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LOCAL MAXIMA OF THE SPHERICAL DERIVATIVE

BY SHINJI YAMASHITA

Abstract

Let a function / be nonconstant and meromorphic in a domain D in the
plane, and let M(f) be the set of points where the spherical derivative
I/Ί/(1+I/I 2) has local maxima. The components of M(f) are at most coun-
table and each component is (i) an isolated point, (ii) a noncompact simple
analytic arc terminating nowhere in Df or, (iii) an analytic Jordan curve.
Tangents to a component of type (ii) or (iii) are expressed by the argument
of the Schwarzian derivative of /. If Δ is the Jordan domain bounded by a
component of type (iii) and if JCA then the spherical area of the Riemann
surface f ( Δ ) can be expressed by the total number of the zeros and poles of
/' in Δ. Solutions of a nonlinear partial differential equation will be con-
sidered in connection with the spherical derivative.

1. Introduction.

Let / be a nonconstant meromorphic function in a domain D in the complex
plane C={\z\<-}-co}. The spherical derivative of / at z^D is defined by

/*(*)= i α//)'(*) i if /(*)=«>.
We let M(/) be the set of points z^D where /* has local maxima, namely,

f*(z)^f*(w) in {\w—z\<S\d.D for <5>0 depending on / and z.
The purpose of the present paper is to investigate M(f) in detail. We

begin with a classification.

THEOREM 1. Let f be nonconstant and meromorphic in a domain DdC with

nonempty M(f). Then, the connected components of M(f) are at most countable
and each component is one of the following :

( I ) An isolated point.
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(II) A (noncompact) simple analytic are terminating nowhere in D.
(III) A simple closed analytic curve.

All the cases of (I), (II), and (III) actually happen see Section 2.
Let Ci(/), C2(/), and C8(/) be the set of connected components of M(f) of

type (I), (II), and (III), respectively. Our next work is to observe them in detail.
The Schwarzian derivative of / is the meromorphic function

where *(/)=/*//'• Therefore, /*(*)=£() if and only if σ(f)(z)Φco if and only
if either z is a simple pole of / or /(z)=£oo with f'(z)φQ. The derivative σ(f)
plays an important role in

THEOREM 2. Let f be nonconstant and meromorphic in a domain DdC with
nonempty M(f). Then at each

(1.1)

Furthermore, we have the following.
(IV) We can conclude (z}^Cι(f) if the inequality in (1.1) is strict.
(V) Suppose that ceC2(/)UC8(/) exists. Then, at each z^c, the equality

in (1.1) holds by (IV). Furthermore, the line \z+te~iθ^/z — oo<f< + oo} is
tangent to c at z, where θ(z)=arg β(f}(z). Moreover, there exists τ>0 such that
the function

θwι*}, ~τ<t<τ,

has the maximum at t=Q and this is convex from below, that is, the second deri-
vative with respect to t is strictly negative.

The last statement in Theorem 2 is concerned with the behavior of /*
along the normal line of c at z.

THEOREM 3. Let f be nonconstant and meromorphic in a domain DdC.
Suppose that ceC8(/) exists and suppose further that the Jordan domain Δ bounded
by c is contained in D. Then

(1.2) (2/

where Z^(f) is the sum of all orders of all distinct zeros of f in Δ and PΔ(/')
is that of all distinct n poles of f in Δ.

The integral in the left-hand side of (1.2) is the spherical area of the
Riemannian image of Δ by /, so that it is positive. In view of the right-hand
side of (1.2) we can conclude that /* must vanish at a finite number of points
in Δ, or equivalently, σ(f) must have a finite number of poles in Δ. If /*
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never vanishes in D, then either C3(/) is empty or else each Jordan domain Δ
bounded by ceC8(/) is not contained in D.

2. Examples and Proofs of Theorems 1 and 2.

Before the proofs we observe that all the cases (I), (II), (III) can happen.
If / is a Mδbius transformation (az+b)/(cz+d) (ad—bc^O) considered in C,
then M(/) is a one-point set (see the remark in Section 4). If f(z}—zn (wΞ>2)
is considered in C, then M(f) is the circle

Consider the function f(z)—zn, this time, in a domain D such that both D and
C\D have the nonempty intersection with the circle cn. Then components of
M(f) are of type (II) in D.

For the proof of Theorems 1 and 2 we shall make use of the following
lemmas.

LEMMA 1. Let g be holomorphic and h be meromorphic in a domain GcC.
Suppose that

has an accumulation point a^G and gf(a)Φθ. Then there exists an open disk
U(a) of center a such that U(a)Γ\L(g, h} is a simple analytic arc passing through
a with both terminal points on the circle dU(a).

Proof. The case g(z)=z. The proof is the same as in the proof of [RW,
Lemma 1]. In the general case, let V(a) be an open disk with center a where
g is univalent. Regarding g(V(a)) as G, g(z) as z, and h as h°g~l we can
reduce this case into the case specified in the above.

LEMMA 2. Let g be holomorphic in a domain GcC. Suppose further that gf

never vanishes in G. Then,

(2.1) Mte)cLte, A),

where h=λ(g)/{2g'—gλ(g)}. Furthermore, on each component of L(g, h) the
function g$ is constant.

Proof. Suppose that z^M(g). Taking the logarithm of g* and then
partially differentiating it by w (d/dw=2~1(d/du—id/dv\ w=u+iv), we have

(2.2)

The value of (2.2) at w—z is zero. By a simple calculation we have h. It
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follows from Lemma 1 that each component of L(g, h) is one of the three types
described in Theorem 1. Suppose that Λ is a component of L(g, h) which is
not a point. Then Λ is a simple analytic curve w=w(t) in the parametric
form, a<t<b or a<t^b. For w(t)^L(g, h),

dt '

whence g* is constant on A.
For the proofs of Theorems 1 and 2 we suppose that ztΞM(f). Then, there

is θ such that e2ίθσ(f}(z)=\σ(f)(z)\ if ff(/)(z)=0, then we set 0=0. There
exists <5>0 such that

f(eiβw+z)-f(z)
l+f(z)f(eiθw+z)

is holomorphic in \w\<δ. If f(z)=<χ>, then we set g(w)=l/f(eiθw+z). We
now have

g*(w)=f*(eiθw+z), σ(g)(w)=e2ίθσ(f)(eίθw+z).

In particular,

£*(0)=/*(*)=α and

We may suppose that g' never vanishes in \w\<d^d; actually, |£'(0)|=α>0.
We thus have (2.2) for the 'present g, which we call (2.2P). Further diffe-
rentiation of (2.2P) by w yields

/o 0\ (g*)ww(w) / (g*)w(w
\Δι.O) _ J ± / . . .\ \ L* / \~

Partial differentiation of (2.2P) by w (d/dw=2-1(d/du+id/dv)), on the other
hand, yields

(2.4) = -g«(wγ.
^#(^)

Since OsAf(g), it follows that (^#)w(0)=0, which, together with (2.2P) and
=0, yields that ^)(0)=0. We therefore have (g*)ww(Q)=2-ίa\σ(f)(z)\ and

Ww(0)=~a3, whence

so that
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The Taylor expansion of g*(w)— a in u and v in |w;|<δι now reads:

(2.5) g^(w)-a=~(Λu2+Cvz)-i-Γ(uf v),

where the remaining term Γ(u, v) is a power series of u, v of degree at least
three. Since g* has the local maximum 0 at w— 0, and since C<0, it follows
that AC^Q. We therefore have (1.1).

If AOQ, then g*(w)-a<0 for Q<\w\<δ2^δ!. If 0 is not an isolated
point of M(g), then 0 is an accumulation point of M(g, h) in G={\w\<δ2},
where h is as in Lemma 2. Lemmas 1 and 2 show that there is a point
ιt>ι<ΞG\{0} such that g#(w1)~a. This is a contradiction. Therefore (IV) is
proved.

Suppose that ΛC—0, or A=0, Suppose that 0 is an accumulation point of
M(g). Then 0 is an accumulation point of L(g, h) considered in {\w\<δl}.
Lemmas 1 and 2 then show that there exists <53, 0<δa^δι, such that

is a simple analytic arc ending at points on {\w\=δ^}.
Returning to / we have observed that for each ze=M(f), either (i) z is an

isolated point of M(f) or (ii) there exists an open disk U(z) of center z such
that M(f}Γ\U(z) is a simple analytic arc ending at points on 3U(z). This
completes the proof of Theorem 1.

For the proof of Theorem 2 we further analyze the case where AC— 0
and 0 is an accumulation point of M(g). Set T={w(f); a<t<b}. Then,

~g(w(t))=h(w(ty), so that a short calculation shows that

h'/J7=2'1σ(g)/g*2.

Therefore the slope of the tangent at w<=γ is tanQ(w ), where

In particular, Q(0)=0. Thus, γ has the w-axis as the tangent at 0. We thus
have the tangent to c described in Theorem 2. Furthermore,

+-, C<0,

so that (d2/dv2)F(iv)<Q near v=0. This completes the proof of the theorem.

Remark. Let zec€ΞC2(/)UC3(/). Rectilinear segments containing z with
the exception of the normal and the tangent ones to c are expressed by

where Q<β<π/2, and φβ(f)=z+(l+itanβ^te'iθw/2. It is now easy to prove
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that f*(φβ(t)) is convex, that is, (d2/df)f*(φβ(t))<0 for \t\^τ(β), for suitable
τ(j8)>0. Actually, we have in (2.5) that

because ^4=0. This fact shows that even in case ZZΞC, the function /* attains
its maximum at z "in the strict sense" except along c.

As a further remark we let M*(/) be the set of points z^D where /*
attains the (global) maximum in D: f*(z)^f*(w) for all w^D. Suppose that
α^D is an accumulation point of M*(/). Then, αeM*(/). Suppose that / is
nonconstant. Then, there exists eeC2(/)UC8(/) such that α^c because
M*(/)cM(/). Since /* is constant on c it follows that ccM*(/). Therefore
we have the analogous classification: Cf(/), &=1, 2, 3 of components of M*(/).

Suppose that isolated points of M(/) has an accumulation point αe/λ
Then /*(α)=0 so that α is not a member of M(/). For the proof we suppose
that /*(α):£θ. If /(α)^oo, then /'(α)^0. It then follows from Lemmas 1 and
2 that there exists an open disk U{ά) of center α such that

where
h f = λ ( f ) / { 2 f ' - f λ ( f ) } ,

is a simple, analytic arc on which /* is constant. A contradiction comes from
M(/)Γ\Z7(0)cL(/, A/). If /(α)=oo, we apply the same argument to I// with
(l//)'(α)=£θ to arrive at a contradiction. Since M*(/) is a closed set in L>, it
is now easy to observe that the isolated points of M*(/) cluster nowhere in D
for nonconstant /.

3. Proof of Theorem 3.

First of all, /* never vanishes on c— dΔ. Let Λ Λ , l^k^p, be all the simple
poles of / on c and let γk, l^k^n, be all the distinct poles of / of order uk

in Δ. Thus, JPΔ(//)=tt+ f j p Λ . Let >4={α1, — , αp, γlt ~ γn}. Let ε>0 be

sufficiently small, and for each α<^A, we set

δ(α)={|2-α|=£β}, c(α)
and further

Δ(β)=Δ\\J«(«);αe^i

this becomes a domain bounded by a finite number of Jordan curves for suffi-
ciently small ε.

Set Φ=//7(1+I/Γ), and Ψ=iΦ. Then the Green formula
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(( (Ψx-Φy)dxdy=( (Φdx+Ψdy)
j jΔ(ε) JdΔ(ε)

can be rewritten as :

(3.1) -ίί f (zfdxdy=-±-\ Λ Φ(z)dz;
T Γ j J Δ c ε ) m JdΔcε)

the line integral is in the positive sense with respect to Δ(ε).
The Laurent expansion of / about a^A yields

fz}=z-aTgz} n

where g is holomorphic and nonvanishing in δ(a); N=l if a=ak, while N—
if a=γk. The differentiation yields that

(3.2) //(e)=U-α)-Λr-1A(z), h(z}=-Ng(z}+(z-a)g'(z).

Since

_ asyv as

uniformly for real ί, it follows that

r f πi if a— ak

Φ(z)dz—
Jccα)

if α=r*,

as ε~>0, where the integral is in the clockwise sense. Letting ε->0 in (3.1),
we now have

(3.3) -(( f*(zfdxdy=-^Λ Φ(z)dz+p+2 Σ ̂
π J J Δ πi Jc *=ι

Σ vh.

On the other hand, for ε small we have

(3.4) -

where

Δ0(β)=Δ\ U «0

In view of (3.2) we have in δ(α)\{α}, α—ak

and further, for small ε, the holomorphic h has no zero in δ(a). Therefore,
letting ε->0 in the left-hand side of (3.4) we have the identity:



170 SHINJI YAMASHITA

(3.5)

Combining (3.3) and (3.5) we finally have (1.2) in the theorem.

4. A lemma.

LEMMA 3. Let f be nonconstant and meromorphic in D. Suppose that z<ΞM(f)
and suppose further that there exist real constants d>0 and θ such that

(4.1) \σ(f)(z+teiθ)\>2f*(z+teίθγ

for 0<t<δ. Then, f*(z+teίθ) is strictly decreasing for 0<t<δ.

An immediate consequence is that if z<=M(f) and if \σ(f)(w)\<2f*(w)2 in
\w— z\<δ, then there is no point of M(f) in 0<\w— z\<δ; the result already
observed in Section 2.

Proof of Lemma 3. It suffices to consider the case 2=0 and Θ=Q. By a
technical reason we consider G=l//#. Calculations like (2.2)-(2.4) this time,
yield

Gww(w)
G(w} 2"U A~" G(w)

whence

GUU(W)

Gw(w)
G(w)

2

+/*(«/)«,

G(w) G(w)

Therefore,

d2

G(z+t)=Guu(z+t)>Q,
dt*

together with Gu(z+t)=(d/dt)G(z+t)->0 as f->+0, shows that Gu(z+t)>0 for
Q<t<δ. Therefore G is strictly increasing on the line segment.

Remark. If T is a Mδbius transformation, then a computation shows that
T*(u;)-»0 as κ;->oo. Furthermore, σ(T)=0, so that \σ(T)(w)\<2T*(w)2 at each
point WΪΞ€. We can apply Lemma 2 to consider the maximum of T# of a
Mobius transformation without further direct calculation. Apparently, M(T)
is nonempty. Suppose that there are zk&M(T), k=l, 2, and z^z2. Then a
contradiction follows from Lemma 3. Therefore there is only one point z such
that T*(w)<T*(z) for all

5. A partial differential equation with an exponential nonlinearity.

Let ω be a real-valued solution of the differential equation
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(5.1)

in a domain DdC, where α>0 is a constant. If / is meromorphic with non-
vanishing /* in D, then

(5.2) ω-log(2α-1(/#)2)

is a solution. Conversely, the celebrated Liouville paper [L] shows that, if D
is simply connected, then each solution ω can be expressed as (5.2) for a mero-
morphic function / with non vanishing /* in D. A concise proof of this is
given in [W] and a detailed one is given in [Bl, pp. 27-28] (see also [S]).
Usually one supposes the boundary condition :

(5.3) limω(*)=0, ζe3£>,
2-*ζ

to (5.1), where 3D is the boundary of D in Cw{oo}. Since ω is superharmonic
in D, the minimum principle shows that ω>0 in D. For the existence of the
solutions for (5.1) under (5.3), in case D is bounded and simply connected, see
[Bl, p. 197] for example.

Let M*(ω) be the set of points z^D where ω has the (global) maximum:

ω(z)^>ω(w) for all w<=D.

We show that Λf *(ω) is a finite set if D is simply connected and (5.3) holds.
First, no point -sequence extracted from M*(ω) accumulates at any point of 3D.
Consider M(/) for / in (5.2). Theorem 3 shows that C3(/) is empty. Suppose
that ceC2(/) exists. If cΓ\M*(ώ) is nonempty, then ccM*(ω) because /* is
constant on c. This is a contradiction. Since M*(α>)cM(/), it follows that
each point of M*(ω) is an isolated point of M*(ω). The isolated points of
M*(ΰ>)=M*(/) cannot accumulate at any point of D. Therefore M*(ω) is a
finite set.

We return to (5.1) for general D. Let M(ω) be the set of points z€ΞD
where ω attains local maxima: ω(z)^ω(w) for w in an open disk U(z)dD with
center z. Restricting (5.2) to U(z) we have again a meromorphic function / in
U(z) where (5.2) is valid. By the local observation of M(ώ) one can easily
obtain the ω-counterpart of Theorem 1. Namely, the components of M(ω) are
at most countable and are classified into the three types (I), (II), and (III),
described in Theorem 1. Apparently M(ω)Z)M*(ω).

As C. Bandle [B2, p. 231] (see also [Bl, p. 29]) pointed out, we have

— 9? ~2\

for (5.2) in D, so that, the inequality

|σ(/)(*)|^2/*(*) at z^
reads
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6. The Gauss curvature.

Let u be a nonconstant, real-valued, and harmonic function in a domain
DdC. Then w defines the surface or the graph: {(x, y, u(x, y)); (x, y)^D]
in the space. The Gauss curvature K(z) at the point (x, y, u(x, y)), z=x+iy<ΞiD,
is then — /*U)2, where f—ux—iuy is holomorphic in D. Our results are there-
fore applicable to the study of the set of points in D where K attains local
minima. See [G, J, K, KP, T, Y] on the cited Gauss curvature.
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