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NONLINEAR ERGODIC THEOREMS OF ALMOST-ORBITS

OF NON-LIPSCHITZIAN SEMIGROUPS

TAE HWA KIM

Abstract

In this paper, we shall establish the weak convergence and nonlinear
ergodic theorems for reversible semigroups of weakly asymptotically non-
expansive type in Banach spaces.

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorff topology such that for each G G G the mappings s^a-s and s-^s a
from G to G are continuous. G is called right reversible if any two closed
left ideals of G have nonvoid intersection. In this case, (G, > ) is a directed
system when the binary relation " > " on G is defined by

ΐ>s if and only if {s}UGs2{f}UGί, s,t^G.

Right reversible semitopological semigroups include all commutative semigroups
and all semitopological semigroups which are right amenable as discrete semi-
groups (see [7, p. 335]). Left reversibility of G is defined similarly. G is
called reversible if it is both left and right reversible.

Let G be a semitopological semigroup with a binary relation " > " which
directs G. Let C be a nonempty closed convex subset of a real Banach space
E and let a family S = {S(t):t^G} be a (continuous) representation of G as
continuous mappings on C into C, i.e., S(ts)x=S(t)S(s)x for all t, s^G and
x^C, and for every X G C , the mapping t*->S(t)x from G into C is continuous.
A representation ΐ$={S(t):t^G\ of G on C is called reversible [resp., right
(left) reversible] if G is reversible [resp., right (left) reversible]. In this paper,
we also consider a non-Lipschitzian semigroup of mappings: a representation
3={S(ί) : t^G\ of G on C is said to be a semigroup of weakly asymptotically
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nonexpansive type (simply, w. a. n.t.) on C if, for each x e C and each bounded
subset D of C,

\imsupsup(\\S(t)x-S(t)y\\-\\x-y\\)<0.
t

Immediately, we can see that the semigroups of w. a. n. t. include all semigroups
of nonexpansive mappings with directed systems. In particular, if 3 = {5(0:
t<=G} is a Lipschitzian representation of G with an additional condition, i.e.,

ί^ i (see [15]), then it is obviously of w. a. n, t. In cases where G—Ny

we have S(n)=Sn for each neiV, where N denotes the set of natural
numbers. Then, when the semigroup 3={5(n) : n^N} is of w.a.n.t., S:C-+C
is simply said to be a mapping of w. a. n.t. For a mapping 5 : C->C of a. n.t.,
see Kirk [9]. And we say that a function u : G-+C is an almost-orbit of
3={S(f): feΞG} (see [13], [15]) if G is right reversible and

lim(sup||M(sO-S(s)M(ί)ll)=0.
t S(=G

In [15], Takahashi-Zhang established the weak convergence of an almost-
orbit of a noncommutative Lipschitzian semigroup in a Banach space. In [11],
Lau-Takahashi also proved the nonlinear ergodic theorems for a noncommu-
tative nonexpansive semigroup in the space. In this paper, we first shall
establish a fixed point theorem for an almost-orbit {u(t)\ t^G} of the reversible
semigroup 3 = { 5 ( 0 : ί ^ G } of w. a. n. t. in a uniformly convex Banach space,
which generalizes the commutative version due to Kiang-Tan [8], and also prove
the equivalent conditions of weak convergence of the almost-orbit {u(t)\ t^G\
of 3 = { S ( 0 : ί ^ G } , which extend the results due to Miyadera [12] and
Emmanule [3, Theorem 2]. Next, we shall carry over the weak convergence
and nonlinear ergodic theorems due to Lau-Takahashi [11], Takahashi-Zhang
[15] to those for the right reversible semigroup S = {S(t): t e1. G of w. a. n.t.
Our proofs employ the methods of [8], [11], [12], and [15].

2. Fixed Point Theorem

Let C be a nonempty closed convex subset of a real Banach space E and
let G be a semitopological semigroup with a binary relation " > " which directs
G.

DEFINITION 2.1. A family 3 = {5(0: t^G] of continuous mappings from C
into itself is said to be a (continuous) representation of G on C if 3 satisfies
the following:

(a) S(ts)x=S(t)S(s)x for all ί, s^G and χ(ΞC;
(b) for every x^C, the mapping t>->S(t)x from G into C is continuous.

DEFINITION 2.2. Let 3 = {5(0: feG} be a representation of G on C. 3 is

said to be a semigroup of weakly asymptotically nonexpansive type (simply,
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w.a.n.t.) on C if, for each x e C and each bounded subset D of C,

(2.1) p p ( |
SE:G ί s s y&D

Immediately, we can see that the semigroups of w.a.n.t . indude all semi-
groups of nonexpansive mappings with directed systems. In particular, if S =
\S(t): t^G} is a Lipschitzian representation of G with an additional condition,
i.e., limsupί&ί^l (see [15]), then it is obviously of w.a.n.t . In cases where
G^N, S=S(1), we have S(n)=Sn for each n^N, where N denotes the set of
natural numbers. Then, when the semigroup ,3={S(n): n^N} is of w.a.n.t.,
S: C->C is simply said to be a mapping of w.a.n.t . For a mapping S: C->C
of a. n.t., see Kirk [9].

DEFINITION 2.3. Let G be right reversible and let 3={S(ί) : t^G} be as in
Definition 2.1. A function u: G-+C is called an almost-orbit of 3={S(ί) : t^G]
(see [13], [15]) if

(2.2) \im(sup\\u(st)-S(s)u(t)\\)=Q.

Now let [xa] be a bounded net in C. Then we define

(2.3) r(x, {xa})=limsup||x — xa\\,
a

(2.4) r=r{C, {xa})=mf{r(x, {xa}): XGΞC} ,

and

(2.5) A(C, {xa})={z(ΞC:r(z, {xa\)=r(C, {xa})\.

Then, any element of A(C, {xa}) is called to be an asymptotic center of the net
{xa} in C. It is well known that if C is weakly compact and convex, then
A(C, {x«})^0 and if E is uniformly convex, then A(C, {xa\) is a singleton
set and it will be simply denoted by the unique element; see [4].

From now on, unless other specified, let G, E, C, and 3 = {Sit): t^G] be
as in Definition 2.2 and F(3) denote the set of all common fixed points of 3 =
{S(t):teίG} in C, i.e., F ( 3 ) = | A : G C : S(t)x = x for all t(ΞG\. We begin with
the following:

LEMMA 2.4. Let G be right reversible and let E be uniformly convex. If
{u{t)\ t^G} is a bounded almost-orbit of 3 = {S(ί): t^G] and r=r(C, {u(f)})=0,
then limS(s)M(ί)=ceF(3) for each SGΞG, where c=A(C, {u(t)}\

Proof. Since r—r(c, {u(t)})=0, clearly c=limw(£)=limu(st) for each
t t

Let s, t<=G. Then we obtain

£\\c-u(st)\\+φ(t),
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w h e r e φ(t)=sup\\u(st)—S(s)u(t)\\. S i n c e {u(t):t^G\ is a n a l m o s t - o r b i t of

S— {S(t)\ t^G\, lim0(0=0, and now taking limsup in both sides, we obtain

\imS(s)u(t)=c, and hence S(s)c=S(sX\imu(t))=\imS(s)u(t)=c, i.e., C£ΞF(%).
t t t

This completes the proof.

We say that !$={S(t): t^G] is proximately nonexpansive (see [8] if for
every I G C , and every β>0, there exists to^G such that ||S(0* —S(θ3>||S
(l+β)\\x—y\\ for all ί>ί 0 , and for any y^C. If 3 = { S ( 0 : t^G] is proximately
nonexpansive, then it is of w. a. n. t. Indeed, let x e C and D a bounded subset

of C. Then, for given ε>0, take β=~τir, where M=sup||;t —y\\.
M y&D

In order to measure the degree of strict convexity (rotundity) of E, we
define its modulus of convexity δ: [0, 2]—>[0, 1] by

(2.6) δ(e)=mf{l~\\x+y\\ : \\x\\£l, ||3>ll^l, and | |x-^l l^ε}.

The characteristic of convexity ε0 of E is also defined by

(2.7) ε o := ε o(£)=sup{ε : 3(e)=0} .

It is well-known (see [4]) that the modulus of convexity δ satisfies the follow-
ing properties:

'(a) δ is increasing on [0, 2], and moreover strictly increasing on [ε0, 2]
(b) δ is continuous on [0, 2) (but not necessarily at ε— 2);
(c) δ(2)=l if and only if E is strictly convex;

(2.8) (d) d(0)=0 and

(e) \\a-x\\^r, \\a-y\\<r and \\x-y\\>ε

JL__1(

A Banach space E is said to be uniformly convex if <5(ε)>0 for all positive ε;
equivalently εo^O. Obviously, any uniformly convex space is both strictly
convex and reflexive. By properties above, we can see that if E is uniformly
convex, then δ is strictly increasing and continuous on [0, 2] (see also [1]).

Now we can present a fixed point thorem for an almost-orbit {u(t): t^G}
of the reversible semigroup 3={S(0 * t^G) of w. a. n.t. in a uniformly convex
Banach space, which generalizes the commutative version due to Kiang-Tan
[8; Theorem 1].

THEOREM 2.5. Let G be reversible and let E be uniformly convex. If an
almost-orbit {u(t):t£ΞG} of S={S(t):t<=G\ is bounded, then A(C, \u(t)})=c£ΞF(2i).
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Proof. If r=r(C, {u(t)})—0, the result follows from Lemma 2.4. Assume
r>0 and we set

d(c)=limsup\\c-S(s)c\\.
s

Then, d(c)<oo. In fact, since 3={S(t):t^G} is of w.a.n.t., for C G C and

D={u(t): t(=G],
lim supsup(||S(Oc-S(O3iHk-3> 11)̂ 0.

t ysD

For s, ίeG, we have

<2(\\c\\+M)+φ(s)-sup(\\S(t)c-S(t)y\\-\\c-y\\),
V&D

where M=sup||M(ί)ll<o° and ώ(s)=sup\\u(ts)-S(t)u(s)\\. Since limώ(s)=0,
teσ tec s

taking lim sup at first and next lim sup in both sides, we obtain
t s

d(c)^2(\\c\\+M)<oo.

If d(c)=0, then, since G is right reversible, we obtain S(t)c=\imS(t)S(s)c=
s

limS(ts)c—limS(s)c=c for each t^G, i.e., ceF(3). Hence, it suffices to show
s s

that d(c)=0. If not, let ε be such that 0<ε<d(c). Then, for each αeG, there
is sa^:G such that Sa>a and

Since E is uniformly convex, choose d>0 so small that

where δ is the modulus of convexity of E. For this d>0, by (2.1) with
and D={w(s): S G G | , (2.2), and (2.3), there exists a^G such that

\\S(t)c-S(t)y\\£\\c-y\\+j,

and

\\c-u(t)\\<r+j,

for all ί>α and all 3;eZ). Then, for this a, we can also choose sa^G with
s«>α and
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\\C-S(.Sa)c\\>6.

Then, for all ϊ>a, we have

\\u{sat)-S{sa)c\\

<\\u{sat)~S{sa)u{t)\\ + \\S{sa)u{t)-S{sa)c\\

<j+\\u(t)-c\\+j<r+d.

Let bo=saa and f>b0. Then, since G is left reversible, we obtain

Clearly, we obtain

sup||c-u(OII<r + d.

By the definition of δ (see (e) of (2.6)), it follows that

sup
£>δ0

Setting z—y(c+S(sα)c)eC, it implies that

which gives a contradiction. The proof is completed.

3. Weak Convergence

In this section, we present the weak convergence of almost-orbits {u(t)\tζΞ-G}
of the reversible semigroup %= {S(t): t<^G} of w. a. n.t. For a function
u: G->C, let ωw(ιι) denote the set of all weak limits of subnets of the net
{u{t)\ t£ΞG} and we set

(3.1) E(u)={y(ΞC: lim||w(O-;y||exists} .

Then, the following lemma is crucial for our arguement:

LEMMA 3.1. Let G be right reversible and let {u(t): t^G}, {v(t): t^G}
almost-orbits of 3 = {S(t): t^G}. Then the limit of \\u(t)-v(t)\\ exists. In
particular, F(%)QE(u).

Proof. Since %={S(t):t^G} is of w. a. n.t., it follows that, for each
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SELG and D={v(s)},

Therefore, for each s,

|| u{ts)-υ{ts)\\ £ || u(ts)-S(t)u(s)\\ + \\S(tMs)-S(t)v(s)\\ + \\S(t)v(s)\\ -v(ts)\\

^φ(s)+(\\S(t)u(s)-S(t)v(s)\\ -1| u(s)-v(s)\\)+1| u(s)-v(s)\\ +ψ(s),

where φ(s)=sup\\u(ts)-S(t)u(s)\\, ψ(s)=sup\\v(ts)-S(t)v(s)\\. At first, taking

lim sup at both sides, we get

limsup||M(O-KOII^lims^^

Since {u(t):ΐ^G}, {v(t):t^G\ are almost-orbits of 3={5(ί) : tZΞG], lim$J(s)=0

and lim</>(s)—0, and now taking lim inf in both sides, \im\\u(t)—v(t)\\ exists.
s s t

Now let Z G F ( 3 ) and put v(t)=z for all t^G. Then {v(ί): t^G] is an almost-
orbit and hence the limit of \\u(t)—z\\ exists, i.e., Z<BE(U).

When {xa} is a net in a Banach space £ and x^E, xa-+x(xa-±x) means
the strong (weak) convergence to x of the net {xa}, respectively.

Recall that a Banach space E is said to satisfy OpiaΓs condition if, for
any net {xa\ in E with

(3.2) lim sup|Uα-x||<lim sup|Uα-;y||,
a a

(see [10, Lemma 2.1]). For any sequence in E, see [14, Lemma 1]. For more
details, see also [3] and [5]. We are now ready to prove the equivalent
conditions of weak convergence for the almost-orbit {u(t): ίeG} of the rever-
sible semigroup 3={S(ί) : t^G) of w.a.n.t., which extends the results due to
Miyadera [12] and Emmanuele [3, Theorem 2],

THEOREM 3.2. Let G be reversible and let E be uniformly convex with
Opial's condition. Let u={u(t):i^G] be an almost-orbit of 3 = {S(t): t^G}.
Then the following conditions are equivalent

( i ) wΛ\mu{f) exists;

(ii) F(3O^0 and o ) ^ ) g F ( 3 ) ;
(iii) E(u)Φ® and ωw(u)QE(u).

Proof. Since E is uniformly convex and {u(t): t^G) is bounded in C by
(i), by Theorem 2.5., there exists a unique asymptotic center A(C, {u(t)})=
c^F(^). Then, Opial's condition also gives that c=w-limu(t). Hence we have

ω«,(tt)={c}gF(3). Thus (i) implies (ii). By Lemma 3.1., clearly (ii) implies
(iii). Also to show that (iii) implies (i), apply the method of Theorem 1 due
to Emmanuele [3].
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LEMMA 3.3. Let G be right reversible and let E be uniformly convex. Let
u={u(f): t^G} be an almost-orbit of 3={S(ί): t<=G\. Suppose F(3)^0 and let
y(ΞF(%) and 0<a<ίβ<l. Then, for any ε>0, there is to^G such that

\\S(tχλu(s)+a-λ)y)-(<λS(t)u(s)+a-λ)y\\<ε

for all t, s>ί0 and λ^\_a, β].

Proof. Since F(%)Φ0, we may assume that {u(t):t^G\ is bounded, and
hence D= {λu(t)+(l-λ)y: ttΞG, 0<λ^l\ is bounded. Let ε>0 and let
r=lim||M(f)—3>ll by Lemma 3.1. If r=0, since 3={S(ί): t^G) is of w.a.n.t.

on C, for J G C and D, there exists to^G such that

and

Hence, for s, ΐ>t* and Og^^l, we have

\\S(tXλu(s)+(l-λ)y)-(λS(t)u(s)+a-λ)y)\\

<\\S(tχλu(s)+a-λ)y)-y\\+λ\\S(t)u(s)-y\\

\\u(t)-y\\<-^ for t>t0 and

Now, let r>0. Then we can choose d>0 so small that

where δ is the modulus of convexity of E and c~mm{2λ{l—λ): a^λ^β). For
k>0 with &<min{<i/2, (r—ro)/2\, as the above, there exists to^G such that

\\y-S(t)z\\<\\y-z\\+jd, for ί>ί0,

and
\\u(ts)-S(t)u(s)\\<a, for s>^0, ί e G .

Suppose that
\\S(tχλu(s)+a-λ)y)-(λS(tMs)+a-λ)y)\\>ε

for some s, t>t0 and ^e[α, /3]. Put z=λu(s)+(l—λ)y, u=(l—λχS(t)z—y) and
. Then, it follows that
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and
\\v\\<λa-XXr+d).

We also have that

and λu+(l—λ)v=λ(l—λXS(t)u(s)—y). By lemma in [6], we have

and hence \\S(t)u(s)—y\\^r0. Thus it follows that

\\u(ts)-y\\<\\u(ts)-S(tMs)\\ + \\S(tMs)-y\\

<a+ro<r—a,

which gives a contradiction and the proof is complete.

For x, y^E, we denote by \_x, y~\ the set {λx+(l—λ)y: 0<λ^l}. For
DaE, c~δD denotes the closed convex hull of D. The following lemma was
proved by Lau-Takahashi [11, Lemma 3].

LEMMA 3.4. Let E be uniformly convex with a Frechet differentiable norm
and let {xa\ be a bounded net in C. Let z^Γ}c~o{xa: « > β h y^C and {ya\ a

β

net of elements in C with ya^ly> *«] and

|M—*|| : u(=[y, xa]}

U ya-*y, then y=z.

By using Lemma 3.3 and Lemma 3.4, we obtain the similar result as
Theorem 2 in [15] for an almost-orbit \u(t): t^G} of the right reversible semi-
group ί$={S(t):t^G} of w.a.n.t . on C in a uniformly convex Banach space
E with a Frechet differentiate norm.

THEOREM 3.5. Let G be right reversible and let E be uniformly convex with
a Frechet differ entiable norm. Suppose that u—{u{t)\t^G} is an almost-orbit
of S={S(t):t<=ΞG} and F ( 3 ) ^ 0 . Then the set tΛ'co{u(t): t>s\ΓΛF(%) consists

S£.G

of at most one point.
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Proof. Since F(S)ΦQ, we may assume that {u(t):t^G} is bounded. Let
W(u)^Γλcό{u(t):t>s}. Suppose that x, y(=W(u)ΓΛF(S) and xφy. Put

s<=G

z—{xJ

Γy)/2 and r=lim | |M(S)—3;|| by Lemma 3.1. Since z^W(u), we have
s

\\z—y\\<ίr. For each s^G, choose z(s)^[u(s), z~\ such that

), z]) .

By the definition of z(s), we have \\z(s)—y\\< y ^\\z—y\\ for all

Therefore, if lim infills)—;y|| = ||2—;y||, then
s

converges strongly

to z. Otherwise, there exists some ε>0 and sa^G such that sa>a and
\\z(sa)—z\\>ε, for every a^G. Then, by the definition of δ (see (e) of (2.6)),
we have

2

for every a. It follows from the definition of z(sa) and the uniform convexity
of E that

lim inf\\z(s)—y\\<\im sup\\z(sa)—y\\

which contradicts the assumption. So, lim z(s)=z. Therefore, by Lemma 3.4,
s

we obtain z—y and this contradicts xφy. To complete the proof, we suppose
that

lim infills)—

Then, for every α e G , there exist c>0 and ta^G with ta>a such that

and there exists aQζΞG such that

for every oOa*. Put z(ta)—aau(ta)-{-(1 — aa)z for every a. Then there is
and γ<l such that β<aa<T for every α > « 0 . In fact, if there exists aa such

that (1 — α α ) M < 7 Γ , where M^sup||w(f)—*ll and M>c, then,

Uta)-y\\-\\u(ta)-y\\ \ύ\\z{ta)-u(ta)\\

=(l-aa)l\u(ta)-z\\<j
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and hence r^\\u(ta)—y\\+-7><\\z(ta)—y\\ + c<\\z—y\\£ίr. This is a contradiction.

If there also exists aa such that aaM<c, then

and hence \\z—y\\<\\z(ta)—y\\ + c<\\z—y\\. This is a contradiction. By (2.1)
with y^C and D={au{f)+(l-ά)z: tt=G, O ^ α ^ l } , (2.2), and Lemma 3.3, there
exists So^G with s o >α o such that

\\y-S(s)v\\<j + \\y-v\\,

and

for all s, ί>s 0 , v<=D and Λe[j3, ?"]. Therefore, for s^s^, since ί ί 0 >s o , it
follows that

\\z(stH)-y\\£\\aHu(stH)+a-aH)z-y\\

Let /3o=soίso

 a n d s>jS0 Since G is right reversible, we have

sup| |z(s)-:y | |=sup| |z(sf, 0 )-j | |< | |z-y | | .

Thus, we have z(s)Φz for all s > β 0 . Now let s> iS 0 and uk = k(z—z(s))-\-z(s)
for all fc^l. Then \\uk — y\\^\\z— y\\ for all k^l and hence, by Theorem 2.5
of [2], we have

<z-uk, J(y-z)>=<a-kXz-z(s)9 J(y-z)}^0

for all k^l, where / is the duality mapping of E and <*, λ*> denotes the
value of X*GΞZ* at i 6 £ . Then it follows that <z—z(s), J(y-z))£0 for all
s > ^ 0 . Then, since z(s)e[z/(s), 2], this easily implies that <>ε—w(s), /( y—^)>^0
for all s>j80. Immediately, we obtain <z—w,J(y—z)>tίO for all w^Έό{u(s):
s*>βo\. Put U ; = Λ = z + ( z — y ) , then z=3^. This contradicts xφy. The proof
is completed.

As a direct consequence, we present the following weak convergence of an
almost-orbit {u(t):t(ΞG}.
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THEOREM 3.6. Let G be right reversible and let E be uniformly convex with
a Frechet differentzable norm. Suppose that u— {u(t): t^G} is an almost-orbit
of %={S(t):teίG} and F ( 3 ) ^ 0 . // ωw(u)QF(5i\ then the not {u(t):t^G}
converges weakly to an element of

Proof. Be similar to Theorem 3 of [15].

4. Ergodic theorems

We now study in this section the existence of a "ergodic" retraction of C
onto the common fixed point set F(J3) of 3={S(f) : feG} in C. We begin
with the following observation:

THEOREM 4.1. Let G be right reversible and let E be uniformly convex.
Then, the set F(3) (possibly empty) is closed and convex.

Proof. By continuity of elements of 3, obviously F(3) is closed. To
prove the convexity of F(3), it suffices to show that, for x, y^F(!$) with

xφy, z=-~-(x + y)^F($). If \im S(t)z=z, since G is right reversible, we have
t

S(s)z=\imS(st)z=\imS(t)z=z for each s^G and so ^ G F ( 3 ) . Hence it suffices
t t

to show that \\mS(t)z—z. If not, there exists ε>0 such that for any

there is ta^G with ί α > α and

Since E is uniformly convex, choose d>0 so small

where R=\\x — y\\>0 and δ is the modulus of convexity of E.
For this d>0, since 3 is of w.a.n.t . with Z G C and D—{x, y], there is

such that, for all t^a0,

%- for all WELD.

Thus, 2\\S{t)z-x\\,2\\S(t)z-y\\^R+d for all t>a0. Put u=2(S(tao)z-r),
v=2{y-S(tao)z). Then, ||M||, \\v\\£R+d and \\u-v\\=4\\S((tao)z-z)^ε. So, we
have

which gives a contradiction. This completes the proof.

As a direct consequence, we get the following:
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COROLLARY 4.2. Let E be uniformly convex. If a mapping T: C—>C is of

weakly asymptotically nonexpansive type, then the fixed point set F{T) of T is in

fact closed and convex.

For each xGC,we define u(t)=S(t)x (feG). Then {u{t): t^G] is obviously
an almost-orbit of 3 = {S(t): ίeG}. As a direct consequence, we can prove the
following result which generalizes Theorem 8 in [11]. We employs the method
of the proof in [11].

THEOREM 4.3. Let G be right reversible and let E be uniformly convex

with a Frechet differentiable norm. Let S={S(t): t^G} be of w.a.n.t on C.

The following are equivalent:

(i) Γ\co{S(t)x : ί>s}nF(3)^0 for each χ(ΞC
s&G

(ii) there exists a retraction P of C onto F(3) such the PS(t)=S(t)P=P for
every ίeG and Px^c~δ{S{t)x: t^G} for every i e C .

Proof. By Theorem 3.5, for each XEΞC, Γλcd{S(t)x:t>sl'ΛF(S) contains
s<=G

exactly one point Px. Then, applying the same method of [11, Theorem 8],
(i) implies (ii). The converse implication is easy.
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