B.-Y. CHENKODAI MATH. J.11 (1988), 295-299

NULL 2-TYPE SURFACES IN E^3 ARE CIRCULAR CYLINDERS

By BANG-YEN CHEN

Abstract

In this article we prove that open portions of circular cylinders are the only surfaces in E^3 which are constructed from eigenfunctions of Δ with eigenvalue 0 and an eigenvalue λ (\neq 0).

1. Introduction.

Let M be a connected (not necessary compact) surface in a Euclidean 3space E^3 . Denote by Δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of M in E^3 satisfy

$$\Delta x = -2H.$$

This formula yields the following well-known result: A surface M in E^{*} is minimal if and only if all coordinate functions of E^{*} , restricted to M, are harmonic functions, that is,

$$\Delta x = 0.$$

In other words, minimal surfaces are constructed from eigenfunctions of Δ with eigenvalue zero.

According to the famous Douglas and Rado's solutions to the Plateau problem there exist ample examples of minimal surfaces in E^{3} . The study of minimal surfaces in E^{3} has attracted many mathematicians for many years (cf. [3]).

On the other hand, it is easy to see that circular cylinders in E^{3} are constructed from harmonic functions and eigenfunctions of Δ with a nonzero eigenvalue, say λ . The position vector of such a surface admits the following simple spectral decomposition:

(1.3)
$$x = x_0 + x_q$$
, with $\Delta x_0 = 0$ and $\Delta x_q = \lambda x_q$,

for some non-constant maps x_0 and x_q , where λ is a non-zero constant. In the following, we simply call a surface M in a Euclidean space a surface of null 2-type if the position vector x of M has the spectral decomposition (1.3).

Received January 22, 1988

BANG-YEN CHEN

We ask the following simple geometric question:

"Determine all surfaces in E^3 which are constructed from eigenfunctions of Δ with two eigenvalues 0 and λ (\neq 0)."

The purpose of this article is to give a complete solution to this question. More precisely, we shall prove the following

THEOREM. A surface M in E^3 is of null 2-type if and only if M is an open portion of a circular cylinder.

2. Proof of Theorem.

Let M be a surface in a Euclidean 3-space E^3 . We denote by h, A, H, ∇ and D the second fundamental form, the Weingarten map, the mean curvature vector, the Riemannian connection and the normal connection of the surface M in E^3 .

Let X, Y be two vector fields tangent to M. Then, for any constant vector c in E^3 , we have

(2.1)
$$YX \langle H, c \rangle = \langle D_Y D_X H, c \rangle - \langle \nabla_Y (A_H X), c \rangle - \langle A_{D_X H} Y, c \rangle - \langle h(Y, A_H X), c \rangle,$$

where \langle , \rangle denotes the inner product in E^3 . Let e_1, e_2 be an orthonormal local frame fields tangent to M. Then (2.1) implies (cf. [2, p. 271])

(2.2)
$$\Delta H = \Delta^{D} H + \|h\|^{2} H + \operatorname{tr}\left(\overline{\nabla}A_{H}\right),$$

where $\Delta^{D}H$ is the Laplacian of H with respect to the normal connection D and

(2.3)
$$\overline{\nabla}A_H = \nabla A_H + A_{DH}.$$

We need the following lemma.

LEMMA. Let M be a surface in E^3 . Then tr $(\overline{\nabla}A_H)=0$ if and only if $\nabla \alpha^2$, the gradient of α^2 (= $\langle H, H \rangle$), is an eigenvector of the Weingarten map A with eigenvalue $-\alpha$ whenever $\nabla \alpha^2 \neq 0$, that is, we have

(2.4)
$$A(\nabla \alpha^2) = -\alpha \nabla \alpha^2 \quad on \ U = \{ p \ in \ M : \nabla \alpha^2(p) \neq 0 \}.$$

Proof of Lemma. Let e_1 , e_2 be an orthonormal local frame field tangent to M and $\xi = e_3$ a unit local field normal to M. Denote by $\omega_A{}^B$ (A, B=1, 2, 3) the connection forms associated with e_1 , e_2 , e_3 and by ω^1 , ω^2 the dual frame of e_1 , e_2 . If we may choose e_1 , e_2 to be eigenvectors of the Weingarten map A $(A=A_{\xi})$ with eigenvalues denoted by κ_1 , κ_2 , respectively, then we have

(2.5)
$$A_H(e_i) = \alpha \kappa_i e_i, \quad i, j, k=1, 2,$$

296

where $H=\alpha\xi$. For simplicity we denote ∇_{e_i} by ∇_i . From (2.5) we have

(2.6)
$$(\nabla_i A_H) e_j = \alpha(e_i \kappa_j) e_j + (e_i \alpha) \kappa_j e_j + \alpha \sum (\kappa_j - \kappa_k) \omega_j^{\ k}(e_i) e_k$$

Thus, by Codazzi equation, we find

(2.7)
$$\alpha(e_i\kappa_j)e_j - \alpha(e_j\kappa_i)e_i = \sum \alpha\{(\kappa_i - \kappa_k)\omega_i^{\ k}(e_j) - (\kappa_j - \kappa_k)\omega_j^{\ k}(e_i)\}e_k$$

from which we obtain

(2.8)
$$\alpha(e_i\kappa_j) = \alpha(\kappa_j - \kappa_i)\omega_j^i(e_j) \quad \text{for } i \neq j.$$

Combining (2.6) and (2.8) we may obtain

(2.9)
$$\operatorname{tr} (\nabla A_H) = \sum (\nabla_i A_H) e_i = \nabla \alpha^2 + A(\nabla \alpha).$$

Consequently, from (2.3) and (2.9) we get

(2.10)
$$\operatorname{tr}(\overline{\nabla}A_{H}) = \nabla\alpha^{2} + 2A(\nabla\alpha),$$

from which we obtain the lemma.

Now, assume M is a null 2-type surface in E^3 . Then the position vector x of M takes the following form:

(2.11)
$$x = x_0 + x_q$$
, $\Delta x_0 = 0$ and $\Delta x_q = \lambda x_q$,

for some non-constant maps x_0 and x_q . By using (1.1), (2.11) implies that

$$(2.12) \qquad \qquad \Delta H = \lambda H \,.$$

Combining (2.2) and (2.12) we find

$$\Delta^{D} H = (\lambda - \|h\|^{2}) H$$

and

Let $U = \{p \in M : (\nabla \alpha^2)(p) \neq 0\}$. Then U is an open subset of M. Assume that U is non-empty. Then, by Lemma, the Weingarten map A has eigenvalues $-\alpha$ and 3α on U. Moreover, by Lemma, we may assume that e_1 , e_2 are orthonormal local frame fields in U such that e_1 is parallel to $\nabla \alpha^2$. Then we have

(2.15)
$$\omega_3^1 = \alpha \omega^1, \qquad \omega_3^2 = -3\alpha \omega^2,$$

$$(2.16) d\alpha = (e_1 \alpha) \omega^1.$$

Taking the exterior differentiation of the first equation of (2.15) and applying (2.16) and the structure equations, we obtain

$$(2.17) d\boldsymbol{\omega}^1 = 0$$

Hence we have locally

$$(2.18) \qquad \qquad \boldsymbol{\omega}^1 = d\boldsymbol{u} \,,$$

where u is a local function on U. Similarly, by taking the exterior differentiation of the second equation of (2.15), we may find

(2.19)
$$\omega_2^{-1}(e_2) = (3e_1\alpha)/4\alpha$$
.

From (2.18) we obtain

(2.20)
$$\omega_2^{1}(e_1)=0.$$

From (2.16) and (2.18) we have

$$(2.21) d\alpha \wedge du = 0.$$

This shows that α is function of u, that is $\alpha = \alpha(u)$. In particular, we have

$$(2.22) d\alpha = \alpha'(u) du$$

$$(2.23) 4\alpha \omega_2^1 = 3\alpha'(u)\omega^2.$$

Taking the exterior differentiation of (2.23), we may obtain the following second order ordinary differential equation:

(2.24)
$$4\alpha \alpha'' - 7(\alpha')^2 + 16\alpha^4 = 0.$$

Let $y = (\alpha')^2$. Then it is easy to see that equation (2.24) can be reduced to the following first order differential equation:

(2.25)
$$2\alpha y' - 7y = -16\alpha^4$$

where y' denotes the derivative of y with respect to α . From this equation we obtain the following solution:

(2.26)
$$y = (\alpha')^2 = C \alpha^{7/2} - 16 \alpha^4$$
,

where C is a constant.

On the other hand, since M is of codimension one, equation (2.13) and (2.15) imply

$$(2.27) \qquad \qquad -\alpha \Delta \alpha = (10\alpha^2 - \lambda)\alpha^2 \,.$$

By using (2.19) we find

Therefore, by applying (2.16), (2.28) and the definition of Δ , we may obtain

298

Combining (2.27) and (2.29) we find

(2.30)
$$4\alpha \alpha'' - 3(\alpha')^2 + 4(\lambda - 10\alpha^2)\alpha^2 = 0.$$

Therefore, from (2.24) and (2.30), we obtain

$$(2.31) \qquad \qquad (\alpha')^2 = 14\alpha^4 - \lambda \alpha^2 \,.$$

Comparing equations (2.26) and (2.31), we conclude that α is constant on U which contradicts to our assumption. Therefore, U is empty and consequently the null 2-type surface M has constant mean curvature α . Thus, by applying (2.13) we see that the second fundamental form h has constant length. Hence, by the constancy of the mean curvature and the equation of Gaiss, we have known that the Gaussian curvature of M is also constant. Since M is assumed to be of null 2-type, these conditions imply that M is an open portion of a circular cylinder (cf. [1, p. 118]). The converse of this is trivial. (Q. E. D.)

References

- [1] B.Y. CHEN, Geometry of Submanifolds, Mercel Dekker, New York, 1973.
- [2] B.Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore and New Jersey, 1934.
- [3] R. OSSERMAN, Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969.

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN 48824 U.S.A.