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HYPERSURFACE SECTIONS OF TORIC SINGULARITIES

By HIROYASU TSUCHIHASHI

Introduction

As is well-known, we can obtain much information about hypersurface
singularities {f=0} in C"*! by the Newton polyhedra /.(f)CR"*! of the defin-
ing equations f. (For instance, see [5] and [11].) In this paper, we define the
Newton polyhedra also for hypersurface sections (X, x) of any toric singularity
(Y, y) and show that a part of the results in [11] are valid. On the other hand,
as we see in the last of §2 and in §3, we obtain as (X, x) many singularities,
a part of which are not complete intersections. For instance, 2-dimensional cusp
singularities with multiplicities greater than 4 and a 3-dimensional singularity
with a resolution whose exceptional set is an Enriques surface. Moreover, in
the case that the ambient space Y has only an isolated singularity, these singu-
larities (X, x) are obviously smoothable. Hence we can obtain examples of
smoothable cusp singularities (see §3). In this paper, we are mainly concerned
about singularities (X, x) with the plurigenera 6,(X, x) which are not greater
than 1 and at least one of which is equal to 1. (For the definition of plurigenera,
see [117.) We call such singularities, periodically elliptic singularities, following
Ishii [2].

In Section 1, we recall some facts about toric singularities, necessary in this
paper.

In Section 2, we show a sufficient condition on the Newton polyhedra of
defining equations f of X, under which (X, x) are periodically elliptic singu-
larities and give some examples.

In Section 3, we show a sufficient condition on a 3-dimensional non-terminal
Gorenstein toric singularity (Y, v), under which hyperplane sections (X, x) of
(Y, y) are simple elliptic singularities or cusp singularities. We can determine
the multiplicities of these singularities.

In Section 4, we show that if H'(X\{x}, /*0»)=0 and dim X=3, then we
can concretely construct a locally semiuniversal family of deformations of (X, x)
and that any small deformation of (X, x) is also a hypersurface section of Y,
where 7: XYV lis [the inclusion map and @y is the tangent sheaf of Y. The
above condition is satisfied, if Y is a quotient of C™*!, by torus actions.

We use the notation and the terminology in [4] freely.

I would like to thank Professor M. Tomari who pointed out me the facts
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that hypersurface sections (X, x) of toric singularities (Y, y) are Cohen-Macaulay
and that (X, x) are smoothable, if (Y, y) is an isolated singularity.

§1. Toric singularities

Let N be a free Z-module of rank n+1 and let Np=NRXzR. Let M=
Hom(N, Z) be the Z-module dual to N with the canonical pairing <,>: MXN—Z.
Let 6=R.ou;+R.ous+ -+ +Rsous; be an (n+1)-dimensional strongly convex ra-
tional polyhedral cone in Np. Here we may assume that R.,u, are 1-dimensional
faces of ¢, for /=1 through s. Let Y be the complex space associated to
Spec(C[MNo*]) and let e(v): Y —C be the natural extension to Y of the charac-
ter v®lcex: Ty—C* for each v in MNag*, where o*:={veMzg|<{v, u>=0 for all
usoN{0}} is the dual cone of ¢ and T y=Spec(C[M1) (=(C*)**'). Then any
holomorphic function f on a neighborhood U of y=orb(g) is expressed as the
series :

F=veosnu Coe(V).

Hence we can define the Newton polyhedron /7,(f) and the Newton boundary
I'(f) of f in the same way as in the case of Y=C"*'. More precisely, I.(f)
is the convex hull of Ugw+0* and I'(f) is the union of the compact faces of
' (f). Let D=D,+D,+ --- +D,, where D, is the closure of orb(R..u,). Here
we note that YN\D=Ty and that Y is a Cohen-Macaulay space by [4, Corollary
3.9]. Let {vy, vs, -*-, Vr41} be a basis of M and let w;=e(v;) for ;=1 through
n+1. Then (w,, ws, -+, Wasy) is @ global coordinate of Ty. Let v=(dw,/w;)A\
(dws/wo) N -+ AN(dWn41/Was). Then v is a nowhere vanishing holomorphic (n-+1)-
form on T » whose natural extension to Y has poles of order 1 along D.

DErFINITION 1.1. (Y, y) is said to be »-Gorenstein, if there exists a nowhere
vanishing holomorphic r-ple (n+1)-form on U\Sing (U) for an open neighborhood
U of y, where Sing(U) is the singular locus of U.

Since (Y, y) is a Cohen-Macaulay singularity, (Y, y) is Gorenstein, if it is
1-Gorenstein.

PROPOSITION 1.2. ([6, the footnote of p294]1) (Y, v) is r-Gorenstein, if and
only if there exists an element v, in Mg such that rvoe M and that <{v,, u,>=1
for i=1 through s, where we assume that u,, u,, --- and us are primitive elements
in N. (Here we note that the above v, is uniquely determined by o, if it exists.)

Proof. Let v, be an element in M, satisfying the above condition. Then
0 :=e(rv,)v" is a nowhere vanishing holomorphic 7-ple (z+1)-form on Y \Sing (Y),
because e(rv,) has zeros of order {rv,, u,>=r only along D. Conversely, assume
that (Y, y) is r-Gorenstein, i.e., there exists a nowhere vanishing holomorphic
r-ple (n+1)-form 6 on U\Sing(U) for an open neighborhood U of y. Then
f:=0/v" is a holomorphic function on U\Sing(U) which does not vanisn on
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TxNU and whose vanishing order at D, is equal to ». Since the codimension
of Sing(Y) is greater than 1, f is extended to U, by [1, Chapter II, Corollary
3.12]. Hence f ie expressed as the series Slpecosonnn Co€(v). Suppose that I".(f)
has a compact face A with dimA>=1. Then there exist a primitive element u,
in Int(e)N\N and a positive integer ¢ such that <v, uoy=t (resp. >t) for any
element v in A (resp. I' . (f)NA). Let Y, be the complex space associated to
Spec (C[(R.ou)*NM]) (2CX(C*)™) and let Dy=orb(R.,u,). Then we have a
holomorphic map #:Y,—~Y such that mr =id and that n~(y)=D,, because
R-.u,ClInt(s). Take a basis {v], v3, -+, vr41} Of M so that <vi, u,»=1 and that
i, uopy=0 for 7=2 through n+1. Let z,=e(v;) for /=1 through n+1. Then
Dy,={z,=0} and f==zig,+=zi*'g;+ - +2zi*'g;+ - on UNTy, where g,=3er,
cve(v—(t+iwy) and L,={vel (F)NM|{v, uop=t+:}. Here we note that g, are
polynomials with variables z,, ‘-, z,4+; and that go,=2lyepnu cre(v—tvi) is not a
monomial, because the cardinal number of {v€ANM]c,#0} is greater than 1.
Hence {y’€UNT y|(go+z18:+ - )(3")=0} = @, because Y\D,=Ty. Then f must
vanish at a point of UNTy, a contradiction. Therefore, any compact face of
I’ (f) is a point. This implies that I'(f) consists of only one point v;. Hence
I’ (f)=vj+o*. Therefore, v}, u,><<v, u;» for any element v in I",(f)"\M and
for /=1 through n+41. Since the vanishing order of f at D, is », we have
{v§, u.p=r. Hence the point v,=(1/7)v{ satisfies the condition of the proposition.
qg.e.d.

Remark. If N=Z"*' and oc=(R,)""", then Y is isomorphic to C*** and the
point y corresponds to the origin. Clearly v,=(, 1, ---, 1) satisfies the condi-
tion of the above proposition, if we identify M with N, by the canonical inner
product.

§2. Hypersurface sections

Let f be an element of the maximal ideal my , of ¥ at y, let X={f=0}
and let x=y. Throughout the rest of this paper, we assume that n=dim X=2,
that X is irreducible reduced, that (X, x) is an isolated singularity and that
XN Sing(Y)={x}. By [1, Chapter I, Proposition 1.6 (ii) and Corollary 4.47], we
have:

PROPOSITION 2.1. (X, x) s a Cohen-Macaulay and normal singularity.
Assume that f=2l,ccomwnny C.e(v) is non-degenerate, i.e.,
afA/awlzafA/aW2: o :afA/awn+1=0

has no solutions in Ty=Y\D(=(C*)**!), for each face A of I'(f), where f,=
Shveann (W) and (Wi, ws, -+, Was) is a global coodinate of T y.

THEOREM 2.2. Assume that (Y, y) is r-Gorenstein, (that (Y, y) is not 7'-
Gorenstein for 1<r'<r) and let v, be the element satisfying the condition of
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Proposition 1.2. Then (X, x) is r-Gorenstein. Moreover, if v, is on ['(f), then

1 for m=0 modr
5m(X; x)=‘{
0 for m=0 modr.

Conversely, if max{d,(X, x)|meZ, m>0}=1, then v, is on ['(f). (See [11], for
the defimition of 0n(X, x).)

For the proof, we need some preparations. For uea, let d(u)=min{<v, u)|
vel'.(f)} and let Aw)={vel (f)|<v, up=d(u)}. For a face A of I'.(f), let
A*={uceo|A(w)DA}. Then I'*(f):={A*|A is a face of I",(f)}\/{0} isan r.p.p.
decomposition of Np with |I'*(f)| (:=U geer«cs:A*)=0. Let X* be a subdivision
of I'*(f) consisting of non-singular cones and let Y=Tyemb(Z*). Then we
have a resolution I7: ¥Y—Y of Y. Let X be the proper transformation of X
under IT and let E=XNIT"(x). Then n(:=1I 3): X—X is a resolution of X
whose exceptional set is E. Assume that u is a primitive element in N and
that R.,u is a 1-dimensional cone in X* with dim A(u)=1. Then we denote by
E(u) the closure of orb(R.,u)N\E(#¢). Recall that 6 :=e(rv,)v”™ is a nowhere
vanishing r-ple (n+1)-form on Y\Sing(Y). Let w=Res(8/f7), ie., o=
Sixrv(dwi A - Adw,)" on XNU, if 6 is expressed as g(df Adw, A - Adw,)" on
an open set U of Y.

LEMMA 2.3. r#*w' has zeros of order lr({v,, up—1—d(u)) along E(u).

Proof. The lemma follows from the fact that e(rv,), v" and (n*f)" have
zeros of order »{v,, u), —r and rd(u), respectively, along orb(R.,u). q.e.d.

Proof of Theorem 2.2. Since w is a nowhere vanishing holomorphic 7-ple
n-form on X\{x}, we see that (X, x) is r-Gorenstein. Assume that v, is on
I'(f). Then <v,, up=d(u) for any u in Int(¢)\N. Hence the nowhere vanish-
ing holomorphic [r-ple n-form zn*w® has poles of order at most /» along each
irreducible component of the exceptional set E, by Lemma 2.3. On the other
hand, I",(f) has a compact face A, containing v, with dim A,>1. Otherwise,
I'.(f)=v,+o* and hence f=e(v,)g for a holomorphic function g on Y. Then
since [e(v,)]=rD, we get a contradiction to the assumption that X is irreducible.
Hence we can take a subdivision 2* of I™*(f) so that A(u,)=A, for a 1-dimen-
sional cone A*=R.,u, in 3*. Then u,=Int(c), orb(ANNX#@ and <v,, ud>=
d(u,). Hence n*w' has poles of order [r along the irreducible component E(u,)
of E. Therefore, 6,,(X, x)=1. Next, assume that m=0 mod » and let 7 be an
element in HYX\{x}, Ox(mKx)). In the following, we show that % is in
L¥™(X\{x}). We note that rv, is a primitive element in M. Otherwise, (Y, )
is r’-Gorenstein for a positive integer »’<». Hence we can take » elements
vy, Vs, -+ and v, in M so that {rv,, v, .-+, v,} is a basis of M. Let w,=e(rv,)
and let w,=e(v;) for =1 through n. Then (w,, w,, -, w,) is a global coordinate
of Ty. Let M'=M+Zv, and let N'={ucN|', upeZ for any veM'} (={u
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&N|<v,, up=Z}). Then the inclusion N'—N induces a holomorphic map ¢:Y”’
—Y, where Y’ is the complex space associated to Spec(C[M’'Nag*]). Since
{veo, V1, =+, v,} is a basis of M’, (z,, z;, -+, z,) is a global coordinate of Ty =
Spec(C[M']), where z,=e(v;) for /=0 through n. Clearly, ¢*w,=(z)" and
¢*w,=z, for 7=1 through n. Hence ¢ is the quotient map under the group <{#>
generated by the element t=(§, 1, ---, 1) in Ty,, where & is a primitive r-th
root of 1. Moreover, ¢ is unramified over Y\Sing(Y), because 8 :=w,((dw./w,)
Adwi/w)N -+ N(dwa/wa))" (resp. 0" :=zy(dz0/20)\(d21/2)N\ -+ N(dzn/22)) is a
nowhere vanishing holomorphic r-ple (n+1)-form on Y\Sing(Y) (resp. (n+1)-
form on Y'\Sing(Y’)) and ¢*0=(r0')". Hence Sing(X’)={x'}, where X':=
¢ '(X) and x’:=¢ ' (x). Let w'=Res(f’/¢*f). Then ' is a nowhere vanishing
holomorphic n-form on X'\{x’} with t*w’'=£fw’, because t*z,=£&z, and 1*(dz;/z.)
=dz;/z, for ;=0 through n. Hence ¢*n=g(w’)™ for a holomorphic function g
on X’. Since *p*n)=¢*n and t*(g(w)™)=t*gé™w’)™, we have i*g=& ™"g.
Since §&m+#1, we have g(x")=0. Hence go*nzg(w'zme.[“’“()(’\{x’}), because
("0’ HY(X', O(K# +E")), for any resolution =’: (X', E")—(X’, x’) of (X', x').
Therefore, n=.£*™(X\{x}). Thus we conclude that d.(X, x)=0. Finally, note
that if vl (f) (resp.€Int(I",(f))), then 6,.(X, x)=2 for certain positive in-
tegers m (resp.=0 for all positive integers m), by Lemma 2.3 and that if v,&
ol (/)N(f), then (X, x) is not isolated. Thus we obtain the last assertion of
the theorem. g.e.d.

We can obtain a system of defining equations of X from those of Y and f.

PrROPOSITION 2.4. If fé&mg, (resp. fem$ ), then dimwmy ,/m$ .=
dim my, ,/m$ ,—1 (resp. dim my ,/mg ,).

Proof. We have the following exact sequence.
O I f'OY,y/(f‘OY.y[\mlz’.y) —> mY.y/mlz',y —> mX,.r/mi’,z —— 0

We easily see that dim f-Oy,,/(f Oy, m¢ ,)=1 or 0, according as fe&mE , or
femg,,. g.e.d.

Assume that ¢*N\M is generated by m elements vy, vs, -+, v, and let z,=
e(v;), for =1 through m. Then we have the embedding 7: Y =p—(z:,(p), z:.(p),

-, zn(P)EC™.  Assume that i(Y) is defined by g.(2)=g(2)= - =g(2)=0,
where z=(zi, 25, -+, Zm). If femi ,, then X={f=0} is is~0m0rphic to the
subvariety in C™ defined by f(z)=g.(z)= --- =g,(2)=0, where f(z) is a holomor-

phic function on C™ with #*f=f. Next, assume that we can express f(z)=
zi—h(z,, -+, zn). Hence fé&mi ,. Then X is isomorphic to the subvariety in
C™ ! defined by gi(w)=gyw)= - =gi(w)=0, where w=(z;, -+, z») and giw)=
gi(h(w), 25, -+, Zm).

Example 1. Let n=2, let {u,, u,, u;} be a basis of N and let {v,, v, vs} be
the basis of M dual to {u,, u,, us}. Let o=R.(u;+us)+Reo(us+us+us)+
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Us+us Uyt us+ug ls I,
U+ U, Uy Fuy l‘ ll
—t—tatus  —utus s s
Figure 1.

R.o(ustug)+Reo( —ur+us)+Roo(—uy— s +us)+Reoo(—us+us). Then (Y, y) is
Gorenstein and v,=wv, satisfies the condition of Proposition 1.2. We see that
o*NM is generated by ly=v,, [i=v,+v;, [,=0:4V;, ls=—v,F Vo405, [,=—vF0;,
ls=—v,+v; and [;=v,—v,+v,. (See Figure 1.) Hence Y is isomorphic to the
subvariety in C7 defined by the equations (1) z,z,—Z2cZs=20Z2— 2123 =2023— 2224 =
2024— 2325 = 2025 — 2426 = 2026 — 2521 = 22— Z12. = 25— 2925 =22—232,=0, where z,=e(l,),
for /=0 throuh 6. Let f=z,—z%—2z%- --- —z& Then (X, x) is a cusp singularity
with a resolution = : (X, E)—(X, x) such that the exceptional set £ is a cycle
of six rational curves whose self-intersection numbers are all -—3. Since f¢&
m$,,, we see that X is isomorphic to the subvariety in C°® defined by the equa-
tions obtained from the above equations (1), replacing z, by zi+z3+ --- 422

Example 2. Let n, {u, u,, us} and {vy, v,, v;} be the same as in Example 1.
Let =R, (u;+2u;)+Roo(us+2us)+Roo(u;+2us+2u;3)+ Reo(2uy +us+2u;). Then
(Y, y) is 2-Gorenstein and v,=(1/2)v, satisfies the condition of Proposition 1.2.
We see that ¢*N\M is generated by [,=—2v,—2v,+3v;, l,=—v,+vs, l;=—2v,+
20,405, =0, [;=20,+20,—v;, ls=v:, [;=20,—2v,+v, and [g=—v,+v,. (See
Figure 2.) Let z,=e(l,) for /=1 through 8 and let f=z,—z,+2,+2,. Then f is
non-degenerate, (X, x) is an isolated singularity and X/"\Sing (Y)={x}. Moreover,
(X, x) is a quotient of a simple elliptic singularity.

Example 3. Let n=3, let {u,, u,, us, u,} be a basis of N and let {v,, vz, Vs, Vs}
be the basis of M dual to {ui, us, us, us}. Let =R, o(us+us+2u,)+Reo(us+us
F2u)+ R (st us+2u) FRoo(uy+us+2us +2u,) + Roo(us +2us +us 4-2u,)+ Roo(2u,
+u,+us+2u,). Then (Y, y) is 2-Gorenstein and v,=(1/2)v, satisfies the condi-
tion of Proposition 1.2. We see that ¢*N\M is generated by [i;=v,—v,—vs+vy,
ly=01—V34Vs, ls=0,F0o+v5—vs, Li=01F0V,—0s, [s=—01—Vy—V3+20,, ls=—V1—0,
VsV, Li=—01F 00y, Le=—01F0e =030y, =01, Lio=—VaF0s, [11=0s, [12=0s,
lis=—vs+v, and l;y;=—v,+v,. (See Figure 3.) Let z,=e(/,), for ;=1 through 14
and let f=3),..c1s2,. Then f is non-degenerate, (X, x) is an isolated singularity
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and XN\ Sing (Y)={x}. Let~2'={faces of R.o(u;+us+us+2u,)+7|r are 3-dimen-
sional faces of ¢} and let Y=Tyemb(2). Then X=I"*(f) and ¥ is the blow-
ing up of Y along y=orb(g). Although Y has singularities, )?ﬂSing(?):ng,
where X is the proper transformation of X under the blowing up I7:YV—Y.
Moreover, IT-'(y)NX=E(u;+u,+us+2u,) is an Enriques surface. Each of small
deformations X.={f=¢} of X has eight isolated quotient singularities.

§3. Hyperplane sections of Gorenstein toric singularities

We keep the notations of the previous section and throughout this section,
we assume that (Y, y) is an isolated (, i.e., each n-dimensional face of ¢ is
non-singular), non-terminal and Gorenstein singularity. Hence (¥, y) is a canon-
ical singularity of index 1 and the set £ :={u&Int(¢)N\N|<v,, u>=1} is non-
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empty. Moreover, we assume that X={f=0} is a generic hyperplane section,
ie.,, f=2cme(v) with ¢,#0, for the generators v of g*"\M.

PROPOSITION 3.1. Under the above assumptions, (X, x) is a purely elliptic
singularity, i.e., 0,(X, x)=1 for each positive integer m.

Proof. Let u, be an element in .L. Then <(v,, up»=1 and {ved*|{v, u,>
=1} Dthe convex hull of (¢*\{0})N\M=I",(f)>v,. Hence the set {ved*|<v, u,>
=1}NI",(f) is a compact face of I",(f) and contains v,. Therefore, d,=1 for
each positive integer m, by Theorem 2.2. g.e.d.

Remark. (1) 1f (Y, y) is non-terminal and canonical of index »>1, then
(Y, y) is r-Gorenstein and v,=o*\Int(I",(f)). There are examples with v,&
I' .(f), as well as examples with v,&I'(f). Hence (X, x) may not be a periodic-
ally elliptic singularity in contrast with the above proposition.

(2) In the case that (Y, y) is not isolated, if L=¢, then (X, x) may be an
isolated canonical singularity, even though (Y, ») is a non-terminal Gorenstein
singularity. For instance, let ¢ be the cone generated by (+1,0,0,1), (0, =1,0,1)
and (1,1, 2, 1) in Z*.

Ishii [3] and Koyama independently showed that a 2-dimensional purely
elliptic singularity is a simple elliptic singularity or a cusp singularity.

PROPOSITION 3.2. When n=2, (X, x) is a simple elliptic singularity (resp. a
cusp singularity), if the cardinal number of L is equal to (resp. greater than) 1.

Proof. First, we consider the case that £ consists of one element u,.
For each 2-dimensional face t=R,,u’'+R..u” ({u’', u”}{uy, us, -+, us}) of o,
{uo, u’, u”} is a basis of N, because <v,, uoy=<v,o, u'>=<v,, #”>=1 and the
triangle spanned by u,, u’ and u” contains no elements in N except u,, u’ and
u”. Let {v. v, v”} be the basis of M dual to {u,, u’, #”}. Then <v., u,p=1
and <v., u'>=<v,, u”>=0. Hence ¢* is generated by v. and I'(f) consists of one
face which is the polygon spanned by v., for all 2-dimensional faces r of o.
Therefore, ['*(f)={faces of R u,+|r are 2-dimensional faces of ¢} and the
exceptional set E=FE(u,) of the resolution of (X, x) obtained from I'*(f) is a
non-singular curve. It should be elliptic, because 0,(X, x)=1.

When the cardinal number of .£ is greater than 1, we easily see that there
exist at least two 2-dimensional compact faces of [",(f) containing wv,, which
we denote by A, and A,. Then A¥=R.,ui and A¥=R,,u; for primitive elements
utand uj in Int(¢)N\N such that <v,, ui>=d(~u{) and that <w,, us)=d(us;). Hence
the exceptional set E of the resolution = : (X, E)—(X, x) of (X, x) obtained from
any subdivision of I"*(f) contains two irreducible components E(ux!) and E(uj)
along which n*w has poles of order 1, by Lemma 2.3, where w=Res (e(v,)((dw./w;)
A s AN(@Wr1/Wa+1))/ f). Therefore, (X, x) is not a simple elliptic singularity.

q.e.d.
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Since (Y, y) is an isolated singularity, (X, x) is smoothable. On the other
hand, Wahl [9, 10] showed that if a simple elliptic singularity (resp. a cusp
singularity) (X, x) is smoothable, then m(X)<9, (resp. m(X)—I(X)<9), where
I(X) is the number of the irreducible components of the exceptional set E of
the minimal resolution of (X, x) and m(X) is the multiplicity of (X, x), which
is equal to —E?, if —E*=3.

PROPOSITION 3.3. Assume that the cardinal number of L is equal to 1. If
o is an s-gonal cone, —E*=12—s. (Therefore, -—E*X9.)

Proof. Let .L={u,}. Then I'*(f)={faces of R.,u,+7|r are 2-dimensional
faces of o} consists of non- smgular cones, by the proof of Proposmon 3.2.
Hence we obtain resolutions I7: (¥, F)—(Y, y) and ==I1,%: (X, E)~(X, x),
where ¥=T yemb (I'*(f)), F is the closure of orb(Rzouo), X is the proper trans-
formation of X under I7 and E=X-F. Let D, be the proper transformation of
D; under IT and let E,=F-D,. Since F+X=[IT*f] and F+D1+Dz+ +D
=[IT*e(v,)] are principal divisors, we have —E}3=—F? X=F-%X¢ =1ciss Fe D2
+20si<res F D B,=(Dhcoss Ehp)+25=3(4—s)+2s=12—s, because F is a non-
singular toric variety whose l-dimensional orbits are Ey, E,, --- and FE,.

q.e.d.

PROPOSITION 3.4. Assume that the convex hull of .L is a polygon. If o is
an s-gonal cone, then, —E*—[(X)=12—s. (Therefore, —E*—I(X)<9.)

Proof. Let P (resp. Q) be the convex hull of .£ (resp. {usaNN|<{v,, up=
1}). Then Q={uca|<{vy, up=1} and Int(Q)DP. Take a triangulation A (resp.
A’) of P (resp. Q\Int(P)) so that the set of the vertices of A (resp. A’) agrees
with PN\N=. (resp. (Q\Int(P))N\N). Let e, e; and e, (resp. e;, ¢; and ej) be
the numbers of the vertices, edges and faces, respectively, of A (resp. A’). Then
eo—e;+e,=1 and ej—ej+e;=0, because P and Q are polygons. Let /[ be the
number of the vertices on the boundary 0P of P. Then e,=I+s and 3e;=
2¢i—(l+s), because the number of the vertices (resp. edges) on the boundary of
Q\Int(P) is equal to /+s. Hence by an easy calculation, we have e{=2(+s).
Since [J:=AUA’ is a triangulation of Q, we see that X*:={R.,r|r are simplexes
of 1}\U{0} is a subdivision of I™*(f) and consists of non-singular cones. Hence
we have a resolution I7: ()N’, F)—(Y, y), where ?:TNemb(Z'*). Let D, be the
proper transformation of D, under 7 and let D=D,+D,+ --- +D,. Then A and
O] are the dual graphs of F=F,+F,+ - +F,, and F+D, respectively. Since
X +F—~[H *f]1 and D+F=[IT*e(v,)] are principal divisors, we have 0=F;-F,

«(D4+F)=F}-F;+F,-F3+2, if FinF,#¢ and —E!3=—F*. X= F- D =ic1se,
Cisjss Fie ﬁ1+22,5,<kssF 5 D,,) Disize, ,s,gsFi ,-1-23, where X is the pro-
per transformation of X under I and E= X-F. On the other hand, since each
irreducible component F, of F is a non-singular toric variety with F;- -(F+D—F,)
as the union of 1-dimensional orbits, we have 3., Fi- F24+X)4<s Fi- Di=3(4—d.),
where d, is the number of the double curves on F,. Hence by taking the sum
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of the self-intersection numbers of the double curves F;-F, and F;-D, on all the
irreducible components F, of F, we have —2e1+21§1580_1§]§3Fi-ﬁ§=21§15303(4—
d,)=12¢,—3(2e,+1+s)=12e¢,—6e;—31—3s. Therefore, —E%3=12¢,—6¢,—3]—3s+
20,+2s=12¢y—4e,—3l—s=12¢,—12¢,+12¢,+]—s=124+[—s, because 3e,=2¢,—I.
Thus we obtain —F?—[=12—s. Here we note that / is equal to the number of
the irreducible components of E, because XNPF, ¢¢ if and only 1f DNF, *¢
(, i.e., the vertex of [ correspondmg to F, is on 8P) and then XNF, is ir-
reducible. Moreover, E;-E, =X.F, F,= D-F;- F,<1 and the equality holds, if
and only if the vertices of [J corresponding to F, and F, are joined by an edge
on 0P. Hence E forms a cycle. Therefore, although ()?, FE) is not a minimal
resolution, the contraction of a rational curve E, with E?=—1 does not change
the number —E?—[. Thus we complete the proof.

Examples. In the following table, E=FE,+E,+ --- +E; is the exceptional
set of the minimal resolution of (X, x) such that E;-E,.,=1 for each /=Z/!Z.

generators of ¢ ! | —E% —E% -, —E?
0,0,1),5,2,1),3,5, ) 5,4,5,4,5,4
0,0,1),4,1,1),3,4 1 7,2,7,2,7,2

0,0,1),@,3,1),,81)
0,0,1,(7,2,1),65,7,1)
©0,0,1,730D,4&71

5,4,3,5,4,3,5,4,3
55,25,52,5,5,2
6,4,2,6,4,2,6,4,2

© W W O O

§4. Deformations

We assume that n=dim X=3, throughout this section. Let U=X\{x} and
let W=Y~\{y}. Then we have the isomorphism T }=HU, @), by Proposition
2.1 and [7, Theorem 2], where T}i=HX, O} is the tangent space to the
formal moduli space of X and @y is the tangent sheaf of U. Consider the long
exact sequence arising from the short exact sequence of sheaves:

0—>@zj'—‘>2.*@W'_—_>m—_)0:

where 7: UG W is the inclusion map. Here we note that the normal sheaf 1=
Oy(U) is isomorphic to the structure sheaf Oy, because X is a principal divisor
on Y. Let {6, 0., -, 8;} be a basis of the image of the map ¢: H'(U, :1)—
H'U, ©y) and let g, be an element of H(Y, Oy) whose image is 6, under the
composite of the surjective maps H(Y, Oy)=H'W, Ow)—HU, Oy)=HU, )
sending & to hy-0/0f and H°(U, 91)—Im (). Let X={(z, t)eY XA|f(z)+t.8:(2)
F2,8:(2)+ -+ +1,8:(2)=0} and let = be the restriction to X of the projection
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Y XA—A, where A={(ty, 5, -, t;)=C*||t;|<e}. Then = is flat, by [1, Chapter
V, Corollary 1.5]. Let U be the open set of & on which = is smooth. Then
we obtain a family = : U—A of deformations of the complex manifold U.
Moreover, by an easy calculation, we have p(0/0t;)=6, for j=1 through /, where
o: T(A)—H'U, Oy) is the infinitesimal deformation map. Hence p is injective
and if H'(U, *0@w)=0, then p is surjective.

THEOREM 4.1. If HYU, i*Oy)=0, then ©: X—A is a locally semiuniversal
family of X.

Proof. Recall that T} is defined by the exact sequence

0 —> Hom (2%, Ox) —> Hom(j*.QéN, Ox) —> Hom{/I?, Ox) —> T, —> 0

obtained by the exact sequence of sheaves: [ /123]'*9(‘7N—\Q§—>0, for an inclu-
sion j: X, CY with the ideal sheaf I. On the other hand, we have the exact
sequence

0 — Hom (2%, ©0x) —> Hom(j*.QéN, Ox) —> Hom(Im(d), Ox)
—> Ext} (2}, 0x) —> 0,

by the short exact sequence of sheaves: 0—Im(d)—;*Q;y—2}—0. Since the
support of ker(d) is {x}, we have Hom(Im(d), Ox)=Hom(I/I%, ©x). Thus we
have the canonical isomorphism Extj (2%, Ox)=T%. Hence the infinitesimal
deformation map T (A)—-Ext;, (2}, 0x) for the family =:X—A is bijective.
Then by [8, Theorem 6.1], = : X—A is locally semiuniversal. q.e.d.

COROLLARY 4.2. If HU, i*@w)=0, then any small deformation of X is also
a hypersurface section of Y.

PROPOSITION 4.3. If g is a simplicial cone (hence Y is a quotient space of
C™Y), then H\U, i*@y)=0.

Proof. Let [y, l,, --- and l,4, be the generators of ¢ and let N'=Z/,+Zl,
+ -« +Zl,,,. Here we may assume that/,, [,, --- and [,,, are primitive elements
in N. Then the inclusion N’C.N induces a holomorphic map ¢:Y’'—Y, where
Y'=Ty emb({faces of ¢})=C"*'. Let U'=¢~'(U). Then ¢ : U'—U is unrami-
fied, by the assumption XN\Sing(Y)={x}. Hence H U, :*Ow)=H"U’, h*Oy )¢
=0, where h:U’GY’ is the inclusion map and G is the covering transforma-
tion group of ¢. q.e.d.

Example. Let X’ be the hypersurface of C* defined by z3+2z§+2z5+25=0 and
let X=X'/G be the quotient space of X’ under the group G generated by
1, & & &), where & is a primitive cube root of 1. Then X is a hypersurface
section of Y=C*/G, which is a toric singularity, and whose singular locus
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Sing (Y) is 1-dimensional. We easily see that X has an isolated singularity
obtained by contracting a K3 surface. By Corollary 4.2 and Proposition 4.3, any
small deformation of X is also a hypersurface section X;=="%(¢) of Y. Since
X, intersect Sing(Y) at finitely many points, X; has singularities, i.e., X is not
smoothable.
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