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ON F-DATA OF AUTOMORPHISM GROUPS OF COMPACT
RIEMANN SURFACES

—THE CASE OF A;—

By HIDEYUKI KIMURA

Introduction.

Let X be a compact Riemann surface of genus g(=2). We denote by
Aut(X) the group of all conformal automorphisms on X. We take a basis of
the space of abelian differentials of the first kind on X. We consider the
canonical representation p:Aut(X)—GL(g, C), for the basis. We denote by
o(AG; X) and p(o; X) the images of a subgroup AGCAut(X) and an element
g=Aut(X) by p, respectively. In the previous paper [2], for the G(=Ds, Qs)
cGL(g, C), satisfying the CY- and RH-conditions, we have investigated
surjective homomorphisms ¢:7(G)—G to determine whether G arises from a
compact Riemann surface of genus g. But there exists G(=A;)CGL(g, C),
satisfying the CY- and RH-conditions, such that we can not determine that G
arises from a compact Riemann surface of genus g by the same method. There-
fore we introduce the collection of nonnegative integers which consists of
information about characters of p and fixed points of AG. We shall call this
F-data. In this paper, we study F-data of A; and determine what F-data of
Aj; arises from a compact Riemann surface of genus g.

Notation. We denote by Z, C and Z,, the ring of rational integers, the
complex number field and the set of nonnegative integers, respectively. For a
finite set S we denote by #S the cardinality of S. For an element ¢ of a
finite group we denote by #o¢ the order of ¢. We denote by g an integer
(=22).

The author wishes to express his gratitude to the referees for their careful
reading and valuable suggestions.

§1. Preliminaries.

In this section we give preliminary results. We use the same notation and
terminology as introduced in [3]. Throughout this section we denote by G a
finite group.
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DEFINITION. We say that GCGL(g, C) arises from a compact Riemann
surface of genus g, if there exist a compact Riemann surface X of genus g
and a subgroup AGCAut(X) such that p(AG; X) is GL(g, C)-conjugate to G.

1.1 We give a necessary and sufficient condition for an element of prime
order of GL(g, C) to arise from a compact Riemann surface of genus g, see

[4] and [7].

THEOREM ([4]). Let A be an element of prime order n of GL(g, C). Then
the following two conditions are equivalent :

(1) There is a compact Riemann surface X of genus g and an automorphism
o of X such that p(o; X) is conjugate to A.

(2) There are s(=0) integers vy, '+, vs which are prime to n such that
v; —
TrA=1+ é —CL—, where Czcn:expM.
=1 l—cy’ n

1.2 We define the CY- and RH-conditions, see [3] and [5].

DEeFINITION. We say that a finite group GCGL(g, C) satisfies the CY-
condition if every element of CY(G) arises from a compact Riemann surface of
genus g.

Remark. 1t is known that A; has only elements of prime orders, i.e., 2, 3
and 5. The above theorem, mentioned in 1.1, suffices to check that G(=A;)
satisfies the CY-condition.

DEeFINITION. We say that G satisfies the RH-condition if G satisfies the
E-condition and I(H: G) is a nonnegative integer for any HeCY(G).

1.3 Now, we introduce the E X-condition, which is a necessary condition
for G to arise from a compact Riemann surface. We explain a criterion whether
G, satisfying the E X-condition, arises from a compact Riemann surface or not,
see [6].

DEFINITION. Assume that GCGL(g, C) satisfies the RH-condition. We
say that G satisfies the E X-condition if there exists a surjective homomorphism
¢ ['(G)~G with #¢()=m, (j=1, -, r).

If GCGL(g, C) satisfies the FX-condition, there exist a compact Riemann
surface X of genus g and an injective homomorphism G—Aut(X). Then for
any element ¢ (#o=m>1) of G and u=Z ((u, m)=1) we have (cf. [6])

1
#{Pe X|{p(0)=Cit= ]2 7#{a6610=a<p(rj)“’"f’"'a"}-
m ’”L] 7

By the Eichler trace formula, we have
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Trp(o; =1t B | 3 —#lacClo=ap™ima) (o0

ymy=1mim,; M, l-—C%
If there exists a surjective homomorphism ¢ : I'(G)—G such
Tro=Trp(s; X) for every oG,

then we see that G arises from the compact Riemann surface X.

1.4 We denote by A; the alternating group of degree 5, i.e., the group
which consists of all the even permutations of 5 letters. The character table
of A; is as follows:

1 12)E4) 123 (12345) (13524)
X 1 1 1 1 1
% 4 0 1 —1 -1
X 5 1 —1 0 0
1++v5 1-+v5
% 3 -1 0 5 2
1—+/5 1++v5
X 3 —1 0 5 2

§2. A necessary and sufficient condition for CY- and RH-conditions.

2.1. PROPOSITION. Let G be a finite subgroup of GL(g, C) being isomorphic
to As, Xg be the character of the natural representation G—GL(g, C). Let
mla+ - +nsds, n:SZ, be the decomposition into irreducible characters of 2.
Then G satisfies the CY- and RH-conditions if and only if n,’s satisfy the following
relations:

1) 1zn+ns—2n,

@) 1=zn+n,—n,

3) 1=n;—n,+n,

4) n=ns.

Remark. 1f G satisfies the CY- and RH-conditions, then we have
0) g=n,+4n,+5n,+6n,,

which means the degree of character Xg.

Proof. We prove the /f-part. We fix an isomorphism ¢: A;—G and denote
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by A, B and C the images of (23)(45), (142) and (12345) via ¢, respectively. We
remark that, by Property 6 (I-1), two of A, B and C generate G. First we
show that G satisfies the CY-condition. To see this, it is sufficient to show
that A, B and C satisfy the condition (2) in Theorem 1.1.

The case of A.
Put
$:=2—2Xc(A)=2—2(ny+ns;—n,—ns).

Then we see that s is a nonnegative integer by (1) and (4). If we put

vp= o =y,=1,
then we have

—1
Tr fl——l"{‘Sm .

Thus A arises from a compact Riemann surface of genus g by Theorem 1.1.
The case of B.

Put
S :=2_2xg(B)=2—2<n1+n2'—ng).

Then we see that s/2 is a nonnegative integer by (2). If we put
V1= =Vsp=1, V= =v,=2,
then we have

s/ @ o®
Tr B_l+?(l——(;)—+r—;)?) ) where (U—Cg.

Thus B arises from a compact Riemann surface of genus g by Theorem 1.1.

The case of C.
Put

1+2«/5 ot 1—2«/5 ns).
Then we see that s/2 is a nonnegative integer by (3) and (4). We take
b, g€ Z,, with p+g=s/2. If we put

s :=2—2XG(C)=2—2<n1—n2—|-

Y= - :yp:]_’ yp+1= coe :yzp:(l,

Vepy1= *** =Vip4qg=2, Vapsgr1™= =y,=3,

then we have

TrC:H—p( IEC s 1540)4'(]( ].ECZ } l_c_sca)’

where {=;.
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Thus C arises from a compact Riemann surface of genus g by Theorem 1.1.
This means that G satisfies the CY-condition. It is easy to see that G
satisfies the RH-condition. In fact we have

IKA>: G)=1—(ny+ns—n,—ns)
KB : G)=1—(n1+n,—ns)

l((C):G)=1~<n1—n2+ 1+2\/57l4+ 1_2\/5715),

which are nonnegative integers by (1), ---, (4).
The only-if-part follows immediately from the fact:

2e(C)=Xs(C?) implies n,=n; .

Therefore we obtain our proposition.

Remark. In the case of B, since B is G-conjugate to B?, we have
#{i|lvi=1}=#{i|v;=2}.
In the case of C, since C(resp. C?) is G-conjugate to C*(resp. C*®), we have
#{ilvi=1}=#{i|v;=4} (resp. #{i|lv;=2}=#{ilv;=3}).

2.2 We introduce an F-data of A;.

DEFINITION. We say that a collection of nonnegative integers (ni, -+, 7s;
P, ), p=g, is an F-data of A; if there exists a group G(=A;)CGL(g, C) satisfy-
ing the CY- and RH-conditions and that

Le=nXi+ - +nks,
1—-Xe(C)=p+q for every C(eG) of order 5.

Instead of G(=A;)CGL(g, C) which satisfies the CY- and RH-conditions, we
consider an F-data (n,, -+, ns; p, q) of As.

DEFINITION. Let (ny, .-+, ns; p, ¢) be an F-data of A;. Define g by (0).
We say that an F-data (n,, -+, ns; p, q) of As arises from a compact Riemann
surface of genus g if there exist a compact Riemann surface X of genus g, a
subgroup AG(=A;)CAut(X) and an element C(<= AG) of order 5 such that

TrP(°; X)ae=ndat - +nds=X¢
and

#{P= XILHC)=C }=#{PEX|CP(C)=C4}=JD,} )
#{Pe X|LC)=L=#{Pe X|(H(C)=L =¢.
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§3. Characterization of automorphism groups.
Hereafter, for simplicity, we put [(o)=I(c : G)=I({>: G).

3.1. THEOREM. The notation being as in Proposition 2.1, let (n,, -+
be an F-data of As. If (ny, -
surface of genus g, then

» N p: Q)
, Ns; b, q) does not arise from a compact Riemann

(nb e, Ns; p; (])I(O, 17 O) 0; 0, 2; 0) (g:4)?

=(0,2,1,0,0;2,1) (g=13)
or
=(1,1,1,1,1;0,0) (g=16).

Remark. The F-data (0,1,0,0,0; 1, 1) (resp. (0, 2, 1, 0, 0; 3, 0)) arises from
a compact Riemann surface of genus 4 (resp. 13) but not (0, 1,0, 0, 0; 2, 0)
(resp. (0,2,1,0,0; 2, 1)).

Before proving the theorem, we give some properties of A;.

Property 1.
For every element h of A;, there exist elements a, b(€A;) such that A=
[a, b], where [a, b]=aba™'b7".

Proof. 1t is sufficient to consider representatives of conjugacy classes of
A;, since we have the relation :

g&7'[x, ylg=[g'xg, g7'y4]

for g A;.

(1) order 2.

Put

a=(234), b=(134).
Then we have
[a, b]1=(12)(34).
(2) order 3.
Put
a=(13)(45), b=(23)(35).
Then we have
La, b]=(123).
(3) order 5.
Put

Then we have

Property 2.

a:=(25)(34),
a,=(25)(34),

Lay, b:]1=(12345),

by=(13)45),
b,=(15)(24).

La., b.]=(13524) .
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For every < A;, 6 is As;-conjugate to 67

Proof. In the case #60=2, 3, it is easily verified from the character table
of A;. In the case #6=5, it is verified from the following relation :

(12345)=(25)(34)(12345)"*(25)(34).

Property 3.
Let ¢ and ¢’ be elements of A; of order 5. If ¢ is As;-conjugate to &, thenjthe
order of ¢¢’ is not 2.

Property 4.
Let ¢ and ¢’ be distinct elements of A; of order 5. If ¢ is A;-conjugate to &’
and e¢’ is of order 5, then e¢’ is As-conjugate to e.

To prove Properties 3 and 4, we use a result from character theory (c.f.

[GD):

THEOREM. Denote the conjugacy classes of finite group G by K, and let v,
be an element of K, 1=i<r. Then if A, is the number of times of given
element of K, can be expressed as an ordered product of an element of K, and
an element of K,, we have

Fa—. #K;-#K, I Xy Dy ) (D )
ik #G m=1 Xm(].)

for 1<4, 7, k<r.

Proof of Property 3. We apply the above theorem. We take a conjugacy
class of order 5 as K, and the conjugacy class of order 2 as K,. Put K,=K..
Then we have A,;,=0. This means that there are no elements ¢, ¢’ K, such
that e’ K,.

Proof of Property 4. We take a conjugacy class of order 5 as K, and the
other conjugacy class of order 5 as K,. Put K,=K,. Then we have 4,;,=1.
This means than x=y=2z* is the unique solution of the equation z=x-y(z€ K,
x, yeK,). This completes the proof.

Property 5.
Let ¢ be an element of A; and N a positive integer. Then there are N elements
0., -+, 0y (A;, not necessarily distinct) being As-conjugate to 6 such that
0=0, 0x.

Proof. This follows from the relations (12)(34)=(13)(24)-(14)(23), (14352)=
(12345)-(13425), (14325)=(13524)-(12354). We prove only the case #60=2. Case
N=0 (mod2). The above relation means that there exist elements ', §” of
order 2 such that #=60’'x60". Then we may take 6,=0’, O,= --- =0y=0".
Case N=1 (mod2). We may take 0,= --- =0 y==6.
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Property 6.
We have the following presentations (I-1), ---, (VI-1) for A;.

(I-1) A;=(7,0,¢;1’=0"=¢=y0e=1).
(for example, 7=(23)(45), d=(142), ¢=(12345)).

In the following, we write only relations and mean that ¢,’s are A;-conjugate
to each other and ¢,’s are not A;-conjugate to %,’s.

(I-2) (== (r’=e"=nr7:e=1,

(for example, 7,=(23)(45), 7,=(12)(35), 7:=(14)(35), ¢=(12345)).
(I-3) 7*=(0:°'=(0:)'=(05)"=10:0:0,=1,

(for example, y=(23)(45), 0,=(142), §,=(123), 0,=(345)).
(I-4) P*=(e)’=(es)’=(es)’=7¢18285=1,

(for example, y=(23)(45), e;=e,=(12345), &,=(13254)).
(I-5) (r’=@r=0o)"=) =)’ =0112TsTals=1,

(for example, 7,=(23)(45), 7.=(12)(35), 7s=(14)(35), 7.=(15)(24), 7:=(14)(23)).
(I1-6) (r=@or=o)"=0"=n1r2r:0=1,

(for example, 7,=(15)(24), 7.,=(14)(23), 7,=(23)(45), 0=(142)).
(I-7) (1 )=Fr=(e1)’=(e2)’=7112618:=1,

(for example, 7,=7,=(23)45), &,=(15432), &,=(12345)).
(1-8) (1 )=r=(rS=e’=n"=nsrsen=1,

(for example, 7,=75=(14)(35), 7.=(12)(35), ¢=(12345), n=(15234)).
(1-9) 7r*=0°=(e)’=(e2)’=706:6,=1,

(for example, y=(23)(45), 6=(142), &,=(14352), &,=(15243)).
(1-10) (7=(r:)=0"=e’=717.0e=1,

(for example, 7,=(24)(35), 7.=(25)(34), 0=(142), ¢=(12345)).
(1-11) 7*=(0.)=(0,)*=¢"=70:0:e=1,

(for example, 7=(23)(45), 0,=0,=(124), £¢=(12345)).
(I-1) r=e=n’=rep=l,

(for example, 7y=(13)(25), ¢=(12345), n=(12435)).
(I-2) (rlP=(ro)=e=7"="1ren=1,

(for example, 7,=(12)(35), 7.=(15)(23), ¢=(12345), n=(12435)).
(I-3) 7r*=0*=e’=y’=yden=1,

(for example, y=(13)(45), 0=(245), ¢=(12345), n=(12435)).
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(M-1) (0,)*=(0,)*=¢e"=0:0:6=1,
(for example, §,=(354), d,=(132), ¢=(12345)).
(M-2) (70°=(72)*=(0.)*=(8:)°=71720:0:=1,
(for example, 7,=(15)(24), 7,=(14)(23), J,=(354), 0,=(132)).
(M-3) (0:)*=(0:)*=(05)*=(04)=010,0:0,=1,
(for example, 0,=(354), 0,=(132), 0,=(123), 9,=(345)).
(IV-1) 0*=(e))’=(e;)=0¢18,=1,
(for example, d=(134), &,=(12345), &,=(13542)).
(V-1) ¢*=e’=n=den=1,
(for example, d=(145), e=(12345), 5=(14532)).
(V-2) (e1)’=(e2)’=(ea)’=7"=c¢185849=1,
(for example, &;,=(13542), &,=(15243), ¢,=(12345), 7=(14532)).
(V-3) (00°=(02)=¢"=9°=0:0:69=1,
(for example, 0,=0,=(154), e=(12345), p=(14532)).
(V-4) ef=p’=(ecpp™)=1,
(for example, e=(15432), »=(14532)).
(VI-1)  (e1)°=(e5)=(eg)’=0¢16265=1,
(for example, &;,=(12345), &,=(12534), £,=(12453)).
Proof of Property 6. It is sufficient to verify that 7, 4, ¢, --- generate A,.
Here we remark the following FACT.
FACT. (c.f. [ATLAS]) Maximal subgroups of A;are A,, D,and S;. For
example, we consider the case (I1-1). If <7, d, ¢> is a proper subgroup of A,
since it has an element of order 5, D;,D<7, 6, ¢>. However, D,, does not contain

an element of order 3. This means A;=<7, d, ¢). The remaining cases are
proved by the similar method.

Proof of Theorem. Let the notation be as in Proposition 2.1. Recall that
NA1 Byl Tie)
RH(G)=|:n1, 60; 2, iy 2, 3, Tty 3’ 5’ Tt 5]
and put

F(G):<a1, ﬁlr Tty 0(7;1, ,Bnly Tb Tt rl(A)) 61’ Tty Bl(B)’ €1y, ***, Ep, 7}1’ Tt ‘)')q;

14> (B> 5 4 q 71
J]-;I; 7s kl;[l & l=I11 5lﬂ!.-=I177m g [a., ﬁ,]—l

2 __ — 2 J— — p— J— J— —_— p— J— _ —
7= =riw=0i= - =0lm=ci= - =eh=ni= - =9i=1D>.
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We study whether G in Definition 2.2 satisfies the E X-condition or not. Using
©’s, we verify whether (n,, ---, ns; p, q) satisfy condition (x). We divide our
proof into three cases according as n,=2, n,=1 or n,=0.

We assume that n,>2. We define ¢:/(G)—»G as follows: 7y, -, TicHr—
A, 0y, -, 0 — B, ey, 65> C, Ny, v, 9g— C ar— A, B+ B, a;—- U, B~
V, as, Bs, =+, any, Br,—1, where we choose U and V so that o(I7,110,I1e:I17n
II[a,, B:1)=1 holds. By virtue of Property 1, we can find them. Recall that
A and B are the images of (23)(45) and (142), respectively. By Property 6
(I-1) we see that ¢ is surjective. To verify Trp(o; X)=1s(o), it is sufficient
to check only for ¢=A, B and C.

-1

Trp(4; X):1+2[(A)T_‘—_T=1-—Z(A)=X(;(A) .

(02
—)=1-UB)=2a(B),

Trp(B; X)=1+Z(B)(—li°—w+TT
where w=_,.
C X )— ¢ &\ ¢ 4
TroC; D=ttt rg) e g

=1-U(C)=Xs(C),

where {=(;.

Thus, in this case, we see that (n, ---, ns; b, ¢) arises from a compact
Riemann surface of genus g. In the following cases, we define only those ¢’s
which have the desired property.

Next, we assume that n,=1.

(i) The case /((A)>0 & I(B)>0.
We define ¢: I'(G)—G as follows: 74, =+, Ticr—A, 01, -+, Ouemy—B, &1, -+, €p—
C, Ny, -, 9gC? a—U, B,—V, where we choose U and V so that
o17 110 I1e XInnI1[., B.])=1 holds. By virtue of Property 1, we can find
them.

(ii) The case {((A)=I(B)=0.
By the assumption, we have [(C)=n,=1.

(ii-1) (C)=n,=1.
Recall that we fix isomorphism ¢: A;,—G. We define ¢:I'(G)—G as follows:
€1—¢((12453)), a;—¢((354)), B1—¢((13)(25)).

(ii-2) UC)=n,=2.

(ii-2-a) p=2.
We define ¢: I'(G)—G as follows: e;—¢((12345)), &, -+, €,—¢((12534)), 71, -, 74
—¢((12534)*), a,—U, B,—V, where we choose U and V so that o(II7,110.Ile,
II9xIl[a., B.1)=1 holds.
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(ii-2-b) p=¢=1.
We define ¢: I'(G)—G as follows: &;—¢((12345)), 5,—¢((12435)), a,—U, B,—V,
where we choose U and V so that ¢o(IIr;110:11eIIn~II[., B.]1)=1 holds.

(iii) The case /(A)=0 & I(B)>0.

(iii-1) «(C)>0.
We define ¢:['(G)—G as follows: 8y, -, di;y—B, €1, -, €p—C, 1, =+, Ng—
C?, a,—U, B,—V, where we choose U and V so that (117,110 I1e: X1 nI1[a., B.1)
=1 holds.

>iii-2) {(C)=0.
By the assumption, we have /[(B)=n,=1.
Considering Property 5, we can reduce this case to 0;,—¢((134)), a;—¢((12345)),
B1—¢((12435)).

(iv) The case {((A)>0 & I(B)=0.

(iv-1) KC)>0.
We define ¢: ['(G)—G as follows: 71, -, Ticr—4, €1, =+, €p—C, N1, =+, Ng—
C?, a,—U, B:—V, where we choose U and V so that ¢(IT7;116:I1eiIIn~II[a., B.1)
=1 holds.

(iv-2) I(C)=0.

(iv-2-a) [(A)=2.
Considering Property 4, we can reduce this case to 7,—¢((25)(34)), 7.—¢((14)(25)),
a,—¢((12345)), B,—¢((12435)).

(iv-2-b) (A)=1. (i.e. my=n,=n;=n,=n=1, p=¢=0.)
In this case, there is no ¢ having the desired properties. To see this, it is
sufficient to show that there are no elements a, f(€A4;) such that A;=<ea, S|
#[a, B1=2).

The case #a=>5.
Since « is As-conjugate to Ba™'f™!, by Property 3, #[a, f1#2.

The case #a=#=3.
By the abstract definition of A,, i.e., A,=<S, T|S*=T*=(ST)*=1), we have
#(aP)#2, #(a”'B)#2, (of course #(af)+#1, #(a™'f)#1). Suppose that #(af)=
#(a™'B)=3. Then <a, B> must be contained in (3, 3|3, 3) which is a group of
order 27, see [1]. This is absurd.
Therefore we have #(af)=>5 or #(a™'f)=5. Assume #(aB)=5. Since af is
As-conjugate to a'f7', by Property 3, #[a, f]#2. Next assume #(a'8)=5.
Since a™'f is As;-conjugate to a8, by Property 3, #[a™', fl=#(a '[a, fla)=
#[a, Bl1+2.

The case #a=3 & #p=2.

By the abstract definitions of A, and S,, i.e., A,=<S, T|S*=T?=(ST)*=1),
S;=<(S, T|S*=T?=(ST)Y=1), we have #(aB)+3, #(aB)+2. Therefore #(aB)=5.
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Since af is A;-conjugate to a~'f”!, by Property 3, #[a, f]1+2.

The case #a=#p=2.
Assume #[e«, f]=2. Then we have

[a, B1*=1 «— af=Ba — [a, f1=1.

This is contradiction.
Thus we see that the F-data (1, 1,1, 1, 1; 0, 0) does not arise from a compact
Riemann surface of genus 16.

Finally, we assume that n;=0. Then
I(A)=1—n,+2n,, (B)=1—ny+n,;, [(C)=1+n,—n,.

By simple calculation we see that the triple ({(A), {(B), {(C)) does not coincide
any one of following :

0,0,0),(1,0,0), (0, 1,0), 2,0,0), @1, 1,0), (0, 2, 0), (3,0, 0),
2,1,0),(1,2,0),(0,3,0), 40,0,

0,0, 1),(1,0,1),(0,1,1),(,0,1),

©0,0,2), 1,1, 1.

In the following, instead of defining ¢, we give the relation (of A;) which
guarantees the extistence of ¢.

(i) The case I(A)=0 & {(B)=0 & /(C)=3.

(-1) p=3, g=0.

(i-2) p=3, ¢=L1

(i-3) p=2, ¢=2,

(i-4) p=2, q=1.
Considering Property 5, we can reduce (i-1), (i-2) and (i-3) to Property 6 (VI-1),
(V-2) and (V-4), respectively. In the case of (i-4), by Property 4, the F-data
0,2,1,0,0; 2, 1) does not arise from a compact Riemann surface of genus 13.

(ii) The case [(A)=1 & I(B)=1 & [(C)=2.

(ii-1) p=2, ¢q=0.

(ii-2) p=l, ¢zl
Considering Property 5, we can reduce (ii-1) and (ii-2) to Property 6 (I-9) and
(II-3), respectively.

(iii) The case I(A)=2 & I(B)=1 & [(C)=1.
Considering Property 5, we can reduce this case to Property 6 (I-10).

(iv) The case I(A)=1 & (B)=2 & I(C)=1.
Considering Property 5, we can reduce this case to Property 6 (I-11).
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(v) The case [(A)=3 & I(B)=0 & (C)=1.

(v-1) p=1, ¢=0.

(v-2) p=1, ¢=1.
Considering Property 5, we can reduce (v-1) and (v-2) to Property 6 (I-2) and
(I-8), respectively.

(vi) The case /(A)=0 & I(B)=2 & I(C)=1.

(vi-1) p=1, ¢=0.

(vi-2) pz=l, ¢=1.
Considering Property 5, we can reduce (vi-1) and (vi-2) to Property 6 (II[-1) and
(V-3), respectively.

(vii) The case [(A)=1 & I(B)=0 & I(C)=2.

(vii-1) p=3, ¢=0.

(vii-2) p=1, g=1.

(vii-3) p=2, ¢=0.
Considering Property 5, we can reduce (vii-1) and (vii-2) to Property 6 (I-4) and
(II-1), respectively. In the case of (vii-3), by Property 3, the F-data (0, 1, 0, 0,
0; 2, 0) does not arise from a compact Riemann surface of genus 4.

(viii) The case /(A)=2 & I(B)=0 & [(C)=2.

(viii-1) p=2, ¢=0.

(viii-2) p=1, ¢=1.
Considering Property 5, we can reduce (viii-1) and (viii-2) to Property 6 (I-7)
and (II-2), respectively.

(ix) The case [((A)=0 & I(B)=1 & {(C)=2.

(ix-1) p=2, ¢=0.

(ix-2) p=1, ¢=1
Considering Property 5, we can reduce (ix-1) and (ix-2) to Property 6 (IV-1)
and (V-1), respectively.

(x) The case [(A)=2 & I(B)=2 & I(C)=0.
Considering Property 5, we can reduce this case to Property 6 (III-2).

(xi) The case [(A)=3 & I(B)=1 & {(C)=0.
Considering Property 5, we can reduce this case of Property 6 (I-6).

(xii) The case {((A)=5 & [(B)=0 & (C)=0.
Considering Property 5, we can reduce this case to Property 6 (I-5).

(xiii) The case {(A)=1 & I(B)=3 & (C)=0.
Considering Property 5, we can reduce this case to Property 6 (I-3).

(xiv) The case [(A)=0 & I(B)=4 & I(C)=0.
Considering Property 5, we can reduce this case to Property 6 (III-3).
This completes the proof.
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