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ON YAMAZATO'S PROPERTY OF UNIMODAL

ONE-SIDED LEVY PROCESSES

BY TOSHIRO WATANABE

1. Introduction and results.

Let /?=(—°°, °°) and ^+=[0, oo). A measure μ on R is said to be unimodal
with mode a if μ(dx) = c d a ( d x ) + f ( x ) d x , where — oo<α<oo, £^0, δa(dx) is
the delta measure at a, and f(x) is non-decreasing for x<a and non-increasing
for x>a. We say that a unimodal probability measure μ on R+ has Yamazato's
property, or property Y, if one of the following conditions holds: ( i ) μ is
unimodal with mode 0; (ii) μ is unimodal with mode α>0 and μ(dx)—f(x}dx
with f(x) being such that /(x)>0 for 0<;c<α, f ( a — )^/(α+), and log f(x) is
concave on (0, α). Let Z={0, ±1, ±2, •••} and Z+={0, 1, 2, •••}. A measure
η(dx)—Σιn=-°°Pnδn(dx) on Z is said to be discrete unimodal with mode α(αeZ)
if £Λ is non-decreasing for n^α and non-increasing for n^α. We say that a
discrete unimodal probability measure η(dx)=Σn=oPnδn(dx) on Z+ has discrete
property Y if one of the following conditions holds: ( i ) η is discrete unimodal
with mode 0; (ii) η is discrete unimodal with mode α, pn>Q for O^n^α and
Pn^Pn+ιPn-ι for l^ngα. A probability measure μ^ on /? (resp. ηι on Z) is
said to be strongly unimodal (resp. discrete strongly unimodal) if, for every
unimodal (resp. discrete unimodal) probability measure μ2 on R (resp. η2 on Z),
the convolution μ^μ2 (resp. 371*772) is unimodal (resp. discrete unimodal). Let
{Xt, ίe[0, oo)} (resp. {Yt, ίe[0, oo)}) be a Levy process (that is, a stochastically
continuous process with stationary independent increments starting at the origin)
not identically zero on R (resp. on Z) and let μt (resp. ηt) be the distribution
of Xt (resp. Yt\ The process {Xt} (resp. { Y t } ) is said to be unimodal (resp.
discrete unimodal) if μt (resp. ηt) is unimodal (resp. discrete unimodal) for every
/. A unimodal (resp. discrete unimodal) one-sided Levy process {Xt} on R+
(resp. {Yt} on Z+) is said to have property Y (resp. discrete property Y) if μ£

(resp. T^ί) has property Y (resp. discrete property Y) for every ί.
Yamazato [16] proved the unimodality of infinitely divisible distributions of

class L, which had been an open problem for a long time. The unimodality
had already been shown for one-sided distributions of class L comparatively
easily. However, difficulty lay in showing the unimodality for two-sided dis-
tributions, because the convolution of two unimodal distributions is not neces-
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sarily unimodal. Yamazato [16] introduced a notion corresponding to "property
F" for the first time and, using it, gave a sufficient condition (equivalent to
Lemma 3.4) that the convolution of two unimodal distributions becomes unimodal
again. It was a key for the solution of the unimodality problem. It was proved
by him that every one-sided Levy process of class L has property Y. If the
distribution of a Levy process (Xt) is of class L for some f>0, then it is of
class L for every t and hence unimodal, that is, {Xt} is a unimodal Levy pro-
cess. There exist one-sided unimodal Levy processes with the distributions that
are not of class L (Watanabe [12]). It is also proved in [12] that some of
these processes have property Y. Thus it is a natural problem whether, in
general, every one-sided unimodal Levy process {Xt} has property Y. The pur-
pose of this paper is to answer this problem in the affirmative. Owing to this,
we can get many two-sided unimodal Levy processes that are not of class L.
In order to prove this, we use an approximation by Levy processes with discrete
distributions. So, we first prove an analogous result for one-sided Levy pro-
cesses with discrete distributions.

Our main results are the following two theorems.

THEOREM 1.1. Every discrete ummodaί one-sided Levy process { Y t } on Z+ has
discrete property Y.

THEOREM 1.2. Every ummodaί one-sided Levy process {Xt} on R+ without
drift has property Y.

We obtain the following corollaries from the theorems above combined with
Yamazato's lemma [16] or its discrete version (see Lemmas 2.6 and 3.4).

COROLLARY 1.1. Let {Y(

t^} and {Y^} be independent discrete unimodal one-
sided Levy processes on Z+. Then F t —Ft

(1) —yt

(2) is a discrete unimodal Levy
process.

COROLLARY 1.2. Let {Xl1^} and {X^} be independent unimodal one-sided
Levy processes on R+. Let {B(t)\ be a Browman motion independent of {Xi1^}
and {X^}, and σ^O, fetf. Then Xt = X?>-XF>+σB(t)+rt is a ummodaί Levy
process.

We add that many results on the unimodality of Levy processes are observed
in Medgyessy [6], Sato [7], Sato-Yamazato [8], Steutel-van Harn [10], Wata-
nabe [13], Wolfe [14, 15], and Yamazato [17].

We prove Theorem 1.1 and Corollary 1.1 in Section 2. Results of Katti [5]
and Watanabe [13] are employed. In Section 3, we prove Theorem 1.2 and
Corollary 1.2 using Theorem 1.1. Argument of Forst [2] plays an essential role
in our proof. In Section 4, we give two examples related to the property Y
of one-sided unimodal infinitely divisible distributions on R+.
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2. Proof of Theorem 1.1.

Let {Yt\ be a one-sided Levy process on Z+ not identically zero and let ηt

be the distribution of Yt. Then we have

(2.1)

«&(*)= Σ (e-*n-l)gnτ n=l

for every z^O, where v(dx)=^n=igndn(dx) is a measure with Sn=i£n<°°>
called the Levy measure of {Yt}. Let ηt(dx)=Σ£-*Pn(Wn(dx). By Katti [5]
or Steutel [9], we have a relation :

(2.2) nP«(0=f 23 *Λ-XO

for n^l, where kn=ngn for n^l and />

n(0=ίn(0/ίo(0 for n^O. Define P_j(0
=0 and Qn(t}-Pn(t}-Pn-ι(t} for w^O. Then we obtain from (2.2) that

(2.3) nO»(ί)= Σ(*jf-l)Qn-XO
.7=1

for M Si. If £ι>0, then />„(*) and Qn(t) are polynomials of degree n and the
highest coefficients are positive. If gι=0, then Pj(ί)=0 for every ί>0 and hence
{FJ is not discrete unimodal. Therefore, hereafter we assume gι>0.

LEMMA 2.1. (Watanabe [13]) A one-sided Levy process {Yt} on Z+ is discrete
unimodal if and only if Qn(t) has a unique positive zero an of odd order for
every n^l and an is non-decreasing in n.

Remark 2.1. If a one-sided Levy process {Yt\ on Z+ is discrete unimodal,
then k^kz and αι=*τ1. (see Corollary 2.1 of Watanabe [13])

Remark 2.2. Let α(ί) be the largest mode of the distribution η t of a discrete
unimodal one-sided Levy process {F t}. Then the proof of Theorem 2.1 of
Watanabe [13] (Lemma 2.1) shows that α(f)=0 for Q<t<aί and a(t)=n for
(xn^t<an+ι for every n^l. This means that a(t)^>n is equivalent to an^t for
every wj>l.

Define An(t)=Pn(t^—Pn+l(t)Pn^(t). Then An(t) is a polynomial of degree
2n and the highest coefficient is positive.

(2.4)

and

LEMMA 2.2. Let { Y t } be a one-sided Levy process on Z+. Then we have
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(2.5)

for every n^l, where

and

with C»χί)=/>»+ι

Proof. We shall first prove (2.4). Letting £->cx> in (2.1), we find that
/>β(0=exp(— fΣn~ιS »). Hence we get by (2.1) that

(2.6) Σ β-'"P»(f )=exp (ί Σ e-*g»)
71=0 \ 71=1 /

for every zj>0. Differentiating both side of (2.6) in t, we have

(2.7) Σ *-» 4-^»(0=exp (ί Σ e-ng») Σ β-B^» ,τi=o at \ »=ι /n=ι

which implies (2.4). Next we shall show (2.5). Here, abusing the notation, we
write simply Pn and An for Pn(t) and An(t), respectively. Using (2.4), we get

-1 A P — p-i pg ^ p _ p ___ P
n-l^Ti , -« τι-1 — *n-lrn ,. •* n-l •* re+1 ι. •» n-i

and

(2.9)

— p-l ίp p ^ p _ p2 ( U p _ p \

~^n-l^n-^n ^ fn 1 π-1^ ̂  /Vi gil n)

_p2^p , p p ( A _ p _ - σ p \l
n dt n-l-Γ n-ί n\ ̂  n Si n-ljf

— 9p p _ p ^ p __ p-i p2 ^ p
-ifn d t f n n-i-^/'.+l Pn-Ά^Pn-l.

Hence we obtain from (2.8) and (2.9) that

(2.5, AΛ.=2p,|_p._p.4.p..,_p..,|_Λ,,=;,+,,.

The proof of Lemma 2.2 is complete.
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LEMMA 2.3. (Wolfe [15]) Let { Y t } be a discrete unimodal one-sided Levy
process on Z+. Then gn is non-increasing for

Proof of Theorem 1.1. A discrete unimodal one-sided Levy process { Y t }
has discrete property Y if and only if An(t)^>Q for l<n<a(t}, where α(ί) is the
largest mode of the distribution of Yt. From Remark 2.2, this is equivalent to
An(t)^Q for each t^an for every n^l. Hence, in order to prove the discrete
property Y of {Yt}, it is sufficient to show that

(a) An(t)>Q for each t>an for every n^l.
We shall prove the assertion (a) by induction in n.

( I ) Suppose that n — l. We obtain from (2.2) that

(2.10) 2Aί(t)=klt2-kzt.

Hence ΛGO>0 if and only if t>k~1

2k2. We find from Remark 2.1 that Λ(f)>0
ror each t>aί=k^1^k^2k2.

(Π) Let m^l. Assume that the assertion (a) is true for l^n^m. We
shall prove the following two assertions :

(b) If 4m+1(f0)=0 for some t0>am+1, then (d/dt)Am+1(t0)>0.
(c) If Am+1(am+ιϊ=ΰ, then there exists ε>0 such that (d/dt)Am+1(t)>Q for

Our proof of the assertions (b) and (c) is based on the equation (2.5) of
Lemma 2.2. First let us prove (b). Let n=m+l. Suppose that An(to)=Q for
some tQ>an. Then we get

(2.11) /ι(fo)=0.

Since Pn(to)^Pn-ι(to) by Lemma 2.1 and gj.-^gj for every /^2 by Lemma 2.3,
we have

(2.12) ft-ι/>»(ίβ)-^Pn-ι(ίβ)^0

for every (2^;^n+l). We find from Lemma 2.1 that
and hence, by the assumption, that

(2.13) Λ

This implies that

(2.14)

for every j (2^j^n+l). Since k^kz and kι>0 by Remark 2.1, we get

(2.15) gι-g2=kι-2-lk2^2-1k1>0.

Hence we obtain from (2.12), (2.14), and (2.15) that

(2.16)
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It follows from (2.11) and (2.16) that

(2.17)

The proof of the assertion (b) is complete. Next we shall prove the assertion
(c). By argument similar to the proof of (b), we find that

(2.18) 72(0>0

for each t>an Let r be the order of the zero an of An(t\ Then we can write

(2.19) An(ί)=(t-anYBr(i),

where Br(t) is a polynomial of degree 2n— r with Br(an)^Q. Hence we have

(2.20) lim(ί-αn)1- r/1(ί)=0.
t-*an

We obtain from (2.18), (2.19), and (2.20) that

(2.21) 0^ lim (ί-αn)
1-r(/ι(ί)+/ί(0)

t^an

= \ιm(t-any-r~An(t)
t-*an at

This proves the assertion (c).
Now we prove the assertion (a) when w=m+l. We get

(2.22) ^n(αn)=Pn(α»)ζ?n(αn)-On+ι(αn)P»-ι(αn)

noting that ζWαJ— 0 and Qn+ι(an)^Q by Lemma 2.1. Let θn be the smallest
zero of the polynomial An(t) satisfying θn>θLn- If such zero does not exist,
then the assertion (a) with n=m+l holds trivially from (2.22) and from Λn(t)~>^
as ί-»oo. We shall show that existence of θn leads to a contradiction. There
are two cases.

( i ) Suppose that Λ7l(αn)>0. Then we have (d/dϊ)An(θn)^, which con-
tradicts the assertion (b).

( i i ) Suppose that An(an)=Q. Then we find from the assertion (c) that
(d/dt)An(θn)^Q, which contradicts the assertion (b).

Thus we have proved Theorem 1.1. For the proof of Corollary 1.1, we need
several lemmas.

LEMMA 2.4. Let I be an interval on Z. And let fn and gn be non-negative
numbers for n^l such that Σ»e/ gn=

:N<oo and Σne/ fngn — M<co. Then there
exists integers j λ and jz in 1 such that M^f}1Nf and M^fJzN.
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Proof. If TV— 0, then M— 0 and the assertion is trivial. Suppose that
Then there exists /Oe/ such that g.,0>0. We shall first show the existence of
JL Assume that M/N>f} for every /<Ξ/. We find that

(2.23) M= Σ (M/N)gj> Σ /,*,=M,
JSZ J^ I

which is a contradiction. Hence there exists Ίe/ such that M^f}1N. We can
prove the existence of /2 by similar argument. The proof of Lemma 2.4 is
complete.

LEMMA 2.5. L0ί η(dx)=Σn=oPnδn(dx) be a discrete unimodal probability
measure on Z+ with mode a and support Z+ having discrete property Y. Let
Dn—Pn/Pn+i Then Dn is non-decreasing for Q^n^a, Dn<*l for
and Dn^l for

Proof is easy from the definitions of discrete unimodality and discrete pro-
perty Y.

LEMMA 2.6. Let ηι and ηz be discrete unimodal probability measures on Z+
having discrete property Y. Let ηz(dx)—ηz(—dx}. Then the convolution η^ήz
is discrete unimodal.

Proof. Let ηι(dx)=Σ>%=oPnδn(dx') and ^2(dx)—^n=ognOn(dx). Let a and b
be modes of f]l and η2t respectively.

First step. Suppose that both η^ and ηz have support Z+. Let η
— Σn=-oo gnδn(dx). Since

we have

(2.24)

n+j= Σ qjPn+3 &nd gn-ι= Σ,QjPn+J-ι= Σ Qj+lPn+j,
.7=0 ;=-n ;=0 ;=*-n

= Σ (Qj~Qj+i)Pn+j.

The identity (2.24) implies that gn— gVi^O for every n^α+1 and gn— gn-ι^Q
for every n^—b. We shall prove the following assertions which will show
discrete unimodality of ^ι*^2.

( i ) If gm^gm-i for some m (—b+l^m^a—b), then gn^gn~ι for every
n (—b ^n^m).

(ii) If gm^gm-i for some m (a—b^m^a), then gn^gn-ι for every n (m
^n^a).

We shall prove only the assertion ( i ). The proof of the assertion ( ii ) is
similar. We obtain from (2.24) and Lemma 2.4 that
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(2.25) gm-i — £m-2 — Σ (qj — qj+^Dm+j-ipm+j
j = -m + ι

6-1

^Dm+} -L Σ ((jj-gJ+ι)Pm+j
-1

where — m+l<jι^;b— 1 and b^j2<°°. We shall prove that

(2.26) A^

If m+Λ— l^β, then (2.26) follows from Lemma 2.5. Since m+jΊ— l^m-{-b— 2
^α— 2, we have Z)m+;ι_1^l by Lemma 2.5. Hence, if m+/2— l^α + 1, then
^TTi+^-i^l^^m+^-i by Lemma 2.5. Thus we have proved (2.26). We obtain
from (2.25) and (2.26) that

(2.27) gm-ι — gm

noting that <?_m— ̂ _m+1^0 since —m^b~l. Using this argument repeatedly, we
can prove the assertion ( i ).

Second step. Suppose that η1 or η2 has support not equal to Z+. Then we
can find sequences ηn

w and ^n

(2) of discrete unimodal probability measures on
Z+ such that they have discrete property Y, their supports are Z+, and τ?n

(1)

and ηn^ converge weakly to ηλ and 772, respectively, as n-+°o. Then >^cl)*5?n(2)

is discrete unimodal by first step and covergent weakly to ^ι*^2. Hence η^rjz
is discrete unimodal. The proof of Lemma 2.6 is complete.

Proof of Corollary 1.1. Let ηt, ηtσ\ and ηt™ be the distributions of Yt,
7ίcl), and — Ft

(2), respectively. Since {Yt^} and {Yt^} are discrete unimodal,
they have discrete property Y by Theorem 1.1. Hence ηt—ηtw*ηtw is discrete
unimodal for every i>0 by Lemma 2.6. Thus we have proved Corollary 1.1.

3. Proof of Theorem 1.2.

Let μ be a measure on R+ for which the Laplace transform

\ e~sxμ(dx) exists for every s>0. Define the measure η^\μ, dx) on Z+ for

s>0 by
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(3.1) η»\

where

Note that if μ is a probability measure on R+, then ηw(μ, dx) is a probability
measure on Z+ for every s>0. Let {Xt\ be a one-sided Levy process on R+
not identically zero and without drift. Let μt and v be the distribution and the
Levy measure of { X t } , respectively. For s>0, define a one-sided Levy process
{Γ;(s)} on Z+ by Y^ — N(sXt\ where [N(t)} is a Poisson process with mean t
independent of { X t } . Then Ft

(s) has the distribution ηis\dx)=ηw(μt, dx) and
the Levy measure ι/s) is given by ^s\dx)—^,n=iPn\^dn(dx\ where ptf\v)=

e sx(sx)nv(dx) for n^l.

LEMMA 3.1. (Watanabe [13]) Let μ be a measure on R+ for which the
Laplace transform exists. Then μ is unimodal on R+ if and only if τ?cs)(/,
is discrete ummodal for every s>0.

Let f ( t , n) be a positive function of ί^O and neZ+. Then f ( t , n) is said
to satisfy TP2 condition if, for 0^fι^f2 and Q<n^nz, f ( t ί f τzι)/(ί2, n^

S
oo

/(*,
poo

for every neZ+. Define ί n =\ f ( t , n)g(t)dt. Under the assumption that f ( t , n}
Jo

satisfies TP2 condition, pn changes the sign at most once as n increases from
0 to oo if g(χ) changes the sign at most once as x increases from 0 to oo (see
Karlin [4] or Dharmadhikari & Joag-dev [1]). Note that /(ί, n)=(n ϊ)~le'Hn

satisfies TP2 condition. This plays an essential role in the following lemma.

LEMMA 3.2. Let μ be an absolutely continuous probobility measure on R+
with support containing 0. Then μ is unimodal and has property Y if and only
if η^s\μ, dx} is discrete unimodal and has discrete property Y for every s>0.

Proof of the "only if" part of Lemma 3.2. We shall use the method in the
proof of Theorem 9.7 of Dharmadhikari & Joag-dev [1]. Let a and f ( x } be mode
and density function of μ, respectively. If α=0, then, by Forst [2], ηw(μ,dx}
is discrete unimodal with mode 0 for every s>0. Hence ηw(μ, dx) has discrete
property Y for every s>0 trivially. Therefore we assume α>0.

First step. Suppose that f(x)(=C\(Q) oo)) and log f ( x ) is concave on (0, α).

Define R(n, s, δ)=l+δ— />i^ι(Aθ/j&nV) for n^> s>°> and ^<° Using integra-
tion by parts, we have
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(3.2) (n \ Y l Γ e - s x ( s x ) n { f f ( x ) + s d f ( x ) } d x
Jo

= spί\μ)-spίtlί(μ)+sδp^(μ)=sp}!\μ)R(n9 s, δ).

Since /'(#)ϊ^0 for 0<;t<α, /'(*)<^0 for x>a, and f'(x)/f(x) is non-negative
and non-increasing for Q<x<a, f ' ( x ) + s δ f ( x ) = f ( x ) { f ' ( x ) / f ( x ) + s δ } changes
the sign at most once as x increases from 0 to oo. Hence, for every δ<0 and
for every s>0, we find from (3.2) that R(n, s, δ) changes the sign at most once
as n increases from 0 to oo. Let b(s) be the largest mode of η^s\μ, dx\ which
is discrete unimodal by Lemma 3.1. Note that p(

n

s!1(μ)/pίl

s\μ)^l for n^b(s)+l.
Hence, if R(n, s, δ) changes the sign as n increases from 0 to oo, it is from
positive to negative. It follows that

(3.3) P(nsUμ)/P(ns\μ)^P(ns\μ)/P(nsUμ)

for l^n^b(s) for every s>0, which means the discrete property Y of Ύ]^(μ, dx).
In fact, suppose that p%Lι(μ)/pίl\μ)>p%\μ)/pΆι(μ) for some m (l^m^b(s))
for some s>0. Then we can find <5<0 such that p%lι(μ)/py(μ)>l+d>p%\μ)/
p$+ι(μ). But this implies that R(n, s, δ) changes the sign from negative to
positive as n increases from 0 to oo. This is a contradiction.

Second step. In general case, we can choose a sequence of probability
measures μn such that each μn satisfies the conditions in first step and μn con-
verges weakly to μ as n~>^. This procedure is made possible by the condition
/(α+)^/(fl— ). Then ηw(μn, dx) is discrete unimodal, has discrete property
F, and converges weakly to ηw(μ, dx) as π-»oo for every s>0. Hence ηw(μ, dx)
is discrete unimodal and has discrete property Y for every s>0.

Proof of the "if" part of Lemma 3.2. Suppose that η^s\μ, dx) is discrete
unimodal with the largest mode b(s) and has discrete property Y for every
s>0. Define

(3.4) ζ<*>(dx)= Σ P
71 = 0

and

(3.5) gs(x)=s Σ {PiW}'χ
n=0

where IEcn^(x) is the indicator function of the interval E(ri)=\n/s, (w + l)/s).

Let fs(x):=^1gs(x) with cg = \ gs(x)dx. Then μs(dx)=fs(x)dx is a unimodal
Jo

probability measure on R+ with mode a(s)=b(s)/s and has property Y. Since
ζ(s) converges weakly to μ as s->oo by Forst [2], μg is convergent weakly to
μ as s— >oo. Let <2=lim inf α(s). We see that μ(dx)—f(x)dx is unimodal with

mode a and log/(.τ) is concave on (0, α) when α>0. Because fs(x) has maxi-
mum at x = a(s) and log/ s(%) is concave on (0, α(s)], we have /(α+)^/(α— •)
when α>0. In fact, by Ibragimov's lemma [3], we can choose a sequence s(n)



60 TOSHIRO WATANABE

such that α(s(tt))->α and /scrc)(*)-»/M for a. e. x<^R+ as w-»oo. Hence we can
find ε>0 such that a— 3ε>0, α^α(s(n))<α+ε, /*(n)(α+e)->/(α + e), /κn>(β — ε)
->/(α — ε), /.(n)(α— 3ε)-»/(fl — 3ε) as n->oo, and

(3.6) /.c»>(α+ε)/.cn>(fl-3ε)

noting that 0<α— 3ε< — fl(s(n))-f 2α— 2ε<α and using the concavity of log /«(*)
on (0, α(s)]. Letting rc-»cx> and then ε-»0 in (3.6), we get /(α+)<:/(α— ). Thus
μ is unimodal and has property F. The proof of Lemma 3.2 is complete.

LEMMA 3.3. (Watanabe [13]) A one-sided Levy process {Xt} on R+ not
identically zero and without drift is unimodal if and only if {Y^} is discrete
unimodal on Z+ for every s>0.

Proof of Theorem 1.2. The distribution μt of any unimodal one-sided Levy
process {Xt} on R+ not identically zero and without drift does not have a point
mass. In fact, suppose that μt has a point mass. Then the mode α(ί) of μt is
0 for every ί>0, because μt has a point mass at 0. But this is a contradiction
since aft)-*00 as ί->oo by Theorem 2.1 of Sato [7]. Therefore, Theorem 1.2
follows from Theorem 1.1 and Lemmas 3.2 and 3.3.

LEMMA 3.4. (Yamazato [16]) Let μ± ana μ2 be unimodal probability measures
on R+ which have property Y. Then μ^ρ2 is unimodal on R, where μ2(dx)—

Proof of Corollary 1.2. As in the proof of Corollary 1.1, we find from
Theorem 1.2 and Lemma 3.4 that Xt^—Xt^ is a unimodal process on R.
Since the distribution of σB(t)+ΐt is Gaussian, it is strongly unimodal for every
ί>0 by ϊbragimov [3]. Hence Xt=Xt™—Xt

w+σB(t)+rt is a unimodal process.

4. Examples.

Natural questions arise. Does every unimodal infinitely divisible distribu-
tion with support R+ have property F? Can every unimodal infinitely divisible
distribution on R+ with property Y be embedded in the distributions of a
unimodal one-sided Levy process? Answers to the both questions are negative,
as the following examples show.

Example 4.1. Let μ be an infinitely divisible distribution on R+ such that

(4.1)
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for £^0, where

if

l) if

=0 if

Suppose that 0<<5<1, ra>0, and ra2<53<l. Then μ is unimodal but does not
have property Y.

Proof. Since \ u~lk(u)du — oo, μ is absolutely continuous by Tucker [11].
Jo

Let μ ( d x ) = f ( x ) d x . Then we have a relation by Steutel [9] :

(4.2) xf(x}=\* f(x-u)k(u)du
Jo

for *>0, where .F(Λ;)=Γ f(u)du. Hence we find that /(Λ;)=O for Λ:<U,
J — oo

for x>Q, and /(Λ:) is continuous for %>0. Differentiating both side of (4.2),
we get

(4.3) xff(x)=-f(x-l

for x^Q, 1+δ. We shall show that μ is unimodal with mode 1+δ.
( i ) We obtain from (4.3) that

(4.4) xf'(x)=Q

for 0<*<1, which means that f(x)=C for 0<^^1 with a positive constant C.
( i i ) For l<;c<l+δ we have by (4.3)

(4.5) xf'(x)=F(x-l)=mC(x-l)>V,

which implies that f'(x)=mC(x—l)x~l^mCδ. Hence

(4.6)

for
(iii) For l+δ<x^*2+δ we get, by (4.3), (4.6), and the assumption, that

(4.7) xf'(x)^

since 0<* — 1—3^1 and
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(iv) For 2+δ<x^2+2δ we obtain, from (4.3), (4.6), (4.7), and the assump-
tion, that

(4.8) xff(x)^-C(l+mδ)+mC(i-\-mδz)δ=-C(l-mΨ)<Q,

since Kx — 1—δ^l+δ and
(v) Let us prove that f'(x)<Q for every ;t>2+23. Suppose that there

exists *o>2+2d such that f'(x0)=Q. Define

(4.9) s=inf {x : /'(*)=0, x>2+2δ} .

We find from (4.7) and (4.8) that /(*) is decreasing for l+<5<*<s. Since 1+3
<s — l—δ and !+2<5<s-l, we obtain from (4.3) that

(4.10) Q=sf\s)=-f(s-l

<-f(s-l-δχi+mδ)+mδf(s-l-δ)

which is a contradiction. Hence /'(#)<() for x>2-{-2δ.
Thus the proof of the unimodality of μ with mode l+<5 is complete. Also

we have proved that {/(!)}2</(l + ε)/(l-ε) for 0<ε^<5 because /(l)=/(l-e)=C
and /(l + ε)>C by ( i ) and (ii). Therefore, μ does not have property Y.

Example 4.2. Let {Xt} be a one-sided Levy process on R+ with the dis-
tribution μt such that

(4.11)

for z^O with \ (l + x)~1k(x)dx<°o and {x : k(x)>Q}=(Q, c)(0<c<^oo). Assume
Jo

that log j fe ( c) is concave on (0, c), *(0+)=1, 0<&*(0+)^co (k*(x) is the Radon-
Nikodym derivative of k(x}\

( i ) The distribution μt is strongly unimodal if and only if f ϊ>l . Hence it
has log-concave density for every ί^l by Ibragimov's theorem [3], But {Xt\
is not a unimodal process.

( i i ) The distribution μt is unimodal with mode 0 for Q<t<l—mβ if mβ<l,
where m~ sup k*(x) and J8=inf{^>0: k(x)<l}.

Proof of ( i ) . The first statement in ( i ) is a direct consequence of Yama-
zato's theorem [17]. The process {Xt\ is not unimodal by Corollary 4.2 of
Watanabe [13], because k(x)dx is unimodal but k(x) is not non-increasing.

Proof of ( i i ) . We assume for simplicity that &*(;t)^0 for Q<x<c. In this
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case, we find that 0<c<co and β — c. General case can be proved by similar
argument. Assume mβ<l and let 0<t<l—mβ. The distribution μt is absolutely

continuous by Tucker [11], since i x~lk(x)dx = oo. Let μt(dx)=f(x)dx, where
Jo

f ( x ) depends on t. Then we have as in (4.2)

(4.12) xf(x)=t(Cf(x-u)k(u)du
Jo

=tF(x)-tF(x-c)k(c-)+t{CF(x-u)k*(u)du,
Jo

where F(x)={* f(u)du. Hence we find that /(*)=0 for x<Q, f(x)>Q for *>0,
J -oo

and f ( x ) is continuous for *>0. By argument similar to Lemma 2.2 of Yama-
zato [17], we obtain from (4.12) that

(4.13) xf\xϊ=(t-l)f(x)-tf(x-c)k(c-)+t[f(x-u)k*(u)du
Jo

except at x=Q and c, noting that m<co. We get by (4.12) that

(4.14) xf(x)=t[* f(x-u)k(u)du>t(^Cf(x-u)du
Jo Jo

for x>Q. We find from (4.13), (4.14), and from k*(u)^m for 0<u<c that

(4.15) xf'(x)^(t-l)f(x)+tm(XACf(x-u)du
Jo

<f(x)(t-l+mx)

for 0<x<c and c<x. Noting that t — l+mx<t— l+wc<0 for 0<x<c, we
obtain from (4.15) that

(a) /'(*)<() for Q<x<c.

Let us show that

(b) f'(x)<Q for x>c.

Suppose, on the contrary, that /'(je)_^0 for some x>c. Let s be the infimum
of such x. Then f ( x ) is decreasing for O<Λ;<S. There are two possible cases.

Case 1. Suppose that s = c. Then we have by (4.15)

(4.16) O^c/'Cc+X/CcXί-l+mcXO .

This is a contradiction.
Case 2. Suppose that s>c. Then we get by (4.13) that

(4.17)

<-f/(s-cXO,
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noting that t—KO and f(s — u)<f(s—c) for 0<u<c. This is a contradiction.
Thus we have proved the assertion (b). The assertions (a) and (b) imply

the unimodality of μt with mode 0 for 0<£<1—me. The proof of (ii) is com-
plete.

We remark that Lemmas 3.1 and 3.2 show the existence of discrete versions
of Examples 4.1 and 4.2.
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