ASYMPTOTIC BEHAVIOR OF ALMOST-ORBITS OF NONEXPANSIVE SEMIGROUPS WITHOUT CONVEXITY

By Hirobumi Kiuchi and Wataru Takahashi

Abstract

We first prove a resul on the asymptotic behavior of almost-orbits of nonexpansive semigroups without convexity in a Hilbert space. This is a generalization of results of Rodé [7] and Takahashi [10]. Further we prove a fixed point theorem for Lipschitzian semigroups without convexity. This is a generalization of results of Lau [3], Takahashi [8], [10] and Ishihara [2].

1. Introduction. Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product (\cdot, \cdot) and let C be a nonempty subset of H. A mapping $T: C \rightarrow C$ is said to be Lipschitzian if there exists a nonnegative number k such that

$$||Tx-Ty|| \le k||x-y||$$
 for every $x, y \in C$

and nonexpansive in the case of k=1. Let S be a semitopological semigroup, i.e., a semigroup with a Hausdorff topology such that for each $s \in S$, the mappings $t \rightarrow t \cdot s$ and $t \rightarrow s \cdot t$ of S into itself are continuous. Then a family $S = \{T_s : s \in S\}$ of mappings of C into itself is called a Lipschitzian semigroup on C if it satisfies the following:

- (1) $T_{st}x = T_sT_tx$ for all $s, t \in S$ and $x \in C$;
- (2) for each $x \in C$, the mapping $s \to T_s x$ is continuous on S;
- (3) for each $s \in S$, T_s is a Lipschitzian mapping of C into itself with Lipschitz constant k_s . A Lipschitzian semigroup $S = \{T_t : t \in S\}$ on C is said to be nonexpansive if $k_s = 1$ for every $s \in S$. Recently, Takahashi [10] proved a nonlinear ergodic theorem and a fixed point theorem for nonexpansive semigroups without convexity in a Hilbert space. On the other hand, Miyadera-Kobayasi [4] introduced the notion of an almost-orbit of nonexpansive semigroups and established the weak and strong almost convergence of such an almost-orbit; see also [1], [11], [12].

Received July 24, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47A35, 47H09. Key words and phrases. Fixed point, nonexpansive mapping, invariant mean, almostorbits.

In this paper, we first prove a result on the asymptotic behavior of almostorbits of nonexpansive semigroups without convexity in a Hilbert space. This is a generalization of results of Rodé [7] and Takahashi [10]. Further we prove a fixed point theorem for Lipschitzian semigroups without convexity. This is a generalization of results of Lau [3], Takahashi [8], [10] and Ishihara [2].

2. Asymptotic behavior of almost-orbits. Let B(S) be the Banach space of all bounded real-valued functions on S with supremum norm and let X be a subspace of B(S) containing constants. Then an element μ of X^* (the dual of X) is a mean on X if and only if

$$\inf_{s \in S} f(s) \leq \mu(f) \leq \sup_{s \in S} f(s) \quad \text{for all} \quad f \in X.$$

Let μ be a mean on X and $f \in X$. Then, according to time and circumstances, we use $\mu_t(f(t))$ instead of $\mu(f)$. For each $s \in S$ and $f \in B(S)$, we define elements $l_s f$ and $r_s f$ in B(S) given by

$$(l_s f)(t) = f(st)$$
 and $(r_s f)(t) = f(ts)$ for all $t \in S$.

Let X be a subspace of B(S) containing constants and invariant under l_s , $s \in S$ $(r_s, s \in S)$. Then a mean μ on X is said to be left invariant (right invariant) if

$$\mu(f) = \mu(l_s f) \ (\mu(f) = \mu(r_s f))$$
 for all $f \in X$ and $s \in S$.

An invariant mean is a left and right invariant mean. We know following [9]: If X is a left invariant subspace of B(S) containing constants and μ is a left invariant mean on X, then for any $f \in X$,

$$\sup_{s} \inf_{t} f(st) \leq \mu(f) \leq \inf_{s} \sup_{t} f(st).$$

Similarly, if X is a right invariant subspace of B(S) containing constants and μ is a right invariant mean on X, then for any $f \in X$,

$$\sup_{s} \inf_{t} f(ts) \leq \mu(f) \leq \inf_{s} \sup_{t} f(ts).$$

We denote by C(S) the Banach space of all bounded continuous real-valued functions on S with supremum norm.

A continuous function $u: S \rightarrow C$ is said to be an almost-orbit of $S = \{T_t: t \in S\}$ if

$$\inf_{w} \sup_{t,s} ||u(swt) - T_s u(wt)|| = 0.$$

If an almost-orbit $u: S \rightarrow C$ of $S = \{T_t: t \in S\}$ is bounded and μ is a mean on C(S), then there exists a unique element x_{μ} of H such that

$$\mu_t(u(t), y) = (x_\mu, y)$$
 for all $y \in H$.

In fact, for each $y \in H$,

$$|\mu_t(u(t), y)| \le ||\mu|| \sup_t |(u(t), y)| \le \sup_t ||u(t)|| ||y||$$

and hence $\mu_t(u(t), \cdot)$ is a bounded linear functional on H. So, we obtain the desired result by the Riesz representation theorem.

Let $\{\mu_{\alpha} : \alpha \in A\}$ be a net of means on C(S). Then $\{\mu_{\alpha} : \alpha \in A\}$ is said to be asymptotically invariant if for each $f \in C(S)$ and $s \in S$,

$$\mu_{\alpha}(f) - \mu_{\alpha}(l_{s}f) \longrightarrow 0$$
 and $\mu_{\alpha}(f) - \mu_{\alpha}(r_{s}f) \longrightarrow 0$.

Theorem 1. Let H be a real Hilbert space and let C be a nonempty subset of H. Suppose that S is a semitopological semigroup such that C(S) has an invariant mean. Let $S=\{T_t\colon t\in S\}$ be a nonexpansive semigroup on C. If an almost-orbit $u:S\to C$ of $S=\{T_t\colon t\in S\}$ is bounded and $\bigcap_{s\in S}\overline{co}\{u(st)\colon t\in S\}\subset C$, then the set F(S) of all common fixed points of T_t , $t\in S$ is nonempty. Moreover, if $\{\mu_\alpha\colon \alpha\in A\}$ is an asymptotically invariant net of means on C(S), then there exists an element x_0 of F(S) such that x_{μ_α} converges weakly to x_0 , where x_{μ_α} is an element of H such that $(\mu_\alpha)_t(u(t),y)=(x_{\mu_\alpha},y)$ for all $y\in H$.

Proof. Let μ be an invariant mean on C(S). Then, there exists an element x_{μ} of H such that $\mu_t(u(t), y) = (x_{\mu}, y)$ for all $y \in H$. We show $x_{\mu} \in \bigcap_{s \in S} \overline{co} \{u(st) : t \in S\}$. If not, we have $x_{\mu} \notin \overline{co} \{u(s_0t) : t \in S\}$ for some $s_0 \in S$. By the separation theorem, there exists an element y_0 of H such that

$$(x_{\mu}, y_{0}) < \inf_{z \in \overline{co}\{u(s_{0}t): t \in S\}} (z, y_{0}).$$

So, we have

$$(x_{\mu}, y_{0}) < \inf_{z \in \overline{co}(u(s_{0}t); t \in S)} (z, y_{0})$$

$$\leq \inf_{t \in S} (u(s_{0}t), y_{0})$$

$$\leq \mu_{t}(u(s_{0}t), y_{0})$$

$$= \mu_{t}(u(t), y_{0}) = (x_{u}, y_{0}).$$

This is a contradiction. Therefore we have $x_{\mu} \in \bigcap_{s \in S} \overline{co}\{u(st): t \in S\}$, and hence $x_{\mu} \in C$.

Since u is continuous and $\{u(t): t \in S\}$ is bounded, the real-valued function $t \to \|u(t) - y\|^2$ is in C(S) for each $y \in H$. Let $r = \inf_{y \in H} \mu_t \|u(t) - y\|^2$ and $M = \{z \in H : \mu_t \|u(t) - z\|^2 = r\}$. Since for each $y \in H$ and $t \in S$,

$$||x_{\mu}-y||^2 = ||u(t)-y||^2 - ||u(t)-x_{\mu}||^2 - 2(u(t)-x_{\mu}, x_{\mu}-y),$$

we have

$$0 \le ||x_{u} - y||^{2}$$

$$= \mu_t \| u(t) - y \|^2 - \mu_t \| u(t) - x_{\mu} \|^2 - 2\mu_t (u(t) - x_{\mu}, x_{\mu} - y)$$

$$= \mu_t \| u(t) - y \|^2 - \mu_t \| u(t) - x_{\mu} \|^2.$$

Hence, for an element y of H, it follows that $x_{\mu} \neq y$ if and only if $\mu_t \| u(t) - x_{\mu} \|^2 < \mu_t \| u(t) - y \|^2$. This implies that the set M consists a single point x_{μ} . We prove that $x_{\mu} \in F(\mathcal{S})$. We first show that for every $s \in S$ and $y \in H$,

$$\mu_t \| u(st) - y \|^2 = \mu_t \| T_s u(t) - y \|^2$$
.

Since $\{u(t): t \in S\}$ is bounded, there exists a positive number M_1 such that $||u(t)|| \le M_1$ for any $t \in S$. Fix $t_0 \in S$. Then we have

$$||T_s u(t) - T_s u(t_0)|| \le ||u(t) - u(t_0)|| \le 2M_1$$

and hence

$$||T_s u(t)|| \le ||T_s u(t_0)|| + 2M_1$$
 for all $t \in S$.

So, there exists a positive number M_2 such that $||T_s u(t)|| \le M_2$ for all $t \in S$. Therefore, we have

$$\begin{split} &|\mu_{t}\|u(st)-y\|^{2}-\mu_{t}\|T_{s}u(t)-y\|^{2}|\\ &=|\mu_{t}(\|u(st)-y\|^{2}-\|T_{s}u(t)-y\|^{2})|\\ &\leq &\mu_{t}((\|u(st)-y\|+\|T_{s}u(t)-y\|)|\|u(st)-y\|-\|T_{s}u(t)-y\||)\\ &\leq &(2\|y\|+M_{1}+M_{2})\mu_{t}\|u(st)-T_{s}u(t)\|\\ &\leq &(2\|y\|+M_{1}+M_{2})\inf_{u}\sup_{t}\|u(swt)-T_{s}u(wt)\|=0\,. \end{split}$$

This implies $\mu_t \|u(st) - y\|^2 = \mu_t \|T_s u(t) - y\|^2$ for every $s \in S$ and $y \in H$. Using this, we have $x_\mu \in F(S)$. In fact,

$$\mu_{t} \| u(t) - T_{s} x_{\mu} \|^{2} = \mu_{t} \| u(st) - T_{s} x_{\mu} \|^{2}$$

$$= \mu_{t} \| T_{s} u(t) - T_{s} x_{\mu} \|^{2}$$

$$\leq \mu_{t} \| u(t) - x_{\mu} \|^{2} = r,$$

and hence $T_s x_\mu \in M$. Since $M = \{x_\mu\}$, we have $T_s x_\mu = x_\mu$ for all $s \in S$. Next, we prove that x_μ is independent of any invariant mean μ on C(S). We know that $\mu_t \| u(t) - z \|^2 \le \inf_s \sup_t \| u(ts) - z \|^2$ for all $z \in H$. On the other hand, fix $z \in F(S)$ and set $M_s = \sup \| u(t) - z \|$. Then, for any $\varepsilon > 0$ there exists an a in S such that

$$\sup_{s,t} ||u(tas) - T_t u(as)|| < \varepsilon.$$

Since for each $s \in S$,

$$\inf_{w} \sup_{t} ||u(tw) - z||^{2} \leq \sup_{t} ||u(tas) - z||^{2}$$

$$\begin{split} & \leq \sup_{t} \|u(tas) - T_{t}u(as)\|^{2} + \sup_{t} \|T_{t}u(as) - z\|^{2} \\ & + 2\sup_{t} \|u(tas) - T_{t}u(as)\| \|T_{t}u(as) - z\| \\ & \leq \varepsilon^{2} + \sup_{t} \|T_{t}u(as) - T_{t}z\|^{2} + 2\varepsilon\sup_{t} \|T_{t}u(as) - T_{t}z\| \\ & \leq \varepsilon^{2} + \|u(as) - z\|^{2} + 2\varepsilon M_{3} \,, \end{split}$$

we have

$$\inf_{w} \sup_{t} \|u(tw) - z\|^{2} \le \mu_{s} \|u(as) - z\|^{2} + \varepsilon^{2} + 2\varepsilon M_{s}$$

$$= \mu_{s} \|u(s) - z\|^{2} + \varepsilon^{2} + 2\varepsilon M_{s}.$$

This implies $\inf_{w} \sup_{t} ||u(tw) - z||^2 \le \mu_s ||u(s) - z||^2$ for all $z \in F(S)$. Then,

$$\mu_t \| u(t) - z \|^2 = \inf \sup \| u(ts) - z \|^2$$
 for all $z \in F(\mathcal{S})$,

and hence x_{μ} is independent of μ . So, we denote the element x_{μ} by x_0 .

Finally, for an asymptotically invariant net $\{\mu_{\alpha} \colon \alpha \in A\}$ of means on C(S) we show that w-lim $x_{\mu_{\alpha}} = x_0$, where $x_{\mu_{\alpha}}$ is an element of H such that $(\mu_{\alpha})_t(u(t), y) = (x_{\mu_{\alpha}}, y)$ for all $y \in H$. Since $\|\mu_{\alpha}\| = 1$, $\{\mu_{\alpha} \colon \alpha \in A\}$ has a cluster point μ in the sense of w^* -topology. Such a μ is an invariant mean. In fact, for each $\varepsilon > 0$, $f \in C(S)$ and $s \in S$, there exists $\alpha_0 \in A$ such that

$$|\mu_{\alpha}(f) - \mu_{\alpha}(l_s f)| \leq \frac{\varepsilon}{3}$$
 for all $\alpha \geq \alpha_0$.

Since μ is a cluster point of the net $\{\mu_{\alpha} : \alpha \in A\}$, we can choose $\alpha_{1}(\geq \alpha_{0})$ such that

$$|\mu_{\alpha_1}(f) - \mu(f)| \le \frac{\varepsilon}{3}$$
 and $|\mu_{\alpha_1}(l_s f) - \mu(l_s f)| \le \frac{\varepsilon}{3}$.

Hence, we have

$$\begin{split} |\mu(f) - \mu(l_s f)| &\leq |\mu(f) - \mu_{\alpha_1}(f)| + |\mu_{\alpha_1}(f) - \mu_{\alpha_1}(l_s f)| \\ &+ |\mu_{\alpha_1}(l_s f) - \mu(l_s f)| \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \,. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have $\mu(f) = \mu(l_s f)$ for every $f \in C(S)$ and $s \in S$. This implies that μ is left invariant. Similarly, μ is right invariant. Since

$$||x_{\mu_{\alpha}}|| = \sup_{\|y\| \le 1} |(x_{\mu_{\alpha}}, y)| = \sup_{\|y\| \le 1} |(\mu_{\alpha})_{t}(u(t), y)|$$

$$\le \sup_{t} ||u(t)||,$$

we get $\{x_{\mu_{\alpha}}: \alpha \in A\}$ is bounded by virtue of the boundedness of $\{u(t): t \in S\}$.

Hence we can choose a subnet $\{x_{\mu_{\alpha}\beta}\}$ of the net $\{x_{\mu_{\alpha}}: \alpha \in A\}$ which converges weakly to some z in H. If λ is a cluster point of the net $\{\mu_{\alpha}\beta\}$, then λ is a cluster point of the net $\{\mu_{\alpha}\}$ and hence λ is an invariant mean. Hence we obtain $z=x_{\lambda}=x_{0}$, which implies that $x_{\mu_{\alpha}}$ converges weakly to $x_{0}\in F(\mathcal{S})$.

Q.E.D

- 3. Fixed point theorem. Let X be a subspace of B(S) containing constants. Then, according to Mizoguchi and Takahashi [5], a real-valued function μ on X is called a submean on X if it satisfies the following conditions:
 - (1) $\mu(f+g) \leq \mu(f) + \mu(g)$ for every $f, g \in X$;
 - (2) $\mu(\alpha f) = \alpha \mu(f)$ for every f and $\alpha \ge 0$;
 - (3) for $f, g \in X$, $f \leq g$ implies $\mu(f) \leq \mu(g)$;
 - (4) $\mu(c)=c$ for every constant c.

For a submean μ on X, we also use $\mu_t(f(t))$ instead of $\mu(f)$.

LEMMA [5]. Let S be a semitopological semigroup, let X be a subspace of B(S) containing constants and let μ be a submean on X. Let $\{x_t: t \in S\}$ be a bounded subset of a Hilbert space H and let D be a closed convex subset of H. Suppose that for each $x \in D$, the real-valued function f on S defined by

$$f(t) = \|x_t - x\|^2$$
 for all $t \in S$

belongs to X. Then, setting $g(x)=\mu_t\|x_t-x\|^2$ for all $x\in D$ and $r=\inf_{x\in D}g(x)$, there exists a unique element $z\in D$ such that g(z)=r and $r+\|z-x\|^2\leq g(x)$ for every $x\in D$.

Let X be a subspace of B(S) containing constants and invariant under l_s , $s \in S$. Then a submean μ on X is said to be left invariant if $\mu(f) = \mu(l_s f)$ for all $s \in S$ and $f \in X$.

THEOREM 2. Let C be a nonempty subspace of a Hilbert space H and let S be a semitopological semigroup. Suppose that X is a subspace of B(S) containing constants and invariant under l_s , $s \in S$ and that there exists a left invariant submean μ on X. Let $S = \{T_t : t \in S\}$ be a Lipschitzian semigroup on C with Lipschitz constants k_s , $s \in S$, and let u be an almost-orbit of $S = \{T_t : t \in S\}$ such that $\{u(t) : t \in S\}$ is bounded and $\bigcap_{s \in S} \overline{co}\{u(st) : t \in S\} \subset C$. If for each $v \in H$, the real-valued function f on S defined by

$$f(t) = ||u(t) - v||^2$$
 for all $t \in S$

and the function h on S defined by

$$h(t) = k_t^2$$
 for all $t \in S$

belong to X and $\mu_t(k_t^2) \leq 1$, then there exists an element $z \in C$ such that $T_s z = z$ for all $s \in S$.

Proof. Define a real-valued function g on H by

$$g(y) = \mu_t ||u(t) - y||^2$$
 for all $y \in H$.

Then, setting $r = \inf_{y \in H} g(y)$, by Lemma, there exists a unique element $z \in H$ such that g(z) = r and $r + \|z - y\|^2 \le g(y)$ for every $y \in H$. For each $s \in S$, let Q_s be the metric projection of H onto $\overline{co}\{u(st): t \in S\}$. Then, by Phelps [6], Q_s is nonexpansive and for each $t \in S$,

$$||u(st)-Q_sz||^2 = ||Q_su(st)-Q_sz||^2 \le ||u(st)-z||^2$$
.

So, we have

$$\mu_{t} \| u(t) - Q_{s}z \|^{2} = \mu_{t} \| u(st) - Q_{s}z \|^{2} \leq \mu_{t} \| u(st) - z \|^{2}$$

$$= \mu_{t} \| u(t) - z \|^{2},$$

and thus $Q_sz=z$. This implies that $z\in\overline{co}\{u(st)\colon t\in S\}$ for any $s\in S$, and hence $z\in\bigcap_{s\in S}\overline{co}\{u(st)\colon t\in S\}$. We prove that $T_sz=z$ for all $s\in S$. Before proving it, we show $\mu_t\|u(st)-T_sz\|^2\le k_s^2\mu_t\|u(t)-z\|^2$ for every $s\in S$. Setting $k=\sup_{t\in S}k_t$ and $M=\sup_{t\in S}\|u(t)-z\|$, then for $\varepsilon>0$ there exists an $a\in S$ such that

$$\sup_{t} \|u(sat) - T_s u(at)\| < \varepsilon.$$

Since for each t, $s \in S$,

$$\begin{aligned} \|u(sat) - T_s z\|^2 &\leq \|u(sat) - T_s u(at)\|^2 + \|T_s u(at) - T_s z\|^2 \\ &+ 2\|u(sat) - T_s u(at)\| \|T_s u(at) - T_s z\| \\ &\leq \varepsilon^2 + k_s^2 \|u(at) - z\|^2 + 2\varepsilon kM, \end{aligned}$$

we obtain

$$\begin{split} \mu_{t} \| u(st) - T_{s}z \|^{2} &= \mu_{t} \| u(sat) - T_{s}z \|^{2} \\ &\leq \varepsilon^{2} + 2\varepsilon k M + k_{s}^{2} \mu_{t} \| u(at) - z \|^{2} \\ &= \varepsilon^{2} + 2\varepsilon k M + k_{s}^{2} \mu_{t} \| u(t) - z \|^{2} \,, \end{split}$$

and hence

$$\mu_t \| u(st) - T_s z \|^2 \le k_s^2 \mu_t \| u(t) - z \|^2$$
 for all $s \in S$.

Since by Lemma

$$||z-y||^2 \le \mu_t ||u(t)-y||^2 - \mu_t ||u(t)-z||^2$$
 for all $y \in H$,

we have for each $s \in S$

$$||z - T_s z||^2 \le \mu_t ||u(t) - T_s z||^2 - \mu_t ||u(t) - z||^2$$

$$= \mu_t ||u(st) - T_s z||^2 - \mu_t ||u(t) - z||^2$$

$$\leq (k_s^2-1)\mu_t \|u(t)-z\|^2$$

and hence

$$\mu_{s}||z-T_{s}z||^{2} \leq (\mu_{s}(k_{s}^{2})-1)\mu_{t}||u(t)-z||^{2} \leq 0.$$

This implies $\mu_{\delta} ||z - T_{\delta}z||^2 = 0$. Since, for every $a, s \in S$,

 $||z-T_az||^2 \le 2||z-T_sz||^2 + 2||T_sz-T_az||^2$,

we have

$$\begin{split} \|z - T_a z\|^2 & \leq 2 \mu_s \|z - T_s z\|^2 + 2 \mu_s \|T_s z - T_a z\|^2 \\ & = 2 \mu_s \|T_{as} z - T_a z\|^2 \\ & \leq 2 k_a^2 \mu_s \|T_s z - z\|^2 = 0 \,. \end{split}$$

This implies $T_s z = z$ for all $s \in S$.

Q.E.D.

REFERENCES

- [1] S. AIZICOVICI, On the asymptotic behaviour of solutions of Voltera equations in Hilbert space, Nonlinear Analysis, 7 (1983), 271-278.
- [2] H. ISHIHARA, Fixed point theorems for lipschitzian semigroups, Canad. Math. Bull., 32 (1989), 90-97.
- [3] A.T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl., 105 (1985), 514-522.
- [4] I. MIYADERA AND K. KOBAYASI, On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Analysis, 6 (1982), 349-365.
- [5] N. MIZOGUCHI AND W. TAKAHASHI, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert spaces, Nonlinear Analysis, 14 (1990), 69-80.
- [6] R.P. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc., 8 (1957), 790-797.
- [7] G. Rodé, An ergodic theorem for semigroups of nonexpasive mappings in a Hilbert space, J. Math. Anal. Appl., 85 (1982), 172-178.
- [8] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of non-expansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256.
- [9] W. Takahashi, Fixed point theorems for families of nonexpansive mappings on unbounded sets, J. Math. Soc. Japan, 36 (1984), 543-553.
- [10] W. Takahashi, Fixed point theorem and nonliear ergodic theorem for nonexpansive semigroups without convexity, to appear in Canadian J. Math., 35(1992).
- [11] W. Takahashi and J.Y. Park, On the asymptotic behavior of almost-orbits of commutative semigroups in Banach spaces, in "Nonlinear and Convex Analysis", pp. 271-293, Dekker, New York/Basel, 1987.
- [12] W. TAKAHASHI AND P. J. ZHANG, Asymptotic behavior of almost-orbits of reversible semigroups of Lipschitzian mappings, J. Math. Anal. Appl., 142 (1989), 242-249.

DEPARTMENT OF INFORMATION SCIENCE, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO 152, JAPAN