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NULL 2-TYPE SURFACES IN E3 ARE CIRCULAR CYLINDERS

BY BANG-YEN CHEN

Abstract

In this article we prove that open portions of circular cylinders are the
only surfaces in Ez which are constructed from eigenfunctions of Δ with
eigenvalue 0 and an eigenvalue λ (=£0).

1. Introduction.

Let M be a connected (not necessary compact) surface in a Euclidean 3-
space E3. Denote by Δ the Laplacian of M associated with the induced metric.
Then the position vector x and the mean curvature vector H of M in E3 satisfy

(1.1) Ax = -2H.

This formula yields the following well-known result: A surface M in E* is
minimal if and only if all coordinate functions of E3, restricted to M, are
harmonic functions, that is,

(1.2) Ax=0.

In other words, minimal surfaces are constructed from eigenfunctions of Δ with
eigenvalue zero.

According to the famous Douglas and Rado's solutions to the Plateau prob-
lem there exist ample examples of minimal surfaces in E3. The study of
minimal surfaces in E3 has attracted many mathematicians for many years (cf.
[3]).

On the other hand, it is easy to see that circular cylinders in E3 are con-
structed from harmonic functions and eigenfunctions of Δ with a nonzero
eigenvalue, say λ. The position vector of such a surface admits the following
simple spectral decomposition:

(1.3) x—XQ-^-Xqy with Δxo=O and Axq=λxq,

for some non-constant maps x0 and xq, where λ is a non-zero constant. In the
following, we simply call a surface M in a Euclidean space a surface of null
2-type if the position vector x of M has the spectral decomposition (1.3).
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We ask the following simple geometric question:

"Determine all surfaces in E3 which are constructed from eigen functions of
Δ with two eigenvalues 0 and λ

The purpose of this article is to give a complete solution to this question.
More precisely, we shall prove the following

THEOREM. A surface M in E3 is of null 2-type if and only if M is an open
portion of a circular cylinder.

2. Proof of Theorem.

Let M be a surface in a Euclidean 3-space E3. We denote by h, A, H, V
and D the second fundamental form, the Weingarten map, the mean curvature
vector, the Riemannian connection and the normal connection of the surface M
in E3.

Let X, Y be two vector fields tangent to M. Then, for any constant vector
c in E3, we have

(2.1) YX<H, c>=<DγDxH, c>-<yγ(AHX), c>

-<ADχIIY, c}-<h(Y, AHX), c>,

where <, > denotes the inner product in E3. Let eu e2 be an orthonormal local
frame fields tangent to M. Then (2.1) implies (cf. [2, p. 271])

(2.2) Δ J / = Δ * # + | | λ | | 2 # + t r {ΪAH),

where ADH is the Laplacian of H with respect to the normal connection D and

(2.3) 1AH=1AH+ADH.

We need the following lemma.

LEMMA. Let M be a surface in E3. Then tr (^AH)—0 *'/ and only if 7a2,
the gradient of a2 (=<//, ϋΓ», is an eigenvector of the Weingarten map A with
eigenvalue —a whenever 7 α 2 ^ 0 , that is, we have

(2.4) A(la2)=-ala2 on U={p in M: Va2(p)ψ0}.

Proof of Lemma. Let eu e2 be an orthonormal local frame field tangent to
M and ζ~ez a unit local field normal to M. Denote by ωA

B (A} B—l, 2, 3) the
connection forms associated with eu e2, ez and by ω1, ω2 the dual frame of eu e2.
If we may choose elf e2 to be eigenvectors of the Weingarten map A (^4=^)
with eigenvalues denoted by κlf κ2, respectively, then we have

(2.5) Aπie^aKiβi, i, j, k=l, 2,
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where H=aξ. For simplicity we denote 7 e . by V*. From (2.5) we have

(2.6) CJiA^e^aieiφj+ie

Thus, by Codazzi equation, we find

(2.7) ΦiKj)ej—φjKi)ei

from which we obtain

(2.8) aiβifc^a^Kj—fc^ω/iej) for

Combining (2.6) and (2.8) we may obtain

(2.9) tr ̂ AH)

Consequently, from (2.3) and (2.9) we get

(2.10) tr (ΪAH)=Va2+2AC7a),

from which we obtain the lemma.

Now, assume M i s a null 2-tyρe surface in Ez, Then the position vector x
of M takes the following form:

(2.11) x — Xo+Xq, Δxo^O and Axq=λxq,

for some non-constant maps xQ and xq. By using (1.1), (2.11) implies that

(2.12) AH=λH.

Combining (2.2) and (2.12) we find

(2.13) ADH=(λ-\\h\\2)H

and

(2.14) tr(WL*)=0.

Let U={p(=M: C7a2)(p)Φθ}. Then U is an open subset of M. Assume
that U is non-empty. Then, by Lemma, the Weingarten map A has eigenvalues
—a and 3a on U. Moreover, by Lemma, we may assume that eu e2 are ortho-
normal local frame fields in U such that ex is parallel to la1. Then we have

(2.15) ω^aω1, ω3

2=-3aω2,

(2.16) da^

Taking the exterior differentiation of the first equation of (2.15) and applying
(2.16) and the structure equations, we obtain

(2.17) dω'=0.
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Hence we have locally

(2.18) ωτ=duf

where u is a local function on U. Similarly, by taking the exterior differentia-
tion of the second equation of (2.15), we may find

(2.19)

From (2.18) we obtain

(2.20) ω2\e1)=0.

From (2.16) and (2.18) we have

(2.21) daAdu=0.

This shows that a is function of u, that is a = a(u). In particular, we have

(2.22) da=a'(u)du,

(2.23)

Taking the exterior differentiation of (2.23), we may obtain the following second
order ordinary differential equation:

(2.24) 4αα / /-7(α /) 2 + l β α 4 = 0 .

Let y=(a')2. Then it is easy to see that equation (2.24) can be reduced to
the following first order differential equation:

(2.25) 2ay'-7y = -16a4,

where yr denotes the derivative of y with respect to a. From this equation
we obtain the following solution:

(2.26) y = {a'Y=CaΊI2-l§a*,

where C is a constant.
On the other hand, since M is of codimension one, equation (2.13) and (2.15)

imply

(2.27) -aAa=(10a2-λ)a2.

By using (2.19) we find

(2.28) 4aC72e2)a=3(a')2.

Therefore, by applying (2.16), (2.28) and the definition of Δ, we may obtain

(2.29)
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Combining (2.27) and (2.29) we find

(2.30) 4aa"-3(a')2+4(λ-10a2)a2=0.

Therefore, from (2.24) and (2.30), we obtain

(2.31) (a')2=Haά-λa2.

Comparing equations (2.26) and (2.31), we conclude that a is constant on U
which contradicts to our assumption. Therefore, U is empty and consequently
the null 2-type surface M has constant mean curvature a. Thus, by applying
(2.13) we see that the second fundamental form h has constant length. Hence,
by the constancy of the mean curvature and the equation of Garss, we have
known that the Gaussian curvature of M is also constant. Since M is assumed
to be of null 2-type, these conditions imply that M is an open portion of a
circular cylinder (cf. [1, p. 118]). The converse of this is trivial. (Q. E. D.)
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