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NULL 2-TYPE SURFACES IN E° ARE CIRCULAR CYLINDERS

By BANG-YEN CHEN

Abstract

In this article we prove that open portions of circular cylinders are the
only surfaces in E3® which are constructed from eigenfunctions of A with
eigenvalue 0 and an eigenvalue 2 (#0).

1. Introduction.

Let M be a connected (not necessary compact) surface in a Euclidean 3-
space E®. Denote by A the Laplacian of M associated with the induced metric.
Then the position vector x and the mean curvature vector H of M in E?® satisfy

(L. Ax=—2H.

This formula yields the following well-known result: A surface M in E? is
minimal if and only if all coordinate functions of E?, restricted to M, are
harmonic functions, that is,

(1.2) Ax=0.

In other words, minimal surfaces are constructed from eigenfunctions of A with
eigenvalue zero.

According to the famous Douglas and Rado’s solutions to the Plateau prob-
lem there exist ample examples of minimal surfaces in E3. The study of
minimal surfaces in E® has attracted many mathematicians for many years (cf.
(3D.

On the other hand, it is easy to see that circular cylinders in E? are con-
structed from harmonic functions and eigenfunctions of A with a nonzero
eigenvalue, say 4. The position vector of such a surface admits the following
simple spectral decomposition :

(1.3 X=X+ x4, with Ax,=0 and Ax,=2x,,

for some non-constant maps x, and x, where 4 is a non-zero constant. In the
following, we simply call a surface M in a Euclidean space a surface of null
2-type if the position vector x of M has the spectral decomposition (1.3).
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We ask the following simple geometric question :

“Determine all surfaces in E® which are constructed from eigenfunctions of
A with two eigenvalues 0 and 2 (+0).”

The purpose of this article is to give a complete solution to this question.
More precisely, we shall prove the following

THEOREM. A surface M in E*® is of null 2-type if and only if M is an open
portion of a circular cylinder.

2. Proof of Theorem.

Let M be a surface in a Euclidean 3-space E®. We denote by 2, A, H, V
and D the second fundamental form, the Weingarten map, the mean curvature
vector, the Riemannian connection and the ncormal connection of the surface M
in E®

Let X, Y be two vector fields tangent to M. Then, for any constant vector
¢ in E3, we have

2.1) Y X<H, ¢c>={DyDxH, ¢>—Ny(AxX), ¢
_<ADX}IY7 C>_<h(yy AHX)y C>;

where <, ) denotes the inner product in E3 Let e,, ¢; be an orthonormal local
frame fields tangent to M. Then (2.1) implies (cf. [2, p. 271])

(2.2) AH=APH+||h|*H+tr (VAp),
where APH is the Laplacian of H with respect to the normal connection D and
2.3) VAp=VAu+Apu.

We need the following lemma.

LEMMA. Let M be a surface in E*. Then tr (NAL)=0 if and only if Va?,
the gradient of o (=<H, H>), is an eigenvector of the Weingarten map A with
eigenvalue —a whenever Va®+0, that is, we have

(2.4) ANa?)=—aVa’ on U={p in M:Na*(p)+0}.

Proof of Lemma. Let ey, e; be an orthonormal local frame field tangent to
M and &=e, a unit local field normal to M. Denote by w,® (A4, B=1, 2, 3) the
connection forms associated with e, e, ¢; and by ', ®® the dual frame of e,, e,.
If we may choose ey, ¢, to be eigenvectors of the Weingarten map A (A=A4,)
with eigenvalues denoted by k,, £,, respectively, then we have

(2.5) AH(ei>=a,ciei ’ i; ]'; k:l, 2 ’
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where H=aé. For simplicity we denote V., by V;. From (2.5) we have
(2.6) (ViAme,=a(eik;)e;+(e;a)k e+ a> (k;—kp)w;i*(e:)es .

Thus, by Codazzi equation, we find

2.7 aleike;—alek)e; =30 a{le;—rr)w*(e;)—(kj— kw5 (e;)} er
from which we obtain

(2.8) alek)=alk;—r;)w;e,) for i#j.
Combining (2.6) and (2.8) we may obtain

(2.9) tr VAg)=3 (V;An)e,=Va*+A(Va).
Consequently, from (2.3) and (2.9) we get

(2.10) tr VAn)=Va?+24A(Va),

from which we obtain the lemma.
Now, assume M is a null 2-type surface in E®. Then the position vector x
of M takes the following form:

(2.11) X=%Xo+x,, Ax,=0 and Ax,=1x,,

for some non-constant maps x, and x,. By using (1.1), (2.11) implies that

(2.12) AH=1H.
Combining (2.2) and (2.12) we find

(2.13) APH=Q—|r|*)H

and

(2.14) tr (VAz)=0.

Let U={pesM: (Na®)(p)+0}. Then U is an open subset of M. Assume
that U is non-empty. Then, by Lemma, the Weingarten map A has eigenvalues
—a and 3a on U. Moreover, by Lemma, we may assume that e,, ¢, are ortho-
normal local frame fields in U such that e, is parallel to Va?. Then we have

(2.15) ws'=aw', wP=—3aw?,
(2.16) da=(e,a)w" .

Taking the exterior differentiation of the first equation of (2.15) and applying
(2.16) and the structure equations, we obtain

(2.17) do'=0.
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Hence we have locally
(2.18) w'=du,

where u is a local function on U. Similarly, by taking the exterior differentia-
tion of the second equation of (2.15), we may find

(2.19) w,'(e;)=(32,2)/4ax .
From (2.18) we obtain
(2.20) @,'(e,)=0.
From (2.16) and (2.18) we have
(2.21) daNdu=0.
This shows that a is function of u, that is a=a(u). In particular, we have
(2.22) da=a’(u)du,
(2.23) daw,'=3a’(u)w’ .

Taking the exterior differentiation of (2.23), we may cbtain the following second
order ordinary differential equation :

(2.24) daa”—T(a’)?+16a'=0.

Let y=(a’)®. Then it is easy to see that equation (2.24) can be reduced to
the following first order differential equation :

(2.25) 2ay'—Ty=—16a*,

where »’ denotes the derivative of y with respect to @. From this equation
we obtain the following solution :

(2.26) y=(a’)*=Ca’*—16a*,

where C is a constant.
On the other hand, since M is of codimension one, equation (2.13) and (2.15)

imply

(2.27) —alAa=(10a’*—2a®.

By using (2.19) we find

(2.28) da(Vye)a=3(a’)?.

Therefore, by applying (2.16), (2.28) and the definition of A, we may obtain

(2.29) dalAa=3(a’)—4aa” .
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Combining (2.27) and (2.29) we find
(2.30) daa”—3(a’+4(2—10a®)a’=0.
Therefore, from (2.24) and (2.30), we obtain
(2.3D (a)?=14a'*—2a®.

Comparing equations (2.26) and (2.31), we conclude that « is constant on U
which contradicts to our assumption. Therefore, U is empty and consequently
the null 2-type surface M has constant mean curvature «. Thus, by applying
(2.13) we see that the second fundamental form A has constant length. Hencs,
by the constancy of the mean curvature and the equation of Gaiss, we have
known that the Gaussian curvature of M is also constant. Since M is assumed
to be of null 2-type, these conditions imply that M is an opzn portion of a
circular cylinder (cf. [1, p.118]). The converse of this is trivial. (Q.E.D.)
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