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NONLINEAR ERGODIC THEOREMS OF ALMOST-ORBITS
OF NON-LIPSCHITZIAN SEMIGROUPS

TAE HwA KM

Abstract

In this paper, we shall establish the weak convergence and nonlinear
ergodic theorems for reversible semigroups of weakly asymptotically non-
expansive type in Banach spaces.

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorff topology such that for each a=G the mappings s+—a-s and s—s-a
from G to G are continuous. G is called right reversible if any two closed
left ideals of G have nonvoid intersection. In this case, (G, >) is a directed
system when the binary relation “>”" on G is defined by

t>=s if and only if {s}UGs2{t}UGt, s,t=G.

Right reversible semitopological semigroups include all commutative semigroups
and all semitopological semigroups which are right amenable as discrete semi-
groups (see [7, p. 335]). Left reversibility of G is defined similarly. G is
called reversible if it is both left and right reversible.

Let G be a semitopological semigroup with a binary relation “>” which
directs G. Let C be a nonempty closed convex subset of a real Banach space
E and let a family I={S():t=G} be a (continuous) representation of G as
continuous mappings on C into C, i.e., S(s)x=S(#)S(s)x for all ¢, s€G and
xeC, and for every x=C, the mapping t— S(t)x from G into C is continuous.
A representation I={S#):t=G} of G on C is called reversible [resp., right
(left) reversible] if G is reversible [resp., right (left) reversible]. In this paper,
we also consider a non-Lipschitzian semigroup of mappings: a representation
I={S():t=G} of G on C is said to be a semigroup of weakly asymptotically
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nonexpansive type (simply, w.a.n.t.) on C if, for each x&C and each bounded
subset D of C,

lim sup Sylég(IIS(t)x—S(t)yll —lx—y=0.

Immediately, we can see that the semigroups of w.a.n.t. include all semigroups
of nonexpansive mappings with directed systems. In particular, if 3=1{S():
teG} is a Lipschitzian representation of G with an additional condition, i.e.,
lim‘sup k=<1 (see [15]), then it is obviously of w.a.n.t. In cases where G=N,

S=5(1), we have S(n)=S" for each n=N, where N denotes the set of natural
numbers. Then, when the semigroup 3={S(n): nN} isof w.a.n.t., S: C—C
is simply said to be a mapping of w.a.n.t. For a mapping S: C—C of a.n.t.,
see Kirk [9]. And we say that a function u: G—C is an almost-orbit of
I={S): t=G} (see [13], [15]) if G is right reversible and

lign(s;ggllu(st)—S(S)u(t)ll)ZO-

In [15], Takahashi-Zhang established the weak convergence of an almost-
orbit of a noncommutative Lipschitzian semigroup in a Banach space. In [11],
Lau-Takahashi also proved the nonlinear ergodic theorems for a noncommu-
tative nonexpansive semigroup in the space. In this paper, we first shall
establish a fixed point theorem for an almost-orbit {u(¢): t=G} of the reversible
semigroup I={S():t=G} of w.a.n.t. in a uniformly convex Banach space,
which generalizes the commutative version due to Kiang-Tan [8], and also prove
the equivalent conditions of weak convergence of the almost-orbit {u(f):t=G}
of 3={S(t):t=G}, which extend the results due to Miyadera [12] and
Emmanule [3, Theorem 2]. Next, we shall carry over the weak convergence
and nonlinear ergodic theorems due to Lau-Takahashi [11], Takahashi-Zhang
[15] to those for the right reversible semigroup I={S():t=G of w.a.n.t.
Our proofs employ the methods of [8], [11], [12], and [15].

2. Fixed Point Theorem

Let C be a nonempty closed convex subset of a real Banach space £ and
let G be a semitopological semigroup with a binary relation “>>” which directs
G. ’

DEFINITION 2.1. A family 3={S(#): t=G} of continuous mappings from C
into itself is said to be a (continuous) representation of G on C if I satisfies
the following:

(a) Sis)x=S()S(s)x for all ¢, s€G and x=C;

(b) for every x=C, the mapping ¢t— S(t)x from G into C is continuous.

DEFINITION 2.2. Let 3={S(#):t=G} be a representation of G on C. Jis
said to be a semugroup of weakly asymptotically nonexpansive type (simply,
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w.a.n.t.) on C if, for each x=C and each bounded subset D of C,
2.1 inf sup sup(| S#)x —SHylI—x—y[N=0.

seG t>8 yeD

Immediately, we can see that the semigroups of w.a.n.t. indude all semi-
groups of nonexpansive mappings with directed systems. In particular, if J=
{S(t): t=G} is a Lipschitzian representation of G with an additional condition,
i.e., limsup.k,<1 (see [15]), then it is obviously of w.a.n.t. In cases where
G=N, S=S(1), we have S(n)=S" for each nN, where N denotes the set of
natural numbers. Then, when the semigroup I={S(n): n=N} is of w.a.n.t.,
S: C—C is simply said to be a mapping of w.a.n.t. For a mapping S: C—C
of a.n.t., see Kirk [9].

DEFINITION 2.3. Let G be right reversible and let 3={S(¢): t=G} be as in
Definition 2.1. A function u: G—C is called an almost-orbit of I={S(t): t=G}
(see [13], [15]) if

(2.2) lim(suplu(s)— S(u®)=0.

Now let {x,} be a bounded net in C. Then we define

2.3) r(x, {xo})=lim supllx—xall,

2.4) r=r(C, {x.})=inf{r(x, {x.}): x=C},
and

(2.5) AC, {x.1)={z€C:7(z, {xa})=r(C, {xa})}.

Then, any element of A(C, {x.}) is called to be an asymptotic center of the net
{x} in C. 1Tt is well known that if C is weakly compact and convex, then
A(C, {x4})+0 and if F is uniformly convex, then A(C, {x,}) is a singleton
set and it will be simply denoted by the unique element; see [4].

From now on, unless other specified, let G, E, C, and I={S(t): t=G} be
as in Definition 2.2 and F(3) denote the set of all common fixed points of =
{S@®):teG} in C, i.e.,, F(¥)={x=C: St)x=x for all tG}. We begin with
the following :

LEMMA 2.4. Let G be right reversible and let E be uniformly convex. If
{u(t): t=G} s a bounded almost-orbit of I={Sk): t=G} and r=r(C, {u(®)})=0,
then litm SGs)u(t)y=c=F(I) for each s=G, where c=A(C, {u(®)}).

Proof. Since r=r(c, {u(t)})=0, clearly c=litm u(t)=1itm u(st) for each s=aG.
Let s, teG. Then we obtain

le=S()u®l <llc—u(st)]+[u(st)—S(s)u@®)
Slle—u(sHll+¢),
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where ¢(t)=sxlégllu(st)—S(s)u(t)H. Since {u(?): t < G} is an almost-orbit of
I={St): t=G}, li{n¢(t):0, and now taking limtsup in both sides, we obtain
li{nS(s)u(t)zc, and hence S(s)c:S(s)(litmu(t))zlignS(s)u(t)=c, i.e.,, ceF(Q).
This completes the proof.

We say that I={S(t):t=G} is proximately nonexpansive (see [8] if for
every xC, and every (>0, there exists t{,&G such that |SEx—SHy|<

(I+PBllx—y| for all t>=t,, and for any y=C. If J={S(t):t=G} is proximately
nonexpansive, then it is of w.a.n.t. Indeed, let xC and D a bounded subset

of C. Then, for given ¢>0, take 8= where M=squ||x-—yI|.
yeE

_&
M )
In order to measure the degree of strict conveXxity (rotundity) of £, we
define its modulus of convexity d: [0, 2]—[0, 1] by
. 1
(2.6) 5(e)=mf~{1—§llx+yli: [xI=1, [¥I<1, and [|[x—y[=¢}.

The characteristic of convexity ¢, of E is also defined by
2.7 co=¢o(E)=sup{e: d(e)=0}.
It is well-known (see [4]) that the modulus of convexity ¢ satisfies the follow-

ing properties:

(a) o is increasing on [0, 2], and moreover strictly increasing on [e,, 2];
(b) o0 is continuous on [0, 2) (but not necessarily at ¢=2);
(¢) 0(2)=1 if and only if F is strictly convex;

©2.8) | &0)=0 and Egl_&(e)zl—%so;
(&) lla—x|<r, la—y|<r and [x—yl=e

:———>Ha——;—(x+y)“éf’(l—a(e/?’))-

A Banach space E is said to be uniformly convex if d(e)>0 for all positive ¢;
equivalently &,=0. Obviously, any uniformly convex space is both strictly
convex and reflexive. By properties above, we can see that if E is uniformly
convex, then ¢ is strictly increasing and continuous on [0, 2] (see also [17).

Now we can present a fixed point thorem for an almost-orbit {u(t): =G}
of the reversible semigroup I={S(t): t=G) of w.a.n.t. in a uniformly convex
Banach space, which generalizes the commutative version due to Kiang-Tan
[8; Theorem 1].

THEOREM 2.5. Let G be reversible and let E be uniformly convex. If an
almost-orbit {u(t):t=G} of I={S(t):t= G} 1s bounded, then A(C, {u(®)})=c= F(X).
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Proof. If r=r(C, {u(t)})=0, the result follows from Lemma 2.4. Assume
r>0 and we set
d(c)=limssupllc—5(s)cll .

Then, d(c)<co. In fact, since IJ={S):t=G} is of w.a.n.t.,, for c=C and
D={u(t): teG},
limtsup ggg(llS(t)c—S(t)y [—le—yIN=0.

For s, teG, we have
le—=SWcll <l e—ults)+[uts)—SHuls)| +I1SEuls)—SHel
Llle—uls)iH+@(s)+ 1S e—SEuls)|
_§2(IICII-l—M)+¢(S)~§tég(llS(t)c—S(t)y||—llc—yil),
where M=§ugllu(t)ll<oo and ¢(s)=stlelgllu(ts)—S(t)u(s)”. Since lim ¢(s)=0,
€ s
taking limtsup at first and next limssup in both sides, we obtain
d()=2lcll+M)<oo.
If d(¢)=0, then, since G is right reversible, we obtain S(t)c:liEnS(t)S(s)c=
lim S(ts)c=lirsnS(s)c=c for each t=G, i.e., ceF(JI). Hence, it suffices to show

that d(¢)=0. If not, let ¢ be such that 0<e<d(¢). Then, for each a=G, there
is s,=G such that s,>a and

le—=S(sa)cll>e.

Since FE is uniformly convex, choose d >0 so small that

(7+d)[1—5(7:7>]<r,

where 0 is the modulus of convexity of £E. For this d>0, by (2.1) with ¢cC
and D={u(s): s€G}, (2.2), and (2.3), there exists a=G such that

IS@e=S@lshe—lI+a,
suplu(st)— SO <5 ,
seq

and

Ilc—u(t)ll<r+£,

for all 3=« and all yeD. Then, for this @, we can also choose s,=G with
Sq=a and
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le—S(sa)cll>e.
Then, for all {>a, we have

usat)—=S(salcll
S u(sal)=S(s)u(O) +11S(sa)u(t)—S(sa)cl

d d
<§+Ilu(t)~6il+—3—<r+d.

Let by=s.a and t=b,. Then, since G is left reversible, we obtain

§gb§llu(t)—5(sa)cli=§§PHu(sat)-—S(sa)cll <r+d.
Clearly, we obtain
§gbpl|c—u(t)ll<r+d )

By the definition of d (see (e) of (2.6)), it follows that

sup
t=bg

wt)—(c+St0|gr+a1-a(~ )],

Setting zz—é—(c—l—S(s,,)c)e C, it implies that

r=r(z, {u(f)})éf»ggll lu(t)—z|

=r+o)| 1-0o(—)| <7

which gives a contradiction. The proof is completed.

3. Weak Convergence

In this section, we present the weak convergence of almost-orbits {u(t)|t= G}
of the reversible semigroup JI={S#):t=G} of w.a.n.t. For a function

u: G—C, let w,(u) denote the set of all weak limits of subnets of the net
{u(t): t=G} and we set

3.1) Euw)={y=C: lim||u(t)—y|exists} .

Then, the following lemma is crucial for our arguement:

LEmMMA 3.1. Let G be right reversible and let {u(t):t=G}, {v(t): t=G}
almost-orbits of JI={SU):t=G}. Then the limit of |u(@®)—v(@®)| exists. In
particular, F(J)SE(u).

Proof. Since JI={S(#):t=G} is of w.a.n.t., it follows that, for each

301
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seG and D={v(s)},
limtsup(IIS(t)u(S)—S(t)v(s)II —llu(s)—v(s)IH=0,

Therefore, for each s, t=G,

lu(ts)—vtHll < lluts)—SOu(s)l+1SBuls) SO+ SO —v(Es)l
S @)+ USOus)—SOv(s) —llu(s)—v(s)D+lu(s)—v(s)|+¢(s),
where ¢(s)=31}pllu(ts)——S(t)u(s)lI, ¢(s)=Slgpllv(ts)—S(t)v(s)Il. At first, taking
limtsup at both sides, we get
lim sup||u(t) —v(t)| lim supllu(ts)—v(ts)| <G(s)+P(s)+lus)—v(s)ll -
Since {u(t): teG}, {v(t): t=G} are almost-orbits of I={S(t): t=G}, liin¢(s):0
and ligngb(s)-—-O, and now taking limxinf in both sides, liinllu(t)—v(t)l] exists.

Now let ze F(3) and put v(t)=z for all tG. Then {v(t): i=G} is an almost-
orbit and hence the limit of |u(t)—z| exists, i.e., ze E(u).

When {x,} is a net in a Banach space £ and x€FE, x,—x(x,—x) means
the strong (weak) convergence to x of the net {x,}, respectively.

Recall that a Banach space E is said to satisfy Opial’s condition if, for
any net {x,} in E with x,—x&E,

3.2) lim sup||xq—x||<lim supllx.— |, Vy(#x)=E.

(see [10, Lemma 2.1]). For any sequence in E, see [14, Lemma 1]. For more
details, see also [3] and [5]. We are now ready to prove the equivalent
conditions of weak convergence for the almost-orbit {u(¢): t=G} of the rever-
sible semigroup I={S(¢): teG} of w.a.n.t., which extends the results due to
Miyadera [12] and Emmanuele [3, Theorem 2].

THEOREM 3.2. Let G be reversible and let E be uniformly convex with
Opial’s condition. Let u={u(t):icG} be an almost-orbit of JI={S(t):t=G}.
Then the following conditions are equivalent

(i) w-lifn u(t) exists;

(ii) F()#0 and 0,(w)SF(I);
(iii) E(u)#0 and w,(u)S E(u).

Proof. Since E is uniformly convex and {u(¢): t=G} is bounded in C by
(i), by Theorem 2.5., there exists a unique asymptotic center A(C, {u(?)})=
ceF(J). Then, Opial’s condition also gives that c:w-lign u(t). Hence we have

w,(u)={c} SF(J). Thus (i) implies (ii). By Lemma 3.1., clearly (ii) implies
(iii). Also to show that (iii) implies (i), apply the method of Theorem 1 due
to Emmanuele [3].
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LEMMA 3.3. Let G be right reversible and let E be uniformly convex. Let
u={u(t): tG} be an almost-orbit of I={S(t):t=G}. Suppose F(I)+0 and let
YEF(Y) and 0<a=<pB<1. Then, for any ¢>0, there is to,=G such that

1S@(Au(s)+(1—D)y)—ASOu(s)+(1 -yl <e
for all t, s>ty and A<[a, B].

Proof. Since F(J)+0, we may assume that {u(¢):teG} is bounded, and
hence D={Au(t)+(1—A)y:t=G,0<A<1} is bounded. Let ¢>0 and let
r:litmllu(t)—yll by Lemma 3.1. If »=0, since I={S{):t=G} is of w.a.n.t.

on C, for y=C and D, there exists t{,&G such that
ly =Szl <ly—zl+
and
Ilu(t)—yll<% for t>t, and z€D.
Hence, for s, t=f, and 0<A<1, we have
ISE(Au(s)+(1—A)y)—AS@Hu(s)+(1—=D»)l
SIS@EAu(s)+(1—y) =yl +AISEu(s)— vl
&€
<2(2lu(s) =yl +7)<e.

Now, let »>0. Then we can choose d >0 so small that

(r+d)[1—c§(-r—$d—)}=ro<r.

where 4 is the modulus of convexity of E and c=min{24(1—2): a<i<p}. For
k>0 with 2<min{d/2, (r—7r,)/2}, as the above, there exists {,&G such that

r—a<l|lu®)—yl<r+k,

Hy—S(t)z||<Hy—zH+%d, for t=t,, z&D,

and

fu(ts)—S@Hu(s)|<a, for sxt, t=G.
Suppose that

[SEAu(s)+(1—2A)y)—ASBu(s)+(1—=)y)l=e

for some s, t=t, and A€[a, B]. Put z=Au(s)+(1—2A)y, u=(1—2A)(S{#)z—y) and
v=A(S(t)u(s)—S()z). Then, it follows that

lul=a=(1y—z1+5¢)
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== us)-yl+4d)
<(1—2)(2(r+i)+lcfd)

2

<A1—Dr+d)
and
| <AL—2A)(r+d).
We also have that

lu—vll=S@®z—(ASOul(s)+(1—Dy)llze
and Au+(1—Dv=21—A)(S#)u(s)—y). By lemma in [6], we have
AA=DISOu(s)—y=2u+1—w]|
gl(l—l)(r+d)[l—Zl(l—l)é(T_’f_j)]
<A(L—r,,
and hence |S(t)u(s)—y|<r,. Thus it follows that
luts)— vl Slluts)—SOuls)|+ [1SOuls) -y
<a+ro<r—a,

which gives a contradiction and the proof is complete.

For x, ye E, we denote by [x, y] the set {Ax+(1—2)y:0<L4AL1}.  For
DCE, coD denotes the closed convex hull of D. The following lemma was
proved by Lau-Takahashi [11, Lemma 3].

LEMMA 3.4. Let E be uniformly convex with a Fréchet differentiable norm
and let {x.} be a bounded net in C. Let z&N\co{x.:a>B}, yeC and {y.} a

net of elements in C with y,=[y, x,.] and
[ye—zll=min{llu—z|: ucly, x.]}.
If y,—y, then y=z.

By using Lemma 3.3 and Lemma 3.4, we obtain the similar result as
Theorem 2 in [15] for an almost-orbit {u(¢): =G} of the right reversible semi-
group I={S(t): t=G} of w.a.n.t. on C in a uniformly convex Banach space
E with a Fréchet differentiable norm.

THEOREM 3.5. Let G be right reversible and let E be uniformly convex with
a Fréchet differentiable norm. Suppose that u={u(t): t=G} is an almost-orbit
of I={SW):t=G} and F(I)#0. Then the set sQ}’c—o{u(z‘): t>=s}NF(X) consists

of at most one point.
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Proof. Since F(JI)+#0, we may assume that {u(t):t=G} is bounded. Let
W(u)zsg\aﬁ{u(t):t>s}. Suppose that =x, yeWw)NF(3) and x+#y. Put

z=(x-+y)/2 and rzlignllu(s)—yll by Lemma 3.1. Since zW(u), we have
lz—yl|<r. For each s€G, choose z(s)=[u(s), z] such that
lz(s)—yll=min{v—yll : v&[uls), 2]} .

By the definition of z(s), we have ||Z(S)-le§H z(s")z—l—z

—y|lz=y1 for al
s&G. Therefore, if lim}nf”z(s)«yllz||z—y||, then {z(s)} converges strongly

to z. Otherwise, there exists some ¢>0 and s,=G such that s,»a and
|z(sa)—2||>e, for every a=G. Then, by the definition of d (see (e) of (2.6)),
we have

g %(z(sa)+2)“y“ =le=ol- [1_5(ng—yf)]

for every a. It follows from the definition of z(s,) and the uniform convexity
of E that
limsinfllz(s)——yll <lim supl|z(sa)— |
Zlz—yl-[1-d(e/lz—yID]1<lz—ll,
which contradicts the assumption. So, limz(s)=z. Therefore, by Lemma 3.4,

we obtain z=1y and this contradicts x+y. To complete the proof, we suppose
that
lim infll2(s) =y <lz—yl.

Then, for every a<=G, there exist ¢>0 and t,<=G with t,>a such that
lz(ta)—yl+c<lz—yl
and there exists a,=G such that

r<|lu(a)—y|l+%,

for every a>a, Put z(ts)=aqu(ts)+(1—a.)z for every a«. Then thereis >0
and y<1 such that 8<a,=<7 for every a>>a, In fact, if there exists a, such

that (l—aa)M<—§—, where Mg§élgl[u(t)—z{] and M>¢, then,
Hz(ta)—= v —lluC)— vl Sl2(ta)—ult)l

= (1—ao)l|ulta) =2l <
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and hence réllu(ta)—yll+~%<Ilz(ta)—yl|+c<llz—yll§r. This is a contradiction.
If there also exists a, such that e.M<c, then
HizGta)—yI—=lly—zll sllz(ta)—z]
=a.|ult.)—zll<c

and hence ||z—y||<[lz(t.)—y|+c<|lz—y|. This is a contradiction. By (2.1)
with yeC and D={au(®)+(1—a)z: =G, 0<a<l}, (2.2), and Lemma 3.3, there
exists s,&G with s,>=a, such that

ly=S(swll < +ly—vl,

lu(st)—S(u® <5,
and

1|5(s)(xu<t)+(1—x)z)—(zS(s)u(t)Jr(l—z)z)ll<§—,

for all s, t>s,, veD and A<[B,r]. Therefore, for s)>s,, since fs=5so, it
follows that

lz(sts)— vl =llas,ulsts)+(1—as)z—y|
S asyl ulstsy) —S(s)uts )+ 15(8)z(tsg)— (a5, S()u(tsy)+(1—asy)2)||
F1S(8)z(ts)— vl <llz(tsg)— Il +c<llz— Il

Let Bo=sots, and s3>B,. Since G is right reversible, we have

ssggplIZ(s)—yll=ssgp||2(stso)~yll <llz—yl.

Thus, we have z(s)#z for all s3=B,. Now let s>f, and wu,=~k(z—z(s))+z(s)
for all k=1. Then |lur—yl|=lz—yl| for all k=1 and hence, by Theorem 2.5
of [2], we have

z—up, J(y—2))=<1A—k)z—2(s), J(y—2)>=0

for all k=1, where J is the duality mapping of E and <{x, x*)> denotes the
value of x* X* at x&E. Then it follows that <{z—z(s), J(y—2z)><0 for all
s>B,. Then, since z(s)e[u(s), z], this easily implies that <z—u(s), J(y—2z)><0
for all s>B,. Immediately, we obtain <z—w, J(y—2)><0 for all weco{u(s):
s>Bot. Put w=x=z+4(z—y), then z=y. This contradicts x#y. The proof
is completed.

As a direct consequence, we present the following weak convergence of an
almost-orbit {u(t): t=G}.
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THEOREM 3.6. Let G be right reversible and let E be uniformly convex with
a Fréchet differentiable norm. Suppose that u={u(t): t=G} is an almost-orbit
of I={St):t=G} and F(I)#0. If w,(u)SF(I), then the not {u(t):t=G}
converges weakly to an element of F(J).

Proof. Be similar to Theorem 3 of [15].

4. Ergodic theorems

We now study in this section the existence of a “ergodic” retraction of C
onto the common fixed point set F(J) of I={S#):t=G} in C. We begin
with the following observation:

THEOREM 4.1. Let G be right reversible and let E be uniformly convex.
Then, the set F(X) (possibly empty) s closed and convex.

Proof. By continuity of elements of J, obviously F(J) is closed. To
prove the convexity of F(J), it suffices to show that, for x, yeF(J) with

XFEY, z=%(x+ neFr@). If litrn S(t)z=z, since G is right reversible, we have
S(s)z=1itrnS(st)zzli;nS(t)zzz for each s=G and so z€F(J). Hence it suffices
to show that litm S(t)z=z. If not, there exists ¢>0 such that for any a<G,

there is t,=G with t,>a and
4|St)z—z| =¢.

Since E is uniformly convex, choose d >0 so small

&€
(R+d)(1~5(7?—+d ))<R,
where R=|x—7y||>0 and § is the modulus of convexity of E.
For this d>0, since & is of w.a.n.t. with z&C and D={x, v}, there is
a,=G such that, for all t>=a,,

l[S(t)z—szllS(t)z-—S(t)wIlgl[z—wll—i—g— for all weD.

Thus, 2|S®)z—x|, 2|IS®)z—y|<R+d for all txa, Put u=2(S(ts,)z— 1),
v=2(y—S(tay)z). Then, |lu|, IWISR+d and [u—v||=4[S((tey)z—2)=e. So, we
have

el g (ol )<

which gives a contradiction. This completes the proof.

As a direct consequence, we get the following :
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COROLLARY 4.2. Let E be uniformly convex. If a mapping T:C—C 1s of
weakly asymptotically nonexpansive type, then the fixed point set F(T) of T isn
fact closed and convex.

For each x=C, we define u(t)=S@®)x (t=G). Then {u(t): i< G} is obviously
an almost-orbit of 3={S(#): tG}. As a direct consequence, we can prove the
following result which generalizes Theorem 8 in [11]. We employs the method
of the proof in [11].

THEOREM 4.3. Let G be right reversible and let E be uniformly convex
with a Fréchet differentiable norm. Let I={S¢):t=G} be of w.a.n.t on C.
The following are equivalent :

(i) Qaﬁ{S(t)x (=S (X)#0 for each xC;

(ii) there exists a retraction P of C onto F(J) such the PSt)=S@)P=P for
every t€G and Px=co{S(t)x:teG} for every x=C.

Proof. By Theorem 3.5, for each x=C, s@g%{S(t)x: t>=s]NF(I) contains

exactly one point Px. Then, applying the same method of [11, Theorem 8],
(i) implies (ii). The converse implication is easy.
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