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LOCAL MAXIMA OF THE SPHERICAL DERIVATIVE
By SHINJI YAMASHITA

Abstract

Let a function f be nonconstant and meromorphic in a domain D in the
plane, and let M(f) be the set of points where the spherical derivative
|f’1/ (14171 has local maxima. The components of M(f) are at most coun-
table and each component is (i) an isolated point, (ii) a noncompact simple
analytic arc terminating nowhere in D, or, (iii) an analytic Jordan curve.
Tangents to a component of type (ii) or (iii) are expressed by the argument
of the Schwarzian derivative of f. If 4 is the Jordan domain bounded by a
component of type (iii) and if 4CD, then the spherical area of the Riemann
surface f(4) can be expressed by the total number of the zeros and poles of
f/ in 4. Solutions of a nonlinear partial differential equation will be con-
sidered in connection with the spherical derivative.

1. Introduction.

Let f be a nonconstant meromorphic function in a domain D in the complex
plane C={|z|<-+}. The spherical derivative of f at zD is defined by

. {If’(Z)I/(1+If(2)I2) if fa)#o;
2)=
[(1/F) ()] if f(z)=co.

We let M(f) be the set of points z=D where f¥ has local maxima, namely,
fH@)=f*w) in {{lw—z|<d}CD for 6>0 depending on f and z.

The purpose of the present paper is to investigate M(f) in detail. We
begin with a classification.

THEOREM 1. Let f be nonconstant and meromorphic in a domain DCC with
nonempty M(f). Then, the connected components of M(f) are at most countable
and each component is one of the following :

(1) An isolated point.
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(I) A (noncompact) simple analytic are terminating nowhere in D.
() A simple closed analytic curve.

All the cases of (I), (I), and (IIl) actually happen; see Section 2.

Let Cy(f), Cy(f), and Cy(f) be the set of connected components of M(f) of
type (I), (I), and (III), respectively. Our next work is to observe them in detail.

The Schwarzian derivative of f is the meromorphic function

o(F)=Af) =274,

where A(f)=f"/f’. Therefore, f#¥(z)#0 if and only if o(f)z)#c if and only
if either z is a simple pole of f or f(z)# oo with f’(z)#0. The derivative a(f)
plays an important role in

THEOREM 2. Let f be nonconstant and meromorphic in a domain DCC with
nonempty M(f). Then at each z< M(f),

(1.1) lo(fXD)| =2f*(2)".

Furthermore, we have the following.

(V) We can conclude {z}= Cy(f) if the inequality in (1.1) is strict.

(V) Suppose that c= C(f)JC(f) exists. Then, at each z<c, the equality
in (1.1) holds by (V). Furthermore, the line {z-te 0®/%; —co<lt< 400} is
tangent to ¢ at z, where O(z)=argao(f)Xz). Moreover, there exists ©>0 such that
the function

fH(z+itet0@12), —r<t<r,

has the maximum at t=0 and this is convex from below, that is, the second deri-
vative with respect to t is strictly negative.

The last statement in Theorem 2 is concerned with the behavior of f#
along the normal line of ¢ at z.

THEOREM 3. Let f be nonconstant and meromorphic in a domain DCC.
Suppose that c= Cy(f) exists and suppose further that the Jordan domain A bounded
by c is contained in D. Then

(1.2) @/, 7 #rdxdy=2uf")+Pu(f)—2m,

where Zx(f') is the sum of all orders of all distinct zeros of f' in A and Pa(f’)
is that of all distinct n poles of f' in A.

The integral in the left-hand side of (1.2) is the spherical area of the
Riemannian image of A by f, so that it is positive. In view of the right-hand
side of (1.2) we can conclude that f#¥ must vanish at a finite number of points
in A, or equivalently, ¢(f) must have a finite number of poles in A. If f¥
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never vanishes in D, then either C,(f) is empty or else each Jordan domain A
bounded by c=C4f) is not contained in D.

2. Examples and Proofs of Theorems 1 and 2.

Before the proofs we observe that all the cases (I), (II), (II) can happen.
If f is a Mobius transformation (az--b)/(cz+d) (ad—bc+0) considered in C,
then M(f) is a one-point set (see the remark in Section 4). If f(z2)=z" (n=2)
is considered in C, then M(f) is the circle

an{|Z[:( Z;; )1/(211)}'

Consider the function f(z)=z", this time, in a domain D such that both D and
C\D have the nonempty intersection with the circle ¢,. Then components of
M(f) are of type (II) in D.

For the proof of Theorems 1 and 2 we shall make use of the following
lemmas.

LEMMA 1. Let g be holomorphic and h be meromorphic in a domain GCC.
Suppose that

L(g, h)={z€G; g(z)=h(2)}

has an accumulation point a=G and g'(a)#0. Then there exists an open disk
U(a) of center a such that U(a)N\L(g, h) is a simple analytic arc passing through
a with both terminal points on the circle oU(a).

Proof. The case g(z)=z. The proof is the same as in the proof of [RW,
Lemma 1]. In the general case, let V(a) be an open disk with center a where
g is univalent. Regarding g(V(a)) as G, g(z) as z, and h as heg™ we can
reduce this case into the case specified in the above.

LEMMA 2. Let g be holomorphic in a domain GCC. Suppose further that g’
never vanishes in G. Then,

2.1 M(g)c L(g, h),

where h=2(g)/{2g’—gA(g)}. Furthermore, on each component of L(g, h) the
function g* is constant.

Proof. Suppose that z=M(g). Taking the logarithm of g¥ and then
partially differentiating it by w (8/0w=2"%0/0u—i0/0v), w=u-+iv), we have

(gMuw(w) _1 g(w)g'(w)
g*w) 2 1+gw)l® -

The value of (2.2) at w==z is zero. By a simple calculation we have h. It

2.2) Ag)w)—
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follows from Lemma 1 that each component of L(g, &) is one of the three types
described in Theorem 1. Suppose that A is a component of L(g, ) which is
not a point. Then A is a simple analytic curve w=w(¢) in the parametric
form, a<t<b or a<t<h. For w(t)eL(g, h),

d
i g¥(w@)=2Re[(g*)n(w®))w'(#)]=0,
whence g# is constant on A.

For the proofs of Theorems 1 and 2 we suppose that z& M(f). Then, there
is @ such that e**?e(f)2)=|a(f)(2)|; if 6(f)(z)=0, then we set §=0. There
exists 6>0 such that

_ fefw+2)—f(2)
T 1+ f@f (e w+2)

is holomorphic in |w|<d. If f(z)=co, then we set gw)=1/f(e*’w+z). We
now have

g(w)

gtw)=f*e"w+z), o@w)=elo(f)ew+z).
In particular,
g*0)=f*(z)=a and o(g)0)=lo(f)2)].
We may suppose that g’ never vanishes in |w|<8,<0; actually, |g’(0)| =a>0.

We thus have (2.2) for the ‘present g, which we call (2.2P). Further diffe-
rentiation of (2.2P) by w yields

(") ww(w) (g%H)w(w) \?
@3 g¥(w) ( g*(w) )

gw)g'(w) gw)g'(w) \?
T e @+ )

Partial differentiation of (2.2P) by w (9/0@w=2"(0/0u-i0/0v)), on the other
hand, yields

1
=3 0@ T gy —

(g#)uNT)(w) (g*)w(w>
(0 g*(w) "l g*(w)

Since 0=M(g), it follows that (g*),(0)=0, which, together with (2.2P) and
g(0)=0, yields that A(g)(0)=0. We therefore have (g%),,(0)=2"'a|e(f)(z)| and
(g")wa(0)=—a?, whence

A=(g%)uu(0)=—-2a’+ala(f)(2)|,
(g“)uv(o)——_o ’
C=(g")n(0)=—2a’—ala(f)(2)| <0,

12=—g*(w)2-

so that
AC=a*{4a*—|0o(f)2)|%}.
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The Taylor expansion of g#(w)—a in u# and v in |w|<d,; now reads:
1
(2.5) g w)—a=5(Au+Cv*)+I'(u, v),

where the remaining term /'(u, v) is a power series of u, v of degree at least
three. Since g¥ has the local maximum 0 at w=0, and since C<0, it follows
that AC=0. We therefore have (1.1).

If AC>0, then g¥(w)—a<0 for 0<|w|<d,=0,. If 0 is not an isolated
point of M(g), then 0 is an accumulation point of M(g, h) in G={|w|<d,},
where h is as in Lemma 2. Lemmas 1 and 2 show that there is a point
wy=GN{0} such that g#*(w,)=a. This is a contradiction. Therefore (IV) is
proved.

Suppose that AC=0, or A=0, Suppose that 0 is an accumulation point of
M(g). Then 0 is an accumulation point of L(g, 2) considered in {|w]|<d,}.
Lemmas 1 and 2 then show that there exists d,, 0<<d,<0d,, such that

r=M@ON{lwl <d}=L(g, MN{|w]| <3}

is a simple analytic arc ending at points on {|w|=4d,}.

Returning to f we have observed that for each z=M(f), either (i) z is an
isolated point of M(f) or (ii) there exists an open disk U(z) of center z such
that M(f)NU(z) is a simple analytic arc ending at points on oU(z). This

completes the proof of Theorem 1.
For the proof of Theorem 2 we further analyze the case where AC=0

and 0 is an accumulation point of M(g). Set r={w(t); a<t<b}. Then,
gw(®)=h(w(t)), so that a short calculation shows that

w )/ w't)=h"(w(t)/g w),
n/g'=2"a(g)/g*".
Therefore the slope of the tangent at wey is tan Q(w), where
e M =2"g(g)(w)/g*(w)*.

In particular, Q(0)=0. Thus, 7 has the u-axis as the tangent at 0. We thus
have the tangent to ¢ described in Theorem 2. Furthermore,

g¥Gv)—a=(C/20*+ ---, C<0,

so that (d?/dv*)F(iv)<0 near v=0. This completes the proof of the theorem.

Remark. Let zece=Cy(f)UC(f). Rectilinear segments containing z with
the exception of the normal and the tangent ones to ¢ are expressed by

APB)={pp®); —c(Br=t=t(B)},

where 0<8<7/2, and ¢s(t)=z+(1+itanB)te 6/ It is now easy to prove
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that f#(pp(t)) is convex, that is, (d*/dt*)f#(pp(t))<0 for |¢|<z(B), for suitable
7(8)>>0. Actually, we have in (2.5) that

1
gH(t+ittan f)—a=5C1* tan® 8+ 1'(¢, ttan ),

because A=0. This fact shows that even in case z&c¢, the function f# attains
its maximum at z “in the strict sense” except along c.

As a further remark we let M*(f) be the set of points z&D where [*
attains the (global) maximum in D: f#¥(z)=f*%(w) for all weD. Suppose that
a<D is an accumulation point of M*(f). Then, ac M*(f). Suppose that f is
nonconstant. Then, there exists c=C.(f)UCsf) such that a<c because
M*(f)YcM(f). Since f# is constant on ¢ it follows that cCc M*(f). Therefore
we have the analogous classification: C¥(f), k=1, 2, 3 of components of M*(f).

Suppose that isolated points of M(f) has an accumulation point a<D.
Then f#(a)=0 so that a is not a member of M(f). For the proof we suppose
that f#(a)#0. If f(a)# oo, then f’(a)#0. It then follows from Lemmas 1 and
2 that there exists an open disk U(a) of center a such that

L(f, hp)={z=U(a); F@)=h(2)},
where

hy =221 —fA)},

is a simple, analytic arc on which f# is constant. A contradiction comes from
M )NU(a)T L(f, hy). If f(a)=oo, we apply the same argument to 1/f with
(1/f)(a)#0 to arrive at a contradiction. Since M*(f) is a closed set in D, it
is now easy to observe that the isolated points of M*(f) cluster nowhere in D
for nonconstant f.

3. Proof of Theorem 3.

First of all, f# never vanishes on ¢=0A. Let a,, 1<k<p, be all the simple
poles of f on ¢ and let 7., 1<k=<n, be all the distinct poles of f of order v,

in A. Thus, PA(f’)zn—i-él vi. Let A={ay, -, ap 7y, = Tn}. Let e>0 be
sufficiently small, and for each ac A, we set

oa)={lz—a|=Ze}, cla)={z€4; |z—al|=¢},

and further
A(e)=AN Uj(a);
ac

this becomes a domain bounded by a finite number of Jordan curves for suffi-

ciently small e.
Set @=ff'/(1+|f|?), and ¥=:i@. Then the Green formula
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SSA(n(wz_ay)dxdy:SaAce)(¢dx+Wdy)

can be rewritten as:

3.1) ESSM) FHzYdxd y:—l—.—SaA(s)(D(z)dz;

T iy

the line integral is in the positive sense with respect to A(e).
The Laurent expansion of f about ac A yields

f@=(z—a)"glz) in o&a)N\{a},

where g is holomorphic and nonvanishing in d(a); N=1 if a=a;, while N=y,
if a=7;. The differentiation yields that

(3.2) f(@)=(z—a)™'h(z), h(z)=—Ng(2)+(z—a)g'(2).
Since

gleet +a)h(ee +a)
2V 4| g(eet +a)l?

uniformly for real ¢, it follows that

cet'P(eet +a)= —> —N as e—0

bi7) if a=a;

S D(z)dz —> {

cca 27y i if a=7:,

as ¢—0, where the integral is in the clockwise sense. Letting ¢--0 in (3.1),
we now have

1 n
(3.3) 2(( reerazay=—{ 0@dz+p+2 5 v
1 n
=5 | xn@dztr+2 3w

On the other hand, for ¢ small we have

1 !’ ’
2—7”—.§M0(e)x<f><z>dz=znf )—Pa(f"),

(3.4)
where
Ae)=AN }2 aay).

In view of (3.2) we have in éa)\{a}, a=a,.
Af)2)=—2/(z—a)+h'(2)/h(z),

and further, for small ¢, the holomorphic 4 has no zero in d(a). Therefore,
letting ¢—0 in the left-hand side of (3.4) we have the identity :
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3.5) —%r?gcx<f><z>dz+p=ZA<f')—PA<f'>.

Combining (3.3) and (3.5) we finally have (1.2) in the theorem.

4. A lemma.

LEMMA 3. Let f be nonconstant and meromorphic in D. Suppose that z= M(f)
and suppose further that there exist real constants 0>0 and 6 such that

4.1) lo(f)(z+tei?)| >2f#(z+te)
for 0<t<d. Then, f¥(z-+te'?) is strictly decreasing for 0<t<4.

An immediate consequence is that if z&e M(f) and if |o(f)(w)| <2f*(w)® in
|w—z| <0, then there is no point of M(f) in 0<|w—z|<d; the result already
observed in Section 2.

Proof of Lemma 3. It suffices to consider the case z=0 and §=0. By a
technical reason we consider G=1/f%. Calculations like (2.2)-(2.4) this time,
yield

wa(‘LU) __l-_ wa(w) — Gw(w) 2 2
Gy = goNw), g = | ey,
whence
Gusw) _p| Gulw) |2 :
Gty =2 Gy | HEr#w)—Rea(F)w)).
Therefore,

2
L GatD=Gulat>0,
together with G.(z+t)=(d/dt)G(z+1t)—0 as t—-+0, shows that G,(z+¢)>0 for
0<t<d. Therefore G is strictly increasing on the line segment.

Remark. 1If T is a Mobius transformation, then a computation shows that
T#(w)—0 as w—oo. Furthermore, o(T)=0, so that |o(T)w)| <2T*(w)? at each
point weC. We can apply Lemma 2 to consider the maximum of 7% of a
Mobius transformation without further direct calculation. Apparently, M(T)
is nonempty. Suppose that there are z,=M(T), k=1, 2, and z,#2z,. Then a
contradiction follows from Lemma 3. Therefore there is only one point z such
that T#(w)<T#(z) for all weC~{z}.

5. A partial differential equation with an exponential nonlinearity.

Let w be a real-valued solution of the differential equation



LOCAL MAXIMA OF THE SPHERICAL DERIVATIVE 171
(5.1 (0%/0202)w+ae*=0

in a domain DCC, where a>0 is a constant. If f is meromorphic with non-
vanishing f# in D, then

(5.2) w=log(2a™'(f*)?)

is a solution. Conversely, the celebrated Liouville paper [L] shows that, if D
is simply connected, then each solution w can be expressed as (5.2) for a mero-
morphic function f with nonvanishing f# in D. A concise proof of this is
given in [W] and a detailed one is given in [BI1, pp. 27-28] (see also [S]).
Usually one supposes the boundary condition :

(6.3) ling o(z)=0, {eadD,

to (5.1), where dD is the boundary of D in C\U{c}. Since w is superharmonic
in D, the minimum principle shows that >0 in D. For the existence of the
solutions for (5.1) under (5.3), in case D is bounded and simply connected, see
[B1, p. 197] for example.

Let M*(w) be the set of points z& D where w has the (global) maximum :

w(z)=w(w) for all weD.

We show that M*(w) is a finite set if D is simply connected and (5.3) holds.
First, no point-sequence extracted from M *(w) accumulates at any point of oD.
Consider M(f) for f in (5.2). Theorem 3 shows that C;(f) is empty. Suppose
that ceCy(f) exists. If ¢N\M*(w) is nonempty, then cCM*w) because f¥* is
constant on ¢. This is a contradiction. Since M*(w)CM(f), it follows that
each point of M*(w) is an isolated point of M*(w). The isolated points of
M*w)=M*(f) cannot accumulate at any point of D. Therefore M*(w) is a
finite set.

We return to (5.1) for general D. Let M(w) be the set of points zeD
where  attains local maxima: w(z)=w(w) for w in an open disk U(z)CD with
center z. Restricting (5.2) to U(z) we have again a meromorphic function f in
U(z) where (5.2) is valid. By the local observation of M(w) one can easily
obtain the w-counterpart of Theorem 1. Namely, the components of M(w) are
at most countable and are classified into the three types (I), (II), and (III),
described in Theorem 1. Apparently M(w)DM *(w).

As C. Bandle [B2, p. 231] (see also [Bl1, p. 29]) pointed out, we have

s(=Te 2 (22’

for (5.2) in D, so that, the inequality

la(f)2)|<2f#z? at z=D
reads
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Zae*®,

0 0 2
20 50)

6. The Gauss curvature.

Let u be a nonconstant, real-valued, and harmonic function in a domain
DcC. Then u defines the surface or the graph: {(x, y, u(x, ¥)); (x, y)=D}
in the space. The Gauss curvature K(z) at the point (x, y, u(x, »)), z=x+iyeD,
is then —f#(z)?, where f=u,—iu, is holomorphic in D. Our results are there-
fore applicable to the study of the set of points in D where K attains local
minima. See [G, J, K, KP, T, Y] on the cited Gauss curvature.
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