G} \|u(t) - z\|$ and M > c, then,

$$|\|z(t_{\alpha}) - y\| - \|u(t_{\alpha}) - y\|| \le \|z(t_{\alpha}) - u(t_{\alpha})\|$$

$$= (1 - a_{\alpha})\|u(t_{\alpha}) - z\| < \frac{c}{2}$$

and hence $r \le \|u(t_\alpha) - y\| + \frac{c}{2} < \|z(t_\alpha) - y\| + c < \|z - y\| \le r$. This is a contradiction. If there also exists a_α such that $a_\alpha M < c$, then

$$|||z(t_{\alpha}) - y|| - ||y - z||| \le ||z(t_{\alpha}) - z||$$

= $a_{\alpha} ||u(t_{\alpha}) - z|| < c$

and hence $\|z-y\| < \|z(t_{\alpha})-y\|+c < \|z-y\|$. This is a contradiction. By (2.1) with $y \in C$ and $D = \{\alpha u(t) + (1-\alpha)z : t \in G, 0 \le \alpha \le 1\}$, (2.2), and Lemma 3.3, there exists $s_0 \in G$ with $s_0 \geqslant \alpha_0$ such that

$$||y - S(s)v|| < \frac{c}{3} + ||y - v||,$$

 $||u(st) - S(s)u(t)|| < \frac{c}{3},$

and

$$\|S(s)(\lambda u(t)+(1-\lambda)z)-(\lambda S(s)u(t)+(1-\lambda)z)\|<\frac{c}{3},$$

for all $s, t \geqslant s_0, v \in D$ and $\lambda \in [\beta, \gamma]$. Therefore, for $s \geqslant s_0$, since $t_{s_0} \geqslant s_0$, it follows that

$$\begin{split} &\|z(st_{s_0}) - y\| \leq \|a_{s_0}u(st_{s_0}) + (1 - a_{s_0})z - y\| \\ &\leq a_{s_0}\|u(st_{s_0}) - S(s)u(t_{s_0})\| + \|S(s)z(t_{s_0}) - (a_{s_0}S(s)u(t_{s_0}) + (1 - a_{s_0})z)\| \\ &+ \|S(s)z(t_{s_0}) - y\| < \|z(t_{s_0}) - y\| + c < \|z - y\| \;. \end{split}$$

Let $\beta_0 = s_0 t_{s_0}$ and $s \gg \beta_0$. Since G is right reversible, we have

$$\sup_{s \ge \beta_0} ||z(s) - y|| = \sup_{s \ge s_0} ||z(st_{s_0}) - y|| < ||z - y||.$$

Thus, we have $z(s)\neq z$ for all $s\geqslant \beta_0$. Now let $s\geqslant \beta_0$ and $u_k=k(z-z(s))+z(s)$ for all $k\ge 1$. Then $\|u_k-y\|\ge \|z-y\|$ for all $k\ge 1$ and hence, by Theorem 2.5 of [2], we have

$$\langle z-u_k, J(y-z)\rangle = \langle (1-k)(z-z(s), J(y-z)\rangle \ge 0$$

for all $k \ge 1$, where J is the duality mapping of E and $\langle x, x^* \rangle$ denotes the value of $x^* \in X^*$ at $x \in E$. Then it follows that $\langle z - z(s), J(y - z) \rangle \le 0$ for all $s \ge \beta_0$. Then, since $z(s) \in [u(s), z]$, this easily implies that $\langle z - u(s), J(y - z) \rangle \le 0$ for all $s \ge \beta_0$. Immediately, we obtain $\langle z - w, J(y - z) \rangle \le 0$ for all $w \in \overline{co}\{u(s): s \ge \beta_0\}$. Put w = x = z + (z - y), then z = y. This contradicts $x \ne y$. The proof is completed.

As a direct consequence, we present the following weak convergence of an almost-orbit $\{u(t): t \in G\}$.

Theorem 3.6. Let G be right reversible and let E be uniformly convex with a Fréchet differentiable norm. Suppose that $u = \{u(t) : t \in G\}$ is an almost-orbit of $\mathfrak{F} = \{S(t) : t \in G\}$ and $F(\mathfrak{F}) \neq \emptyset$. If $\omega_w(u) \subseteq F(\mathfrak{F})$, then the not $\{u(t) : t \in G\}$ converges weakly to an element of $F(\mathfrak{F})$.

Proof. Be similar to Theorem 3 of [15].

4. Ergodic theorems

We now study in this section the existence of a "ergodic" retraction of C onto the common fixed point set $F(\mathfrak{F})$ of $\mathfrak{F} = \{S(t) : t \in G\}$ in C. We begin with the following observation:

THEOREM 4.1. Let G be right reversible and let E be uniformly convex. Then, the set $F(\mathfrak{F})$ (possibly empty) is closed and convex.

Proof. By continuity of elements of \Im , obviously $F(\Im)$ is closed. To prove the convexity of $F(\Im)$, it suffices to show that, for $x, y \in F(\Im)$ with $x \neq y, z = \frac{1}{2}(x+y) \in F(\Im)$. If $\lim_t S(t)z = z$, since G is right reversible, we have $S(s)z = \lim_t S(st)z = \lim_t S(t)z = z$ for each $s \in G$ and so $z \in F(\Im)$. Hence it suffices to show that $\lim_t S(t)z = z$. If not, there exists $\varepsilon > 0$ such that for any $\alpha \in G$, there is $t_\alpha \in G$ with $t_\alpha \geqslant \alpha$ and

$$4||S(t_{\alpha})z-z|| \ge \varepsilon$$
.

Since E is uniformly convex, choose d>0 so small

$$(R+d)\left(1-\delta\left(\frac{\varepsilon}{R+d}\right)\right) < R$$
,

where R = ||x - y|| > 0 and δ is the modulus of convexity of E.

For this d>0, since \Im is of w.a.n.t. with $z\in C$ and $D=\{x, y\}$, there is $\alpha_0\in G$ such that, for all $t\geqslant \alpha_0$,

$$\|S(t)z - w\| = \|S(t)z - S(t)w\| \leq \|z - w\| + \frac{d}{2} \quad \text{for all} \quad w \in D.$$

Thus, $2\|S(t)z-x\|$, $2\|S(t)z-y\| \le R+d$ for all $t \ge \alpha_0$. Put $u=2(S(t_{\alpha_0})z-r)$, $v=2(y-S(t_{\alpha_0})z)$. Then, $\|u\|$, $\|v\| \le R+d$ and $\|u-v\|=4\|S((t_{\alpha_0})z-z) \ge \varepsilon$. So, we have

$$R = \left\| \frac{u+v}{2} \right\| \leq (R+d) \left(1 - \delta\left(\frac{\varepsilon}{R+d}\right)\right) < R$$
,

which gives a contradiction. This completes the proof.

As a direct consequence, we get the following:

COROLLARY 4.2. Let E be uniformly convex. If a mapping $T: C \rightarrow C$ is of weakly asymptotically nonexpansive type, then the fixed point set F(T) of T is in fact closed and convex.

For each $x \in C$, we define u(t) = S(t)x $(t \in G)$. Then $\{u(t) : t \in G\}$ is obviously an almost-orbit of $\Im = \{S(t) : t \in G\}$. As a direct consequence, we can prove the following result which generalizes Theorem 8 in [11]. We employs the method of the proof in [11].

Theorem 4.3. Let G be right reversible and let E be uniformly convex with a Fréchet differentiable norm. Let $\mathfrak{F} = \{S(t) : t \in G\}$ be of w.a.n.t on C. The following are equivalent:

- (i) $\bigcap_{s \in G} \overline{co} \{ S(t)x : t \ge s \} \cap F(\mathfrak{Z}) \ne \emptyset$ for each $x \in C$;
- (ii) there exists a retraction P of C onto $F(\mathfrak{F})$ such the PS(t)=S(t)P=P for every $t \in G$ and $Px \in \overline{co}\{S(t)x : t \in G\}$ for every $x \in C$.

Proof. By Theorem 3.5, for each $x \in C$, $\bigcap_{s \in G} \overline{co} \{S(t)x : t \geqslant s \} \cap F(\mathfrak{F})$ contains exactly one point Px. Then, applying the same method of [11, Theorem 8], (i) implies (ii). The converse implication is easy.

REFERENCES

- [1] W.L. BYNUM, A class of spaces lacking normal structure, Compositio Math., 25 (3) (1972), 233-236.
- [2] F.R. Deutch and P.H. Maserick, Applications of the Hahn-Banach theorem in approximation theory, Siam Rev., 9(3) (1967), 516-530.
- [3] G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial's condition, Proc. Amer. Math. Soc., 94(1) (1985), 103-109.
- [4] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and non-expansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel Dekker, Inc., New York and Basel, 1984.
- [5] J.P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40(3) (1972), 565-573.
- [6] C.W. Groetsh, A note on segmenting Mann iterates, J. Math. Anal. Appl., 40 (1972), 369-372.
- [7] R.D. Holmes and A.T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc., (2) 5 (1972), 330-336.
- [8] M.T. Kiang and K.K. Tan, Fixed point theorem for proximately nonexpansive semigroups, Canad. Math. Bull., 29(2) (1986), 160-166.
- [9] W.A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17 (1974), 339-346.
- [10] A.T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl., 105 (1985), 514-522.
- [11] A.T. LAU and W. TAKAHASHI, Weak convergence and non-linear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math.

- 126(2) (1987), 277-294.
- [12] I. MIYADERA, Asymptotic behavior of iteratess of nonexpansive mappings in Banach spaces, Proc. Japan Acad., 54(A) (1978), 212-214.
- [13] I. MIYADERA and K. KOBAYASHI, On asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Analysis, 6(4) (1982), 349-365.
- [14] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.
- [15] W. Takahashi and Pei-Jun Zhang. Asymptotic behavior of almost-orbits of semigroups of Lipschizian mappings in Banach spaces, Kodai Math. J. 11 (1988), 129-140.

DEPARTMENT OF APPLIED MATHEMATICS NATIONAL FISHERIES UNIVERSITY OF PUSAN PUSAN 608-737, KOREA