C. XIA

KODAI MATH. J.
15 (1992), 441 -153

# ON THE MINIMAL SUBMANIFOLDS IN $C P^{m}(c)$ AND $S^{N}(\mathbf{1})$ 

By Xia Changyu


#### Abstract

Let $M$ be an $n$-dimensional compact totally real submanifold minimally immersed in $C P^{m}(c)$. Let $\sigma$ be the second fundamental form of $M$. A known result states that if $m=n$ and $|\sigma|^{2} \leqq(n(n+1) c) /(4(2 n-1))$, then $M$ is either totally geodesic or a finite Riemannian covering of the unique flat torus minimally imbedded in $C P^{2}(c)$. In this paper, we improve the above pinching constant to $(n+1) c / 6$ and prove a pinching theorem for $|\sigma|^{2}$ without the assumption on the codimension. We have also some pinching theorems for $\delta(u):=|\sigma(u, u)|^{2}$, $u \in U M, M \rightarrow C P^{m}(c)$ and the Ricci curvature of a minimal submanifold in a sphere. In particular, a simple proof of a Gauchman's result is given.


## 1. Introduction.

Let $M$ be an $n$-dimensional compact submanifold minimally immersed in a complex projective space $C P^{m}(c)$ of holomorphic sectional curvature $c$ and of complex dimension $m$. Denote by $\sigma$ the second fundamental form of $M$. Chen and Ogiue ([1]), Naitoh and Takeuchi ([7]), and Yau ([13]) proved that if $M$ is totally real, $m=n$ and $|\sigma|^{2} \leqq(n(n+1) c) /(4(2 n-1))$, then $M$ is either totally geodesic or a finite Riemannian covering of the unique flat torus minimally imbadded in $C P^{2}(c)$ with parallel second fundamental form. In this paper, by using a method different from those in [1], [7] and [13], we improve the above result and prove a pinching theorem for $|\sigma|^{2}$ without the assumption on the codimension of M. Namely, we have

Theorem 1. Let $M$ be an n-dimensional compact totally real minimal submanifold in $C P^{n}(c)$. Let $\sigma$ be the second fundamental form of $M$. If $|\sigma|^{2} \leqq$ $(n+1) c / 6$, then $M$ is either totally geodesic or a finite Riemannian covering of the unique flat torus embedded in $C P^{2}(c)$ with parallel second fundamental form.

Theorem 2. Let $M$ be an n-dimensional compact totally real minimal submanifold immersed in $C P^{m}(c)$. If $|\sigma|^{2} \leqq n c / 6$, then either $M$ is totally geodesic or the immersion of $M$ into $C P^{m}(c)$ is one of the following immersions

1980 Mathematics Subject Classification (1985 Revision). Primary 53C40, Secondary $53 C 42$.

Received May 16, 1991 ; revised September 18, 1991.
$\varphi_{1, p}: R P^{2}(c / 12) \rightarrow C P^{4+p}(c) ; \varphi_{2, p}: S^{2}(c / 12) \rightarrow C P^{4+p}(c)(p=0,1,2, \cdots)$.
A. Ros in [10] showed that if $M$ is a compact Kaehler submanifold of $C P^{m}(c)$ and if $\delta(n)=:|\sigma(u, u)|^{2}<c / 4$ for any $u \in U M$, then $M$ is totally geodesic. Moreover, in [9], Ros gave a complete list of Kaehler submanifolds of $C P^{m}(c)$ satisfying the condition $\max _{u \in U M} \delta(u)=c / 4$. In [3], H. Gauchman obtained the following analogous result for totally real minimal submanifold in $C P^{m}(c)$.

Theorem 3. Let $M$ be an n-dimensional compact totally real minimal submanifold immersed in $C P^{m}(c)$. Then, $\delta(u)=:|\sigma(u, u)|^{2} \leqq c / 12$ for any $u \in U M$ if and only if one of the following conditions is satisfied:
i) $\delta \equiv 0$ (i.e., $M$ is totally geodesic).
ii) $\delta \equiv c / 12$ and the immersion of $M$ into $C P^{m}(c)$ is one of the following immersions • $\varphi_{1, p}: R P^{2}(c / 12) \rightarrow C P^{4+p}(c) ; \varphi_{2, p}: S^{2}(c / 12) \rightarrow C P^{4+p}(c) ; \varphi_{3, p}: C P^{2}(c / 3) \rightarrow$ $C P^{7+p}(c) ; \varphi_{4, p}: Q P^{2}(c / 3) \rightarrow C P^{13+p}(c) ; \varphi_{5, p}: \operatorname{Cay} P^{2}(c / 3) \rightarrow C P^{25+p}(c)(p=0,1,2, \cdots)$.

For the definitions of $\varphi_{i, p}(\imath=1, \cdots, 5 ; p=0,1,2, \cdots)$, one can consult [3, p.254].
In this paper, we'll give a simple proof of the above Gauchman's result and prove the following.

Theorem 4. Let $M$ be an n-dimensional compact totally real minimal submannfold immersed in a complex projective space $C P^{m}(c)$. Assume that $n$ is odd. If $\delta(u) \leqq c / 4(3-2 / n)$ for all $u \in U M$, then $M$ is totally geodesic.

Theorem 4 improves a result by H. Gauchman in [3].
For minimal submanifolds in a sphere, we have
TheOrem 5. Let $M$ be an n-dimensional compact minimal submanifold immersed in a unit sphere $S^{n+p}(1)$. Let $A_{\xi}$ be the Weingarten endomorphism associated to a normal vector $\xi$. Define $T: T_{p}^{\frac{1}{p}} M \times T_{p}^{\frac{1}{p}} M \rightarrow R$ by $T(\xi, \eta)=\operatorname{trace} A_{\xi} A_{\eta}$. Assume that the Ricci curvature of $M$ satisfies $\operatorname{Ric}_{M} \geqq n-1-((n+2) p) /(2(n+p+2))$ and $T=k\langle$,$\rangle . Then the immersion of M$ into $S^{n+p}(1)$ is one of the following standard ones (see [11] for details) $\quad S^{n}(1) \rightarrow S^{n}(1) ; R P^{2}(1 / 3) \rightarrow S^{4}(1) ; S^{2}(1 / 3) \rightarrow S^{4}(1)$; $C P^{2}(4 / 3) \rightarrow S^{7}(1) ; Q P^{2}(4 / 3) \rightarrow S^{13}(1)$; Cay $P^{2}(4 / 3) \rightarrow S^{25}(1)$.

## 2. Preliminaries.

Let $M$ be an $n$-dimensional compact Riemannian manifold. We denote by $U M$ the unit tangent bundle over $M$ and by $U M_{p}$ its fiber over $p \in M$. If $d p$, $d v$ and $d v_{p}$ denote the canonical measures on $M, U M$ and $U M_{p}$ respectively, then for any continuous function $f: U M \rightarrow R$, we have:

$$
\int_{U M} f d v=\int_{M}\left\{\int_{U M_{p}} f d v_{p}\right\} d p
$$

Now, we suppose that $M$ is isometrically immersed in an ( $n+p$ )-dimensional

Riemannian manifold $\bar{M}$. We denote by $\langle$,$\rangle the metric of \bar{M}$ as well as that induced on $M$. If $\sigma$ is the second fundamental form of the immersion and $A_{\hat{\xi}}$ the Weingarten endomorphism associated to a normal vector $\xi$, we define

$$
L: T_{p} M \longrightarrow T_{p} M \quad \text { and } \quad T: T_{p}^{\perp} M \times T_{p}^{\perp} M \longrightarrow R
$$

by the expressions

$$
L v=\sum_{\imath=1}^{n} A_{\sigma\left(v, e_{i}\right)} e_{\imath} \quad \text { and } \quad T(\xi, \eta)=\operatorname{trace} A_{\xi} A_{\eta},
$$

where $T_{p}^{\perp} M$ is the normal space to $M$ at $p$ and $e_{1}, \cdots, e_{n}$ is an orthonormal basis of $T_{p} M . \quad M$ is called a curvature-invariant submanifold of $\bar{M}$, if $\bar{R}(X, Y) Z$ $\in T_{p} M$ for all $X, Y, Z \in T_{p} M$, being $\bar{R}$ the curvature operator of $\bar{M}$. Then, if $\nabla \sigma$ and $\nabla^{2} \sigma$ denote the first and second covariant derivatives of $\sigma$ respectively, one has that $\nabla_{\sigma}$ is symmetric and $\nabla^{2} \sigma$ satisfies the following relation

$$
\begin{align*}
\left(\nabla^{2} \sigma\right)(X, Y, Z, W)= & \left(\nabla^{2} \sigma\right)(Y, X, Z, W)+R^{\perp}(X, Y) \sigma(Z, W)  \tag{2.1}\\
& -\sigma(R(X, Y) Z, W)-\sigma(Z, R(X, Y) W)
\end{align*}
$$

where $R^{\perp}$ and $R$ are the curvature operators of the normal and tangent bundles over $M$ respectively.

If Ric is the Ricci tensor of $M$ and $M$ is minimanlly immersed in $\bar{M}$, we have from the Gauss equation

$$
\begin{equation*}
\operatorname{Ric}(v, w)=\sum_{\imath=1}^{n} \bar{R}\left(v, e_{\imath}, e_{\imath}, w\right)-\langle L v, w\rangle \tag{2.2}
\end{equation*}
$$

Lemma 1 ([4]) Let $M$ be an n-dimensional compact minimal curvatureinvariant submanifold isometrically immersed in an $(n+p)$-dimensional Riemannian manifold $\bar{M}$. Then

$$
\begin{align*}
0= & \frac{n+4}{3} \int_{U M}|(\nabla \sigma)(v, v, v)|^{2} d v+(n+4) \int_{U M}\left|A_{\sigma(v, v)} v\right|^{2} d v  \tag{2.3}\\
& -4 \int_{U M}\left\langle L v, A_{\sigma(v, v) v} v\right\rangle d v-2 \int_{U M} T(\sigma(v, v), \sigma(v, v)) d v \\
& +\int_{U M} \sum_{\imath=1}^{n}\left\{\bar{R}\left(e_{\imath}, v, \sigma\left(v, e_{2}\right), \sigma(v, v)\right)+2 \bar{R}\left(e_{\imath}, v, v, A_{\sigma\left(v, e_{i}\right)} v\right)\right\} d v .
\end{align*}
$$

Lemma 2 ([4]) Let $M$ be an $n$-dimensional compact minimal submanifold isometrically immersed in a Riemannian manıfold $\bar{M}$. Then, for any $p \in M$, we have

$$
\begin{align*}
& \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p}=\frac{2}{n+2} \int_{U M_{p}}|L v|^{2} d v_{p}  \tag{2.4}\\
& \int_{U M_{p}}|\sigma(v, v)|^{2} d v_{p}=\frac{2}{n+2} \int_{U M_{p}}\langle L v, v\rangle d v_{p}=\frac{2}{n(n+2)} \int_{U M_{p}}|\sigma|^{2} d v_{p} \tag{2.5}
\end{align*}
$$

## 3. Maximal directions.

Let $M$ be an $n$-dimensional compact curvature-invariant submanifold minimally immersed in $\bar{M}$. Define $S=\left\{(u, v) \mid u, v \in U M_{p}, p \in M\right\}$ and a function $f$ on $S$ by

$$
\begin{equation*}
f(u, v)=|\sigma(u, u)-\sigma(v, v)|^{2} . \tag{3.1}
\end{equation*}
$$

For any $p \in M$, we can take ( $\bar{u}, \bar{v}$ ) $\in U M_{p} \times U M_{p}$ with $\langle\bar{u}, \bar{v}\rangle=0$, such that $f(\bar{u}, \bar{v})=\max _{(u, v) \in U M_{p} \times U M_{p}} f(u, v)$. We shall call such a pair $(\bar{u}, \bar{v})$ a maximal direction at $p$. To see this, we assume that $\max _{(u, v) \in U M_{p} \times U M_{p}} f(u, v) \neq 0$, since otherwise it would be obvious. Let $\left(u_{1}, u_{2}\right) \in U M_{p} \times U M_{p}$ be such that $f\left(u_{1}, u_{2}\right)=$ $\max _{(u, v) \in U M_{p} \times U M_{p}} f(u, v)$. Set $\xi=\frac{\sigma\left(u_{1}, u_{1}\right)-\sigma\left(u_{2}, u_{2}\right)}{\left|\sigma\left(u_{1}, u_{1}\right)-\sigma\left(u_{2}, u_{2}\right)\right|}$ and take an orthonormal basis $e_{1}, \cdots, e_{n}$ of $T_{p} M$ which diagonalizes $A_{\xi}$. Let $\left\langle A_{\xi} e_{2}, e_{2}\right\rangle=\lambda_{2}, i=1, \cdots, n$ and assume further that $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n}$. Then, we have

$$
u_{1}=\sum_{i=1}^{n} x_{i} e_{i}, \quad u_{2}=\sum_{i=1}^{n} y_{i} e_{i}, \quad \sum_{i=1}^{n} x_{i}^{2}=1, \quad \sum_{i=1}^{n} y_{i}^{2}=1
$$

and

$$
\begin{align*}
\left|\sigma\left(u_{1}, u_{1}\right)-\sigma\left(u_{2}, u_{2}\right)\right| & =\left\langle\sigma\left(u_{1}, u_{1}\right)-\sigma\left(u_{2}, u_{2}\right), \xi\right\rangle  \tag{3.2}\\
& =\sum_{2, j=1}^{n}\left(x_{\imath} x_{j}-y_{j} y_{2}\right)\left\langle\sigma\left(e_{\imath}, e_{j}\right), \xi\right\rangle \\
& =\sum_{\imath=1}^{n}\left(x_{i}^{2}-y_{2}^{2}\right) \lambda_{\imath} \leqq \lambda_{1}-\lambda_{n} \\
& =\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \xi\right\rangle \\
& \leqq\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \\
& \leqq\left|\sigma\left(u_{1}, u_{1}\right)-\sigma\left(u_{2}, u_{2}\right)\right| .
\end{align*}
$$

Thus, $\left(e_{1}, e_{n}\right)$ is a maximal direction at $p$. Also, we have $\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)=$ $\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \xi$.

Lemma 3. Let $p \in M$ and assume that $\max _{(u, v) \in U M_{p \times U M_{p}}} f(u, v) \neq 0$. Take an orthonormal basis $e_{1}, \cdots, e_{n}$ of $T_{p} M$ such that $\left(e_{1}, e_{n}\right)$ is a maximal direction at $p, e_{1}, \cdots, e_{n}$ diagonalizes $A_{\xi}, \xi=\frac{\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)}{\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|}$ and that $\lambda_{1}=:\left\langle\sigma\left(e_{1}, e_{1}\right), \xi\right\rangle$ $\geqq \lambda_{2}=:\left\langle\sigma\left(e_{2}, e_{2}\right), \xi\right\rangle \geqq \cdots \geqq \lambda_{n}=:\left\langle\sigma\left(e_{n}, e_{n}\right), \xi\right\rangle$. Then, at the point $p$, it holds

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \nabla^{2} \sigma\left(e_{2}, e_{2}, e_{1}, e_{1}\right)-\nabla^{2} \sigma\left(e_{2}, e_{i}, e_{n}, e_{n}\right)\right\rangle \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
& \geqq \\
& \quad\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{i=1}^{n}\left\{\bar{R}\left(e_{2}, e_{1}, \sigma\left(e_{1}, e_{2}\right), \xi\right)-\bar{R}\left(e_{2}, e_{n}, \sigma\left(e_{2}, e_{n}\right), \xi\right)\right. \\
& \left.\quad+\left(\lambda_{1}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{1}, e_{1}, e_{2}\right)-\left(\lambda_{n}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{n}, e_{n}, e_{2}\right)\right\} \\
& \quad-\frac{3}{2}\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2} \cdot|\sigma|^{2} .
\end{aligned}
$$

Proof. From (2.1), the minimality of $M$, and the Gauss and Ricci equations, it follows

$$
\begin{align*}
& \sum_{\imath=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \nabla^{2} \sigma\left(e_{\imath}, e_{2}, e_{1}, e_{1}\right)\right\rangle  \tag{3.4}\\
= & \left|\sigma\left(e_{1}, e_{1}\right)\right|-\sigma\left(e_{n}, e_{n}\right) \mid \sum_{\imath=1}^{n}\left\{\left\langle\xi, R^{\perp}\left(e_{\imath}, e_{1}\right) \sigma\left(e_{1}, e_{2}\right)\right.\right. \\
& \left.\left.-\sigma\left(R\left(e_{2}, e_{1}\right) e_{1}, e_{\imath}\right)-\sigma\left(e_{1}, R\left(e_{2}, e_{1}\right) e_{2}\right)\right\rangle\right\} \\
= & \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{\imath=1}^{n}\left\{\bar{R}\left(e_{2}, e_{1}, \sigma\left(e_{1}, e_{2}\right), \xi\right)+\left\langle A_{\sigma\left(e_{1}, e_{i}\right)} A_{\xi} e_{\imath}, e_{1}\right\rangle\right. \\
& \left.-\left\langle A_{\xi} A_{\sigma\left(e_{1}, e_{i}\right)} e_{\imath}, e_{1}\right\rangle-\left\langle A_{\xi} e_{\imath}, R\left(e_{\imath}, e_{1}\right) e_{1}\right\rangle-\left\langle A_{\xi} e_{1}, R\left(e_{\imath}, e_{1}\right) e_{\imath}\right\rangle\right\} \\
= & \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{\imath=1}^{n}\left\{\overline { R } \left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{2}\right), \xi+\left(\lambda_{i}-\lambda_{1}\right)\left|\sigma\left(e_{1}, e_{2}\right)\right|^{2}\right.\right. \\
& \left.+\left(\lambda_{1}-\lambda_{\imath}\right)\left(\bar{R}\left(e_{\imath}, e_{1}, e_{1}, e_{\imath}\right)+\left\langle\sigma\left(e_{\imath}, e_{\imath}\right), \sigma\left(e_{1}, e_{1}\right)\right\rangle-\left|\sigma\left(e_{1}, e_{2}\right)\right|^{2}\right)\right\} \\
= & \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{\imath=1}^{n}\left\{\bar{R}\left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{2}\right), \xi\right)+\left(\lambda_{1}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{1}, e_{1}, e_{2}\right)\right. \\
& \left.+2\left(\lambda_{i}-\lambda_{1}\right)\left|\sigma\left(e_{1}, e_{\imath}\right)\right|^{2}-\lambda_{i}\left\langle\sigma\left(e_{1}, e_{1}\right), \sigma\left(e_{2}, e_{2}\right)\right\rangle\right\} .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \sum_{\imath=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \nabla^{2} \sigma\left(e_{2}, e_{2}, e_{n}, e_{n}\right)\right\rangle  \tag{3.5}\\
= & \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{i=1}^{n}\left\{\bar{R}\left(e_{2}, e_{n}, \sigma\left(e_{n}, e_{2}\right), \xi\right)+\left(\lambda_{n}-\lambda_{\imath}\right) \bar{R}\left(e_{2}, e_{n}, e_{n}, e_{2}\right)\right. \\
& \left.+2\left(\lambda_{i}-\lambda_{n}\right)\left|\sigma\left(e_{n}, e_{2}\right)\right|^{2}-\lambda_{i}\left\langle\sigma\left(e_{n}, e_{n}\right), \sigma\left(e_{i}, e_{2}\right)\right\rangle\right\} .
\end{align*}
$$

Combining (3.4) and (3.5) and noticing

$$
\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|=\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \xi\right\rangle=\lambda_{1}-\lambda_{n}, \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n},
$$

we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), \nabla^{2} \sigma\left(e_{2}, e_{2}, e_{1}, e_{1}\right)-\nabla^{2} \sigma\left(e_{2}, e_{2}, e_{n}, e_{n}\right)\right\rangle \tag{3,6}
\end{equation*}
$$

$$
\begin{aligned}
\geqq & \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{i=1}^{n}\left\{\bar{R}\left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{\imath}\right), \xi\right)-\bar{R}\left(e_{\imath}, e_{n}, \sigma\left(e_{\imath}, e_{n}\right), \xi\right)\right. \\
& \left.+\left(\lambda_{1}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{1}, e_{1}, e_{2}\right)-\left(\lambda_{n}-\lambda_{\imath}\right) \bar{R}\left(e_{\imath}, e_{n}, e_{n}, e_{2}\right)\right\} \\
& -\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2}\left\{\sum_{\imath=1}^{n} \lambda_{i}^{2}+2\left(\sum_{\imath=2}^{n}\left|\sigma\left(e_{1}, e_{2}\right)\right|^{2}+\sum_{\imath=1}^{n-1}\left|\sigma\left(e_{n}, e_{2}\right)\right|^{2}\right)\right\} .
\end{aligned}
$$

On the other hand, one can easily deduce from $\left\lvert\, \sigma\left(\frac{e_{1}+e_{n}}{\sqrt{2}}, \frac{e_{1}+e_{n}}{\sqrt{2}}\right)-\right.$ $\left.\sigma\left(\frac{e_{1}-e_{n}}{\sqrt{2}}, \frac{e_{1}-e_{n}}{\sqrt{2}}\right)\right|^{2} \leqq\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2}$ that

$$
\begin{equation*}
\left|\sigma\left(e_{1}, e_{n}\right)\right|^{2} \leqq \frac{\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2}}{4} \leqq \frac{\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}+\left|\sigma\left(e_{n}, e_{n}\right)\right|^{2}}{2} . \tag{3.7}
\end{equation*}
$$

Since

$$
\begin{align*}
|\sigma|^{2} & =\sum_{\imath, j=1}^{n}\left|\sigma\left(e_{\imath}, e_{j}\right)\right|^{2}  \tag{3.8}\\
& \geqq \sum_{i=1}^{n}\left|\sigma\left(e_{\imath}, e_{\imath}\right)\right|^{2}+2\left(\sum_{\imath=2}^{n}\left|\sigma\left(e_{1}, e_{\imath}\right)\right|^{2}+\sum_{i=2}^{n-1}\left|\sigma\left(e_{n}, e_{2}\right)\right|^{2}\right),
\end{align*}
$$

we have

$$
\begin{align*}
& \sum_{i=1}^{n} \lambda_{i}^{2}+2\left(\sum_{i=2}^{n}\left|\sigma\left(e_{1}, e_{2}\right)\right|^{2}+\sum_{i=1}^{n-1}\left|\sigma\left(e_{n}, e_{2}\right)\right|^{2}\right)  \tag{3.9}\\
\leqq & \sum_{i=1}^{n}\left|\sigma\left(e_{\imath}, e_{\imath}\right)\right|^{2}+2 \sum_{\imath=2}^{n}\left|\sigma\left(e_{1}, e_{2}\right)\right|^{2}+2 \sum_{i=2}^{n-1}\left|\sigma\left(e_{n}, e_{2}\right)\right|^{2} \\
& +\frac{1}{2}\left(\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}+\left|\sigma\left(e_{n}, e_{n}\right)\right|^{2}+2\left|\sigma\left(e_{1}, e_{n}\right)\right|^{2}\right) \\
\leqq & |\sigma|^{2}+\frac{1}{2}|\sigma|^{2}=\frac{3}{2}|\sigma|^{2} .
\end{align*}
$$

Substituting (3.9) into (3.6), we get (3.3).
Q.E.D.

## 4. Proof of Theorem 1 and 2 .

Proof of Theorem 1. Let $L$ be a function on $M$ defined by $L(x)=$ $\max _{\substack{ \\\boldsymbol{M}_{x^{\times U M_{x}}}}} f(u, v)$. Following an idea in [8] we prove that $L$ is a constant function on $M$ by using the maximum principle. It suffices to show that $L$ is subharmonic in the generalized sense. Fix $p \in M$, let $\left(e_{1}, e_{n}\right)$ be a maximal direction at $p$ and $e_{1}, \cdots, e_{n}$ be an orthonormal basis of $T_{p} M$ as stated in Lemma 3. From the expression of the curvature tensor of $C P^{n}(c)$, we have

$$
\begin{equation*}
\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{\imath=1}^{n}\left\{\bar{R}\left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{\imath}\right), \xi\right)-\bar{R}\left(e_{\imath}, e_{n}, \sigma\left(e_{2}, e_{n}\right), \xi\right)\right. \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& \left.+\left(\lambda_{1}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{1}, e_{1}, e_{2}\right)-\left(\lambda_{n}-\lambda_{2}\right) \bar{R}\left(e_{2}, e_{n}, e_{n}, e_{2}\right)\right\} \\
= & \frac{c}{4} \sum_{\imath=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), J e_{2}\right\rangle^{2}+\frac{n c}{4}\left(\lambda_{1}-\lambda_{n}\right)\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \\
= & \frac{(n+1) c}{4}\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2} .
\end{aligned}
$$

In an open neighborhood $U_{p}$ of $p$ within the cut-locus of $p$ we shall denote by $E_{1}(x)\left(\operatorname{resp} . E_{n}(x)\right)$ the tangent vectors to $M$ obtained by parallel transport of $e_{1}=E_{1}(p)\left(\right.$ resp. $\left.e_{n}=E_{n}(p)\right)$ along the unique geodesic joining $x$ to $p$ within the cut-locus of $p$. Define $g_{p}(x)=\left|\sigma\left(E_{1}(x), E_{1}(x)\right)-\sigma\left(E_{n}(x), E_{n}(x)\right)\right|^{2}$. Then,

$$
\begin{align*}
\frac{1}{2} \Delta g_{p}(p)= & \sum_{\imath=1}^{n}\left\{\left|(\nabla \sigma)\left(e_{2}, e_{1}, e_{1}\right)-(\nabla \sigma)\left(e_{\imath}, e_{n}, e_{n}\right)\right|^{2}\right.  \tag{4.2}\\
& \left.+\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right),\left(\nabla^{2} \sigma\right)\left(e_{\imath}, e_{2}, e_{1}, e_{1}\right)-\left(\nabla^{2} \sigma\right)\left(e_{2}, e_{\imath}, e_{n}, e_{n}\right)\right\rangle\right\}
\end{align*}
$$

If $\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|=0$, then $\Delta g_{p}(p) \geqq 0$ by (4.2). If $\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \neq 0$, then by (4.1), (4.2), Lemma 3 and the hypothesis on $|\sigma|^{2}$, we have

$$
\frac{1}{2} \Delta g_{p}(p) \geqq\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2}\left(\frac{(n+1) c}{4}-\frac{3}{2}|\sigma|^{2}\right) \geqq 0 .
$$

For the Laplacian of continuous functions, we have the generalized definition

$$
\Delta L=a \lim _{r \rightarrow 0} \frac{1}{r^{2}}\left(\left(\int_{B(p, r)} L / \int_{B(p, r)} 1\right)-L(p)\right),
$$

where $a$ is a positive constant and $B(p, r)$ denotes the geodesic ball of radius $r$ with center $p$. With this definition $L$ is subharmonic on $M$ if and only if $\Delta L(p) \geqq 0$ at each point $p \in M$. Since $g_{p}(p)=L(p)$ and $g_{p} \leqq L$ on $U_{p}, \Delta L(p) \geqq \Delta g_{p}(p)$ $\geqq 0$. Thus, $L$ is subharmonic and hence $L=b=$ constant on $M$. When $b=0, M$ is totally geodesic. When $b \neq 0$, it is easy to see that $|\sigma|^{2} \equiv(n+1) c / 6$ on $M$ and that for any $p \in M$, by the fact that the inequalities (3.6)-(3.9) now take equality sigh, the orthonormal basis $e_{1}, \cdots, e_{n}$ of $T_{p} M$ further satisfies

$$
\begin{align*}
& \sigma\left(e_{1}, e_{\imath}\right)=\sigma\left(e_{n}, e_{2}\right)=\sigma\left(e_{\imath}, e_{\jmath}\right)=0, \quad 2 \leqq i, j \leqq n-1,  \tag{4.3}\\
& \left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}=\left|\sigma\left(e_{n}, e_{n}\right)\right|^{2}=\left|\sigma\left(e_{1}, e_{n}\right)\right|^{2}=\frac{(n+1) c}{24}, \\
& \sigma\left(e_{1}, e_{1}\right)=-\sigma\left(e_{n}, e_{n}\right) .
\end{align*}
$$

Substituting $\lambda_{1}=-\lambda_{n}=\left|\sigma\left(e_{1}, e_{1}\right)\right|, \lambda_{2}=\cdots=\lambda_{n-1}=0$, (4.3) and the expression of the curvature tensor of $C P^{n}(c)$ into (3.4), we have

$$
\begin{align*}
& \sum_{\imath=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right), \nabla^{2} \sigma\left(e_{\imath}, e_{\imath}, e_{1}, e_{1}\right)\right\rangle=\sum_{\imath=1}^{n} \bar{R}\left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{\imath}\right), \sigma\left(e_{1}, e_{1}\right)\right)  \tag{4.4}\\
& +\lambda_{1} \sum_{\imath=1}^{n}\left\{\left(\lambda_{1}-\lambda_{\imath}\right) \bar{R}\left(e_{\imath}, e_{1}, e_{1}, e_{\imath}\right)+2\left(\lambda_{i}-\lambda_{1}\right)\left|\sigma\left(e_{1}, e_{\imath}\right)\right|^{2}-\lambda_{i}\left\langle\sigma\left(e_{1}, e_{1}\right), \sigma\left(e_{2}, e_{\imath}\right)\right\rangle\right\}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{c}{4}\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}+\lambda_{1}\left(\frac{n c \lambda_{1}}{4}+2\left(\lambda_{n}-\lambda_{1}\right)\left|\sigma\left(e_{1}, e_{n}\right)\right|^{2}-2 \lambda_{1}\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}\right) \\
& =\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}\left(\frac{(n+1) c}{4}-6\left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}\right)=0 .
\end{aligned}
$$

Similarly, we have

$$
\sum_{i=1}^{n}\left\langle\sigma\left(e_{n}, e_{n}\right), \nabla^{2} \sigma\left(e_{\imath}, e_{\imath}, e_{n}, e_{n}\right)\right\rangle=\sum_{\imath=1}^{n}\left\langle\sigma\left(e_{1}, e_{n}\right), \nabla^{2} \sigma\left(e_{i}, e_{\imath}, e_{1}, e_{n}\right)\right\rangle=0
$$

Thus, we have

$$
\begin{aligned}
0=\frac{1}{2} \Delta|\sigma|^{2}= & \sum_{i, j, k=1}^{n}\left|(\nabla \sigma)\left(e_{2}, e_{\jmath}, e_{k}\right)\right|^{2}+\sum_{i=1}^{n}\left\{\left\langle\sigma\left(e_{1}, e_{1}\right),\left(\nabla^{2} \sigma\right)\left(e_{i}, e_{2}, e_{1}, e_{1}\right)\right\rangle\right. \\
& \left.+2\left\langle\sigma\left(e_{1}, e_{n}\right),\left(\nabla^{2} \sigma\right)\left(e_{\imath}, e_{\imath}, e_{1}, e_{n}\right)\right\rangle+\left\langle\sigma\left(e_{n}, e_{n}\right),\left(\nabla^{2} \sigma\right)\left(e_{\imath}, e_{\imath}, e_{n}, e_{n}\right)\right\rangle\right\} \\
= & \sum_{i, j, k=1}^{n}\left|(\nabla \sigma)\left(e_{2}, e_{\jmath}, e_{k}\right)\right|^{2} .
\end{aligned}
$$

Hence, $M$ has parallel second fundamental form. Theorem 1 now follows from the classification of $n$-dimensional totally real minimal submanifolds in $C P^{n}(c)$ with parallel second fundamental form by Naitoh and Takeuchi in [7].

Proof of Theorem 2. As in the proof of Theorem 1, we show that the function $L(p)=\max _{(u, v) \in U M_{p \times U M_{p}}} f(u, v)$ is subharmonic in the generalized sense. For any $p \in M$, let $e_{1}, \cdots, e_{n}$ be an orthonormal basis of $T_{p} M$ as in Lemma 3 such that $\left(e_{1}, e_{n}\right)$ is a maximal direction at $p$. Then,

$$
\begin{align*}
& \left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \sum_{\imath=1}^{n}\left\{\bar{R}\left(e_{\imath}, e_{1}, \sigma\left(e_{1}, e_{2}\right), \xi\right)-\bar{R}\left(e_{2}, e_{n}, \sigma\left(e_{\imath}, e_{n}\right), \xi\right)\right.  \tag{4.5}\\
& \left.+\left(\lambda_{1}-\lambda_{\imath}\right) \bar{R}\left(e_{2}, e_{1}, e_{1}, e_{2}\right)-\left(\lambda_{n}-\lambda_{\imath}\right) \bar{R}\left(e_{\imath}, e_{n}, e_{n}, e_{2}\right)\right\} \\
= & \frac{c}{4} \sum_{i=1}^{n}\left\langle\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right), J e_{2}\right\rangle^{2}+\frac{n c}{4}\left(\lambda_{1}-\lambda_{n}\right)\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right| \\
\geqq & \frac{n c}{4}\left|\sigma\left(e_{1}, e_{1}\right)-\sigma\left(e_{n}, e_{n}\right)\right|^{2} .
\end{align*}
$$

Let $g_{p}$ be the function defined as in the proof of Theorem 1. Then from (4.5), Lemma 3 and $|\sigma|^{2} \leqq n c / 6$, we have $\Delta g_{p}(p) \geqq 0$. By the same arguments as in the proof of Theorem 1, we know that $L$ is subharmonic (and so $L=$ cont. on $M$ ) and thet either $|\sigma| \equiv 0$ or $|\sigma|^{2} \equiv n c / 6$. When $|\sigma|^{2} \equiv n c / 6$, the orthonormal basis $e_{1}, \cdots, e_{n}$ of $T_{p} M$ satisfies

$$
\begin{equation*}
\sigma\left(e_{1}, e_{2}\right)=\sigma\left(e_{n}, e_{2}\right)=\sigma\left(e_{2}, e_{j}\right)=0, \quad 2 \leqq \imath, j \leqq n-1 \tag{4.6}
\end{equation*}
$$

$$
\begin{aligned}
& \left|\sigma\left(e_{1}, e_{1}\right)\right|^{2}=\left|\sigma\left(e_{n}, e_{n}\right)\right|^{2}=\left|\sigma\left(e_{1}, e_{n}\right)\right|^{2}=\frac{n c}{24}, \\
& \sigma\left(e_{1}, e_{1}\right)=-\sigma\left(e_{n}, e_{n}\right) .
\end{aligned}
$$

Using a similar calculations as in the proof of Theorem 1, we have

$$
\begin{aligned}
0=\frac{1}{2} \Delta|\sigma|^{2}= & \sum_{\imath, j, k=1}^{n}\left|\nabla \sigma\left(e_{\imath}, e_{\jmath}, e_{k}\right)\right|^{2}+\sum_{\imath=1}^{n}\left\{\left\langle\sigma\left(e_{1}, e_{1}\right), J e_{\imath}\right\rangle^{2}\right. \\
& \left.+2\left\langle\sigma\left(e_{1}, e_{n}\right), J e_{\imath}\right\rangle^{2}+\left\langle\sigma\left(e_{n}, e_{n}\right), J e_{\imath}\right\rangle^{2}\right\}
\end{aligned}
$$

Thus, $M$ is $P(R)$-totally real (i.e., $\forall p \in M$, we have $\langle\sigma(X, Y), J Z\rangle=0$, for any $X, Y, Z \in T_{p} M$ (Ref. [5])). Furthermore, for any $p \in M$, we can obtain a locally orthonormal frame $E_{1}, \cdots, E_{n}$ in a neighborhood $V_{p}$ of $p$ by translating the orthonomal basis $e_{1}, \cdots, e_{n}$ at $p$ as stated in (4.6) along the geodesics from $p$. For any $q \in V_{p}$, since $M$ has parallel second fundamental form, $\left\{E_{1}(q), \cdots, E_{n}(q)\right\}$ has the same properties as $\left\{E_{1}(p)=e_{1}, \cdots, E_{n}(p)=e_{n}\right\}$ has.

Now, one can deduce by using a similar arguments as in [2, p.70] that $n=2$. Since $n=2$, it is easy to see from (4.6) that $M$ is $\sqrt{c / 12}$-isotropic. Theorem 2 now follows from the classification of $P(R)$-totally real isotropic minimal surface with parallel second fundamental form in $C P^{m}(c)$ by Naitoh in [5].

Remark. If $M^{n}$ is a compact minimal submanifold in $S^{n+p}(1)$ with $|\sigma|^{2} \leqq$ $2 n / 3$, then one can deduce by the same function $f$ defined in (3.1) that $M$ is either totally geodesic or a Veronese surface in $S^{4}(1)$. This result has been proved by Xu and Chen in [12].

## 5. Proof of Theorem 3 and 4

Proof of Theorem 3. Let $p \in M$ and $e_{1}, \cdots, e_{n}$ be an orthonormal basis of $T_{p} M$, from the expression of the curvature tensor of $C P^{m}(c)$, we have

$$
\begin{align*}
& \sum_{i=1}^{n}\left\{\bar{R}\left(e_{\imath}, v, \sigma\left(v, e_{\imath}\right), \sigma(v, v)\right)+2 \bar{R}\left(e_{\imath}, v, v, A_{\sigma\left(v, e_{i}\right)} v\right)\right\}  \tag{5.1}\\
= & \frac{1}{2} c\langle L v, v\rangle-\frac{1}{2} c|\sigma(v, v)|^{2}+\frac{1}{4} c \sum_{i=1}^{n}\left\langle\sigma(v, v), J e_{\imath}\right\rangle^{2} .
\end{align*}
$$

From (2.4) and Holder's inequality,

$$
\begin{equation*}
\frac{2}{n+2} \int_{U M_{p}}|L v|^{2} d v_{p} \leqq\left\{\int_{U M_{p}}|L v|^{2}\right\}^{1 / 2} \cdot\left\{\int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2}\right\}^{1 / 2}, \tag{5.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{U M_{p}} \left\lvert\, A_{\sigma\left(v,\left.v \nu v\right|^{2} d v_{p} \geqq \frac{2}{n+2} \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)}\right\rangle\right\rangle d v_{p} . . . . . . .}\right. \tag{5.3}
\end{equation*}
$$

Substituting (5.1) and (5.3) into (2.3), we obtain

$$
\begin{align*}
0= & \frac{n+4}{3} \int_{U M}|(\nabla \sigma)(v, v, v)|^{2} d v+(n+4) \int_{U M}\left|A_{\sigma(v, v)} v\right|^{2} d v  \tag{5.4}\\
& -4 \int_{U M}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v-2 \int_{U M} T(\sigma(v, v), \sigma(v, v)) d v \\
& +\int_{U M}\left\{\frac{c}{2}\langle L v, v\rangle-\frac{c}{2}|\sigma(v, v)|^{2}+\frac{c}{4} \sum_{v=1}^{n}\left\langle\sigma(v, v), J e_{\imath}\right\rangle^{2}\right\} d v \\
\geqq & \frac{n+4}{3} \int_{U M}|(\nabla \sigma)(v, v, v)|^{2} d v+\frac{n c}{4} \int_{U M}|\sigma(v, v)|^{2} d v-n \int_{U M}\left|A_{\sigma(v, v) v}\right|^{2} d v \\
& -2 \int_{U M} T(\sigma(v, v), \sigma(v, v)) d v .
\end{align*}
$$

For any $v$ in $U M$, we can put $\sigma(v, v)=|\sigma(v, v)| \xi$ for some unit vector $\boldsymbol{\xi}$ normal to $M$. Since $|\sigma(v, v)|^{2} \leqq c / 12$ for any $v \in U M$, we have by Schwartz's inequality,

$$
\begin{equation*}
\left|A_{\xi} u\right|^{2} \leqq\left(\text { maximum eigenvalue of } A_{\xi}\right)^{2} \leqq c / 12 \text { for any } u \in M \tag{5.5}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \frac{n c}{4}|\boldsymbol{\sigma}(v, v)|^{2}-n\left|A_{\sigma(v, v)} v\right|^{2}-2 T(\sigma(v, v), \boldsymbol{\sigma}(v, v))  \tag{5.6}\\
= & |\sigma(v, v)|^{2}\left(\frac{n c}{4}-n\left|A_{\xi} v\right|^{2}-2 \sum_{i=1}^{n}\left\langle A_{\xi} e_{\imath}, A_{\xi} e_{\imath}\right\rangle\right) \\
\geqq & |\sigma(v, v)|^{2}\left(\frac{n c}{4}-n \cdot \frac{c}{12}-2 \cdot n \cdot \frac{c}{12}\right)=0,
\end{align*}
$$

where $e_{1}, \cdots, e_{n}$ is a locally orthonormal basis of $T M$. It follows from (5.4) and (5.6) that $M$ has parallel second fundamental form,

$$
\begin{equation*}
\langle\sigma(X, Y), J Z\rangle=0 \quad \text { for any vectors } X, Y, Z \in T_{p} M . p \in M \tag{5.7}
\end{equation*}
$$ and that the inequalities (5.3) and (5.6) take equality sign. Hence, we have

$$
\begin{align*}
& \left|A_{\sigma(v, v)} v\right|^{2}=\frac{c}{12}|\sigma(v, v)|^{2}  \tag{5.8}\\
& L v=\frac{n+2}{2} A_{\sigma(v, v) v} \tag{5.9}
\end{align*}
$$

From (5.7), we know that $M$ is $P(R)$-totally real (see [5]). Now, given $p \in M$, let $\omega$ be the 1 -form on $U M_{p}$ defined by

$$
\omega_{v}(e)=\langle\sigma(v, v), \sigma(v, e)\rangle|\sigma(v, v)|^{2}
$$

for all $v \in U M_{p}, e \in T_{v} U M_{p}$. Integrating on $U M_{p}$ the codifferential of $\omega$, we have

$$
\begin{equation*}
(n+6) \int_{U M_{p}}|\sigma(v, v)|^{4} d v_{p}=4 \int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2} d v_{p}+2 \int_{U M_{p}}\langle L v, v\rangle|\sigma(v, v)|^{2} d v_{p} \tag{5.10}
\end{equation*}
$$

Substituting (5.8) and (5.9) into (5.10), we find

$$
\begin{equation*}
\int_{U M}|\sigma(v, v)|^{2}\left(\frac{c}{12}-|\sigma(v, v)|^{2}\right) d v=0 . \tag{5.11}
\end{equation*}
$$

Since $|\sigma(v, v)|^{2} \leqq c / 12$ for any $v \in U M$, we derive from (5.11) that either $|\sigma(v, v)|$ $\equiv 0$ (i. e., $M$ is totally geodesic) or $|\sigma(v, v)|^{2} \equiv c / 12$. When $|\sigma(v, v)|^{2} \equiv c / 12$, we conclude from the classifications of isotropic $P(R)$-toally real minimal submanifolds with parallel second fundamental form of a complex projective space (see [4] and [11]) that the immersion of $M$ into $C P^{m}(c)$ is one of the following immersions: $\varphi_{1, p}: R P^{2}(c / 12) \rightarrow C P^{4+p}(c) ; \varphi_{2, p}: S^{2}\left(c / 12 \rightarrow C P^{4+p}(c) ; \varphi_{3, p}: C P^{2}(c / 3) \rightarrow\right.$ $C P^{7+p}(c) ; \varphi_{4, p}: Q P^{2}(c / 3) \rightarrow C P^{13+p}(c) ; \varphi_{5, p}:$ Cay $P^{2}(c / 3) \rightarrow C P^{25+p}(c)(p=0,1,2, \cdots)$. This completes the proof of Theorem 3.

Proof of Theorem 4. Let $v \in U M_{p}$, and $\sigma(v, v)=|\sigma(v, v)| \xi$. Take an orthonormal basis $e_{1}, \cdots, e_{n}$ of $T_{p} M$ such that $A_{\xi} e_{2}=\lambda_{i} e_{2}, i=1, \cdots, n$. Then,

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}=0 . \tag{5.12}
\end{equation*}
$$

Denote by $\Lambda=\max _{\imath} \lambda_{2}^{2}$. Since $n$ is odd, it follows from [3, p.256] that

$$
\begin{equation*}
\sum_{\imath=1}^{n}\left\langle A_{\xi} e_{\imath}, A_{\xi} e_{\imath}\right\rangle=\sum_{\imath=1}^{n} \lambda_{\imath}^{2} \leqq(n-1) \Lambda \leqq \frac{(n-1) c}{4(3-2 / n)} \tag{5.13}
\end{equation*}
$$

Using the same arguments as in the proof of Theorem 3 and the hypothesis: $|\sigma(v, v)|^{2} \leqq c / 4(3-2 / n)$, we conclude that $M$ is $P(R)$-totally real with parallel second fundamental form and either $|\sigma(v, v)|^{2} \equiv 0$ or $|\sigma(v, v)|^{2} \equiv c / 4(3-2 / n)$ on $U M$. Using the classifications of the isotropic $P(R)$-totally real minimal submanifolds with parallel second fundamental form in a complex projective space by Naitoh ([5]), we know that the case $|\sigma(v, v)|^{2} \equiv c / 4(3-2 / n)$ cannot occur. Thus, $M$ is totally geodesic. This completes the proof of Theorem 4.

## 6. Proof of Theorem 5.

Denote by $\bar{R}$ the curvature tensor of $S^{n+p}(1)$. Let $e_{1}, \cdots, e_{n}$ be an orthonormal basis of $T_{p} M, p \in M$. Then,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\{\bar{R}\left(e_{\imath}, v, \sigma\left(v, e_{\imath}\right), \sigma(v, v)\right)+2 R\left(e_{\imath}, v, v, A_{\sigma\left(v, e_{i}\right)}\right)\right\}=2\langle L v, v\rangle-2|\sigma(v, v)|^{2} \tag{6.1}
\end{equation*}
$$

Since $T=k\langle$,$\rangle , taking the trace, we have k=|\sigma|^{2} / p$. Thus, it follows from Lemma 1 and Lemma 2 that

$$
\begin{align*}
0= & \frac{n+4}{3} \int_{U M}|(\nabla \sigma)(v, v, v)|^{2} d v+\frac{2}{n+2} \int_{U M}|\sigma|^{2} d v-\frac{4}{p n(n+2)} \int_{U M}|\sigma|^{4} d v  \tag{6.2}\\
& +(n+4) \int_{U M}\left|A_{\sigma(v, v)} v\right|^{2} d v-4 \int_{U M}\left\langle L v, A_{\sigma(v, v v} v\right\rangle d v .
\end{align*}
$$

Suppose that $\operatorname{Ric}_{M} \geqq(n-1)-(p(n+2) / 2(n+p+2))$. Then, from Gauss' equation, one has that $0 \leqq\langle L v, v\rangle \leqq p(n+2) / 2(n+p+2)$ for all $v \in U M$. So, we have

$$
\begin{align*}
& |\sigma|^{2}=\sum_{i=1}^{n}\left\langle L e_{\imath}, e_{\imath}\right\rangle \leqq \frac{n p(n+2)}{2(n+p+2)},  \tag{6.3}\\
& |L v|^{2} \leqq \frac{p(n+2)}{2(n+p+2)}\langle L v, v\rangle, \tag{6.4}
\end{align*}
$$

where $e_{1}, \cdots, e_{n}$ is an orthonormal basis of $T_{p} M, p \in M$.
By the Schwarz inequality, we have: $|\sigma(v, v)|^{4} \leqq\left|A_{\sigma(v, v)} v\right|^{2}$. So, (5.10) gives

$$
\begin{equation*}
\int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2} d v_{p} \geqq \frac{2}{n+2} \int_{U M_{p}}\langle L v, v\rangle|\sigma(v, v)|^{2} d v_{p} \tag{6.5}
\end{equation*}
$$

The equality in (6.5) holds if and only if $M$ is isotropic at $p$. Combining (2.4), (5.3) and (6.4), we get

$$
\begin{align*}
& (n+4) \int_{U M_{p}}\left|A_{\sigma(v, v)} v\right|^{2} d v_{p}-4 \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p}  \tag{6.6}\\
\geqq & -\frac{2 n}{n+2} \int_{U M_{p}}\left\langle L v, A_{\sigma(v, v)} v\right\rangle d v_{p}=\frac{-4 n}{(n+2)^{2}} \int_{U M_{p}}|L v|^{2} d v_{p} \\
\geqq & -\frac{4 n}{(n+2)^{2}} \cdot \frac{p(n+2)}{2(n+p+2)} \int_{U M_{p}}\langle L v, v\rangle d v_{p} \\
= & -\frac{2 n p}{(n+2)(n+p+2)} \cdot \frac{1}{n} \int_{U M_{p}}|\sigma|^{2} d v_{p}
\end{align*}
$$

Substituting (6.3) and (6.6) into (6.2), we find

$$
\begin{equation*}
0 \geqq \int_{U M} \frac{2|\sigma|^{2}}{(n+p+2)}\left\{1-\frac{2(n+p+2)}{n p(n+2)}|\sigma|^{2}\right\} d v \geqq 0 . \tag{6.7}
\end{equation*}
$$

Thus, $M$ is isotropic with parallel second fundamental form. Using [11], we know that $M$ is a compact rank one symmetric space, and the immersion of $M$ into $S^{n+p}(1)$ is one of the following standard ones: $S^{n}(1) \rightarrow S^{n}(1) ; R P^{2}(1 / 3) \rightarrow$ $S^{4}(1) ; S^{2}(1 / 3) \rightarrow S^{4}(1) ; C P^{2}(4 / 3) \rightarrow S^{7}(1) ; Q P^{2}(4 / 3) \rightarrow S^{13}(1) ;$ Cay $P^{2}(4 / 3) \rightarrow S^{25}(1)$.
Q.E.D.

Acknowlegement. The author would like to thank the referee for his helpful comments.

## References

[1] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
[2] S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, Berlin New York, (1970), 59-75.
[3] H. Gauchman, Pinching theorems for totally real minimal submanifolds in $C P^{m}(c)$, Tohoku Math. J. 41 (1989), 249-257.
[4] S. Montiel, A. Ros and F. Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
[5] H. Naitoh, Isotropic submanifolds with parallel second fundamental form in $C P^{n}(c)$, Osaka J. Math. 18 (1981), 427-464.
[6] H. Naitoh, Totally real parallel submanifolds of $C P^{n}(c)$, Tokyo J. Math. 4 (1981), 279-306.
[7] H. Naitoh and M. Takeuchi, Totally real submanifolds and symmetric domains, Osaka J. Math. 19 (1982), 717-731.
[8] N. Mok and J.Q. Zhong, Curvature characterization of compact Hermitian symmtric spaces, J. Diff. Geom. 23 (1986), 15-67.
[9] A. Ros, A charactrization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math. 121 (1986), 377-382.
[10] A. Ros, Positively curved Kaehler submanifolds, Proc. AMS. 93 (1985), 329-331.
[11] K. Sakamoto, Planar geodesic immersions, Tohoku Math. J. 29 (1977), 25-56.
[12] S.L. Xu and Q. Chen, Rigidity for submanifolds in a sphere. preprint.
[13] S. T. YAU, Submanifold with constant mean curvature I, Amer. J. Math. 96 (1974), 346-366.

Department of Mathematics,
University of Science and Technology
of China, Hefei, Anhui,
People's Republic of China

