NULL 2-TYPE SURFACES IN \boldsymbol{E}^{3} ARE CIRCULAR CYLINDERS

By Bang-Yen Chen

Abstract

In this article we prove that open portions of circular cylinders are the only surfaces in E^{3} which are constructed from eigenfunctions of Δ with eigenvalue 0 and an eigenvalue $\lambda(\neq 0)$.

1. Introduction.

Let M be a connected (not necessary compact) surface in a Euclidean 3space E^{3}. Denote by Δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of M in E^{3} satisfy

$$
\begin{equation*}
\Delta x=-2 H . \tag{1.1}
\end{equation*}
$$

This formula yields the following well-known result: A surface M in E^{3} is minimal if and only if all coordinate functions of E^{3}, restricted to M, are harmonic functions, that is,

$$
\begin{equation*}
\Delta x=0 . \tag{1.2}
\end{equation*}
$$

In other words, minimal surfaces are constructed from eigenfunctions of Δ with eigenvalue zero.

According to the famous Douglas and Rado's solutions to the Plateau problem there exist ample examples of minimal surfaces in E^{3}. The study of minimal surfaces in E^{3} has attracted many mathematicians for many years (cf. [3]).

On the other hand, it is easy to see that circular cylinders in E^{3} are constructed from harmonic functions and eigenfunctions of Δ with a nonzero eigenvalue, say λ. The position vector of such a surface admits the following simple spectral decomposition:

$$
\begin{equation*}
x=x_{0}+x_{q}, \quad \text { with } \Delta x_{0}=0 \text { and } \Delta x_{q}=\lambda x_{q}, \tag{1.3}
\end{equation*}
$$

for some non-constant maps x_{0} and x_{q}, where λ is a non-zero constant. In the following, we simply call a surface M in a Euclidean space a surface of null 2-type if the position vector x of M has the spectral decomposition (1.3).

Received January 22, 1988

We ask the following simple geometric question:
"Determine all surfaces in E^{3} which are constructed from eigenfunctions of Δ with two eigenvalues 0 and $\lambda(\neq 0)$."

The purpose of this article is to give a complete solution to this question. More precisely, we shall prove the following

Theorem. A surface M in E^{3} is of null 2-type if and only if M is an open portion of a circular cylinder.

2. Proof of Theorem.

Let M be a surface in a Euclidean 3 -space E^{3}. We denote by h, A, H, ∇ and D the second fundamental form, the Weingarten map, the mean curvature vector, the Riemannian connection and the normal connection of the surface M in E^{3}.

Let X, Y be two vector fields tangent to M. Then, for any constant vector c in E^{3}, we have

$$
\begin{align*}
Y X\langle H, c\rangle= & \left\langle D_{Y} D_{X} H, c\right\rangle-\left\langle\nabla_{Y}\left(A_{H} X\right), c\right\rangle \tag{2.1}\\
& -\left\langle A_{D_{X} H} Y, c\right\rangle-\left\langle h\left(Y, A_{H} X\right), c\right\rangle,
\end{align*}
$$

where \langle,$\rangle denotes the inner product in E^{3}$. Let e_{1}, e_{2} be an orthonormal local frame fields tangent to M. Then (2.1) implies (cf. [2, p. 271])

$$
\begin{equation*}
\Delta H=\Delta^{D} H+\|h\|^{2} H+\operatorname{tr}\left(\bar{\nabla} A_{H}\right), \tag{2.2}
\end{equation*}
$$

where $\Delta^{D} H$ is the Laplacian of H with respect to the normal connection D and

$$
\begin{equation*}
\bar{\nabla} A_{H}=\nabla A_{H}+A_{D H} . \tag{2.3}
\end{equation*}
$$

We need the following lemma.
Lemma. Let M be a surface in E^{3}. Then $\operatorname{tr}\left(\bar{\nabla} A_{H}\right)=0$ if and only if $\nabla \alpha^{2}$, the gradient of $\alpha^{2}(=\langle H, H\rangle)$, is an eigenvector of the Weingarten map A with eigenvalue $-\alpha$ whenever $\nabla \alpha^{2} \neq 0$, that is, we have

$$
\begin{equation*}
A\left(\nabla \alpha^{2}\right)=-\alpha \nabla \alpha^{2} \quad \text { on } U=\left\{p \text { in } M: \nabla \alpha^{2}(p) \neq 0\right\} . \tag{2.4}
\end{equation*}
$$

Proof of Lemma. Let e_{1}, e_{2} be an orthonormal local frame field tangent to M and $\xi=e_{3}$ a unit local field normal to M. Denote by $\omega_{A}{ }^{B}(A, B=1,2,3)$ the connection forms associated with e_{1}, e_{2}, e_{3} and by ω^{1}, ω^{2} the dual frame of e_{1}, e_{2}. If we may choose e_{1}, e_{2} to be eigenvectors of the Weingarten map $A\left(A=A_{\xi}\right)$ with eigenvalues denoted by κ_{1}, κ_{2}, respectively, then we have

$$
\begin{equation*}
A_{H}\left(e_{i}\right)=\alpha \kappa_{i} e_{i}, \quad i, j, k=1,2, \tag{2.5}
\end{equation*}
$$

where $H=\alpha \xi$. For simplicity we denote $\nabla_{e_{i}}$ by ∇_{i}. From (2.5) we have

$$
\begin{equation*}
\left(\nabla_{i} A_{H}\right) e_{j}=\alpha\left(e_{i} \kappa_{j}\right) e_{j}+\left(e_{i} \alpha\right) \kappa_{j} e_{j}+\alpha \Sigma\left(\kappa_{j}-\kappa_{k}\right) \omega_{j}{ }^{k}\left(e_{i}\right) e_{k} . \tag{2.6}
\end{equation*}
$$

Thus, by Codazzi equation, we find

$$
\begin{equation*}
\alpha\left(e_{i} \kappa_{j}\right) e_{j}-\alpha\left(e_{j} \kappa_{i}\right) e_{i}=\Sigma \alpha\left\{\left(\kappa_{i}-\kappa_{k}\right) \omega_{i}{ }^{k}\left(e_{j}\right)-\left(\kappa_{j}-\kappa_{k}\right) \omega_{j}{ }^{k}\left(e_{i}\right)\right\} e_{k} \tag{2.7}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\alpha\left(e_{i} \kappa_{j}\right)=\alpha\left(\kappa_{j}-\kappa_{i}\right) \omega_{j}^{i}\left(e_{j}\right) \quad \text { for } i \neq j . \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.8) we may obtain

$$
\begin{equation*}
\operatorname{tr}\left(\nabla A_{H}\right)=\Sigma\left(\nabla_{i} A_{H}\right) e_{i}=\nabla \alpha^{2}+A(\nabla \alpha) . \tag{2.9}
\end{equation*}
$$

Consequently, from (2.3) and (2.9) we get

$$
\begin{equation*}
\operatorname{tr}\left(\bar{\nabla} A_{H}\right)=\nabla \alpha^{2}+2 A(\nabla \alpha), \tag{2.10}
\end{equation*}
$$

from which we obtain the lemma.
Now, assume M is a null 2-type surface in E^{3}. Then the position vector x of M takes the following form:

$$
\begin{equation*}
x=x_{0}+x_{q}, \quad \Delta x_{0}=0 \quad \text { and } \quad \Delta x_{q}=\lambda x_{q}, \tag{2.11}
\end{equation*}
$$

for some non-constant maps x_{0} and x_{q}. By using (1.1), (2.11) implies that

$$
\begin{equation*}
\Delta H=\lambda H . \tag{2.12}
\end{equation*}
$$

Combining (2.2) and (2.12) we find

$$
\begin{equation*}
\Delta^{D} H=\left(\lambda-\|h\|^{2}\right) H \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\bar{\nabla} A_{H}\right)=0 . \tag{2.14}
\end{equation*}
$$

Let $U=\left\{p \in M:\left(\nabla \alpha^{2}\right)(p) \neq 0\right\}$. Then U is an open subset of M. Assume that U is non-empty. Then, by Lemma, the Weingarten map A has eigenvalues $-\alpha$ and 3α on U. Moreover, by Lemma, we may assume that e_{1}, e_{2} are orthonormal local frame fields in U such that e_{1} is parallel to $\nabla \alpha^{2}$. Then we have

$$
\begin{align*}
& \omega_{3}{ }^{1}=\alpha \omega^{1}, \quad \omega_{3}{ }^{2}=-3 \alpha \omega^{2}, \tag{2.15}\\
& d \alpha=\left(e_{1} \alpha\right) \omega^{1} . \tag{2.16}
\end{align*}
$$

Taking the exterior differentiation of the first equation of (2.15) and applying (2.16) and the structure equations, we obtain

$$
\begin{equation*}
d \omega^{1}=0 . \tag{2.17}
\end{equation*}
$$

Hence we have locally

$$
\begin{equation*}
\omega^{1}=d u \tag{2.18}
\end{equation*}
$$

where u is a local function on U. Similarly, by taking the exterior differentiation of the second equation of (2.15), we may find

$$
\begin{equation*}
\omega_{2}{ }^{1}\left(e_{2}\right)=\left(3 e_{1} \alpha\right) / 4 \alpha . \tag{2.19}
\end{equation*}
$$

From (2.18) we obtain

$$
\begin{equation*}
\omega_{2}{ }^{1}\left(e_{1}\right)=0 \tag{2.20}
\end{equation*}
$$

From (2.16) and (2.18) we have

$$
\begin{equation*}
d \alpha \wedge d u=0 \tag{2.21}
\end{equation*}
$$

This shows that α is function of u, that is $\alpha=\alpha(u)$. In particular, we have

$$
\begin{align*}
& d \alpha=\alpha^{\prime}(u) d u \tag{2.22}\\
& 4 \alpha \omega_{2}{ }^{1}=3 \alpha^{\prime}(u) \omega^{2} \tag{2.23}
\end{align*}
$$

Taking the exterior differentiation of (2.23), we may cbtain the following second order ordinary differential equation:

$$
\begin{equation*}
4 \alpha \alpha^{\prime \prime}-7\left(\alpha^{\prime}\right)^{2}+16 \alpha^{4}=0 \tag{2.24}
\end{equation*}
$$

Let $y=\left(\alpha^{\prime}\right)^{2}$. Then it is easy to see that equation (2.24) can be reduced to the following first order differential equation:

$$
\begin{equation*}
2 \alpha y^{\prime}-7 y=-16 \alpha^{4} \tag{2.25}
\end{equation*}
$$

where y^{\prime} denotes the derivative of y with respect to α. From this equation we obtain the following solution:

$$
\begin{equation*}
y=\left(\alpha^{\prime}\right)^{2}=C \alpha^{7 / 2}-16 \alpha^{4}, \tag{2.26}
\end{equation*}
$$

where C is a constant.
On the other hand, since M is of codimension one, equation (2.13) and (2.15) imply

$$
\begin{equation*}
-\alpha \Delta \alpha=\left(10 \alpha^{2}-\lambda\right) \alpha^{2} \tag{2.27}
\end{equation*}
$$

By using (2.19) we find

$$
\begin{equation*}
4 \alpha\left(\nabla_{2} e_{2}\right) \alpha=3\left(\alpha^{\prime}\right)^{2} \tag{2.28}
\end{equation*}
$$

Therefore, by applying (2.16), (2.28) and the definition of Δ, we may obtain

$$
\begin{equation*}
4 \alpha \Delta \alpha=3\left(\alpha^{\prime}\right)^{2}-4 \alpha \alpha^{\prime \prime} . \tag{2.29}
\end{equation*}
$$

Combining (2.27) and (2.29) we find

$$
\begin{equation*}
4 \alpha \alpha^{\prime \prime}-3\left(\alpha^{\prime}\right)^{2}+4\left(\lambda-10 \alpha^{2}\right) \alpha^{2}=0 . \tag{2.30}
\end{equation*}
$$

Therefore, from (2.24) and (2.30), we obtain

$$
\begin{equation*}
\left(\alpha^{\prime}\right)^{2}=14 \alpha^{4}-\lambda \alpha^{2} \tag{2.31}
\end{equation*}
$$

Comparing equations (2.26) and (2.31), we conclude that α is constant on U which contradicts to our assumption. Therefore, U is empty and consequently the null 2-type surface M has constant mean curvature α. Thus, by applying (2.13) we see that the second fundamental form h has constant length. Hence, by the constancy of the mean curvature and the equation of Gaiss, we have known that the Gaussian curvature of M is also constant. Since M is assumed to be of null 2 -type, these conditions imply that M is an open portion of a circular cylinder (cf. [1, p. 118]). The converse of this is trivial. (Q.E.D.)

References

[1] B. Y. Chen, Geometry of Submanifolds, Mercel Dekker, New York, 1973.
[2] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore and New Jersey, 1934.
[3] R. Osserman, Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969.

> Department of Mathematics
> Michigan State University
> East Lansing, Michigan 48824
> U.S. A.

