A REMARK ON HOMOGENEOUS LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

By Yoshikazu Hirasawa

1. We use the same notations as in previous papers [1], [2]. Let *I* be a closed interval $[\alpha, \beta] = \{t \mid \alpha \leq t \leq \beta, t \in \mathbf{R}\}$. We denote by $C^{\mu}(I, \mathbf{C})$ the totality of complex-valued functions defined and of class C^{μ} on *I* ($\mu = 0, 1, \dots, \infty$) and hereafter we fix some μ .

For the sake of brevity, we denote $C^{\mu}(I, \mathbb{C})$ by K(I) and $K(I)^{n}$ by M(I):

$$M(I) = \{ f(t) = \operatorname{col}(f_1(t), f_2(t), \cdots, f_n(t) \mid f_j(t) \in K(I), j = 1, 2, \cdots, n \}.$$

Now let B(t) be a square matrix of degree n whose components all belong to K(I):

(1)
$$B(t) = \begin{pmatrix} b_{11}(t) & b_{12}(t) \cdots b_{1n}(t) \\ b_{21}(t) & b_{22}(t) \cdots b_{2n}(t) \\ \vdots & \vdots & \vdots \\ b_{n1}(t) & b_{n2}(t) \cdots b_{nn}(t) \end{pmatrix},$$

and let us assume, throughout this paper, that for a positive integer $s: 1 \le s \le n-1$, a condition

$$rank B(t) = n - s$$

is satisfied on I.

We consider a homogeneous linear equation

(3)
$$B(t)\mathbf{f}(t) = \mathbf{o}$$
 on I ; $\mathbf{f}(t) \in M(I)$,

and we denote the totality of solutions of equation (3) by W(I):

$$W(I) = \{ \boldsymbol{f}(t) \in M(I) \mid B(t)\boldsymbol{f}(t) = \boldsymbol{o} \quad \text{on } I \}.$$

Then, we know that there exist s vectors

$$p_{g}(t) = \operatorname{col}(p_{1g}(t), p_{2g}(t), \dots, p_{ng}(t))$$
 (g=1, 2, ..., s)

belonging to W(I), such that

(4) rank
$$(p_1(t), p_2(t), \dots, p_s(t)) = s$$

Received December 12, 1985

for any $t \in I$.

For a proof of this fact, see, for example, the proof of Theorem in the previous paper [1].

The purpose of this paper is to clarify the relation between the vectors $p_g(t)$ $(g=1, 2, \dots, s)$ given above and any vector

$$\boldsymbol{u}(t) = \operatorname{col}(u_1(t), u_2(t), \cdots, u_n(t))$$

belonging to W(I). A result for this theme will be stated as Theorem in No. 3. Let Q(t) be an $n \times s$ matrix whose components all belong to K(I):

$$Q(t) = \begin{pmatrix} q_{11}(t) & q_{12}(t) \cdots q_{1s}(t) \\ q_{21}(t) & q_{22}(t) \cdots q_{2s}(t) \\ \vdots & \vdots & \vdots \\ q_{n1}(t) & q_{n2}(t) \cdots q_{ns}(t) \end{pmatrix},$$

where s is an integer such that $1 \le s \le n-1$. We denote, in general, a minor of degree s of the matrix Q(t), by

$$Q\begin{pmatrix} i_{1} & i_{2} \cdots i_{s} \\ 1 & 2 \cdots s \end{pmatrix} = \begin{vmatrix} q_{\iota_{1}1}(t) & q_{\iota_{1}2}(t) \cdots q_{\iota_{1}s}(t) \\ q_{\iota_{2}1}(t) & q_{\iota_{2}2}(t) \cdots q_{\iota_{2}s}(t) \\ \vdots & \vdots & \vdots \\ q_{\iota_{s}1}(t) & q_{\iota_{s}2}(t) \cdots q_{\iota_{s}s}(t) \end{vmatrix}$$

$$(1 \le i_{1} < i_{2} < \cdots < i_{s} \le n).$$

2. We give the following two lemmas:

LEMMA 1. Let Q(t) be an $n \times s$ matrix whose components all belong to K(I), where s is an integer such that $1 \leq s \leq n-1$, and suppose that a condition

(5)
$$\operatorname{rank} Q(t) = s$$

is satisfied on I.

Let I_0 be a subinterval of I and let

$$\mathbf{x}(t) = \operatorname{col}(x_1(t), x_2(t), \cdots, x_s(t))$$

be an s-dimensional vector such that $x_g(t) \in K(I_0)$ $(g=1, 2, \dots, s)$ and

 $(6) \qquad Q(t)\mathbf{x}(t) = \mathbf{o} \quad on \quad I_0.$

Then we have $\mathbf{x}(t) \equiv \mathbf{0}$ on I_0 .

Proof. For any $t_0 \in I_0$, we can choose, by assumption, a minor $Q\begin{pmatrix} i_1 & i_2 \cdots & i_s \\ 1 & 2 & \cdots & s \end{pmatrix}$ of degree s of Q(t), not vanishing at t_0 .

Putting

$$\tilde{q}_{g}(t) = \operatorname{col}(q_{i_{1}g}(t), q_{i_{2}g}(t), \cdots, q_{i_{s}g}(t)) \quad (g=1, 2, \cdots, s),$$

we have

(7)
$$\det(\tilde{\boldsymbol{q}}_1(t_0), \, \tilde{\boldsymbol{q}}_2(t_0), \, \cdots, \, \tilde{\boldsymbol{q}}_s(t_0)) \neq 0$$

and in virtue of the relation (6), we get

$$\sum_{g=1}^{s} x_g(t_0) \tilde{\boldsymbol{q}}_g(t_0) = \boldsymbol{o} \, .$$

Hence the condition (7) implies $\mathbf{x}(t_0) = \mathbf{0}$ and since t_0 is any point in I_0 , we see $\mathbf{x}(t) \equiv \mathbf{0}$ on I_0 .

LEMMA 2. Let $p_g(t)$ $(g=1, 2, \dots, s)$ be s vectors belonging to W(I) and satisfying the condition (4) on I, and let u(t) be any vector belonging to W(I).

Then we have

(8)
$$\operatorname{rank}(\boldsymbol{p}_1(t), \cdots, \boldsymbol{p}_s(t), \boldsymbol{u}(t)) = s \quad \text{on } I.$$

Proof. We put
$$P(t) = (\mathbf{p}_1(t), \mathbf{p}_2(t), \dots, \mathbf{p}_s(t))$$
 and then we have always

 $s \leq \operatorname{rank} (P(t), u(t)) \leq s+1$ on I.

If there were a point $t_0 \in I$ such that

rank $(P(t_0), u(t_0)) = s + 1$,

then, since

 $B(t_0)(P(t_0), u(t_0)) = O$,

we should obtain

rank
$$B(t_0) \leq n - (s+1)$$
;

this, however, contradicts the condition (2). Therefore we have always the equality (8) on I.

3. We shall prove the following theorem:

THEOREM. Let

$$p_g(t) = \operatorname{col}(p_{1g}(t), p_{2g}(t), \dots, p_{ng}(t)) \quad (g=1, 2, \dots, s)$$

be s vectors belonging to W(I) and satisfying the condition (4) on I, and let

$$\boldsymbol{u}(t) = \operatorname{col}(u_1(t), u_2(t), \cdots, u_n(t))$$

be any vector belonging to W(I).

Then we can represent u(t) uniquely as a linear combination of the vectors $p_g(t)$ $(g=1, 2, \dots, s)$ with coefficients $\zeta_g(t)$ $(g=1, 2, \dots, s)$ belonging to K(I):

(9)
$$\boldsymbol{u}(t) = \sum_{g=1}^{s} \zeta_{g}(t) \boldsymbol{p}_{g}(t)$$

on I.

Proof. We put $P(t)=(\boldsymbol{p}_1(t), \boldsymbol{p}_2(t), \cdots, \boldsymbol{p}_s(t))$.

There exists, in virtue of the condition (4), a set $\{I_{\kappa}\}_{\kappa=1}^{\kappa_0}$ of subintervals of I, possessing the following properties:

- (i) $I = \bigcup_{\kappa=1}^{\kappa_0} I_{\kappa};$
- (ii) $I_1 = [\alpha_1, \beta_1), I_{\kappa_0} = (\alpha_{\kappa_0}, \beta_{\kappa_0}], \alpha_1 = \alpha, \beta_{\kappa_0} = \beta, I_{\kappa} = (\alpha_{\kappa}, \beta_{\kappa}) (\kappa = 2, 3, \dots, \kappa_0 1);$
- (iii) $I_{\kappa} \cap I_{\kappa+1} \neq \emptyset$ ($\kappa=1, 2, \cdots, \kappa_0-1$), $I_{\kappa} \cap I_{\kappa'} = \emptyset$ ($\kappa+1 < \kappa', \kappa=1, 2, \cdots, \kappa_0-2$), that is, $\alpha_1 < \alpha_2 < \beta_1 < \cdots < \alpha_{\kappa} < \beta_{\kappa-1} < \alpha_{\kappa+1} < \beta_{\kappa} < \cdots < \beta_{\kappa_0-2} < \alpha_{\kappa_0} < \beta_{\kappa_0-1} < \beta_{\kappa_0}$ ($\kappa=2, 3, \cdots, \kappa_0-1$);
- (iv) For each I_{κ} , there exists a minor of degree s of P(t), which does not vanish on I_{κ} .

We consider first the interval I_1 and choose a minor $P\begin{pmatrix} i_1 & i_2 \cdots i_s \\ 1 & 2 \cdots s \end{pmatrix}$ of degree s of P(t) such that a condition

(10)
$$P\begin{pmatrix}i_1 & i_2 \cdots i_s\\ 1 & 2 & \cdots & s\end{pmatrix} \neq 0$$

is satisfied on I_1 .

Let us define (n-s)-tuple $(i'_{s+1}, i'_{s+2}, \dots, i'_n)$ for $1 \le i_1 < i_2 < \dots < i_s \le n$ in such a way that $1 \le i'_{s+1} < i'_{s+2} < \dots < i'_n \le n$ and $\{i_1, \dots, i_s, i'_{s+1}, \dots, i'_n\} = \{1, 2, \dots, n\}$ and put

$$\begin{split} \tilde{p}_{s}(t) &= \operatorname{col}(p_{i_{1}g}(t), p_{i_{2}g}(t), \cdots, p_{i_{s}s}(t)) \quad (g=1, 2, \cdots, s), \\ \tilde{p}'_{s}(t) &= \operatorname{col}(p_{i'_{s+1}s}(t), p_{i'_{s+2}s}(t), \cdots, p_{i'_{n}s}(t)) \quad (g=1, 2, \cdots, s), \\ \tilde{u}(t) &= \operatorname{col}(u_{i_{1}}(t), u_{i_{2}}(t), \cdots, u_{i_{s}}(t)), \\ \tilde{u}'(t) &= \operatorname{col}(u_{i'_{s+1}}(t), u_{i'_{s+2}}(t), \cdots, u_{i'_{n}}(t)). \end{split}$$

Since, in virtue of the fact that the condition (10) is satisfied on I_1 , we know

$$\det(\tilde{\boldsymbol{p}}_1(t), \, \tilde{\boldsymbol{p}}_2(t), \, \cdots, \, \tilde{\boldsymbol{p}}_s(t)) \neq 0 \qquad \text{on} \quad I_1$$

we can represent the vector $\tilde{u}(t)$ as a linear combination of the vectors $\tilde{p}_g(t)$ $(g=1, 2, \dots, s)$ with coefficients $\zeta_g(t)$ $(g=1, 2, \dots, s)$ belonging to $K(I_1)$:

(11)
$$\tilde{\boldsymbol{u}}(t) = \sum_{g=1}^{s} \zeta_g(t) \tilde{\boldsymbol{p}}_g(t)$$

on I_1 .

Furthermore, we wish to show that the vector u(t) can be represented on I_1 , as a linear combination (9) of the vectors $p_g(t)$ $(g=1, 2, \dots, s)$ with the same coefficients $\zeta_g(t)$ $(g=1, 2, \dots, s)$ as in the representation (11). To this end, we have only to prove that a representation

(12)
$$\tilde{\boldsymbol{u}}'(t) = \sum_{g=1}^{s} \zeta_g(t) \, \tilde{\boldsymbol{p}}'_g(t)$$

holds on I_1 .

If there were a point $t_0 \in I_1$ and an index ρ $(s+1 \leq \rho \leq n)$ such that

$$u_{i'_{\rho}}(t_0) \neq \sum_{g=1}^{s} \zeta_g(t_0) p_{i'_{\rho}g}(t_0),$$

then we should have

$$\operatorname{rank}(P(t_0), u(t_0)) = s + 1$$
.

This equality contradicts the result which was proved in Lemma 2. Therefore we have the representation (12) on I_1 .

Next we consider the second interval I_2 and then, in the same way as for the interval I_1 , we get a representation

(13)
$$\boldsymbol{u}(t) = \sum_{g=1}^{s} \theta_{g}(t) \boldsymbol{p}_{g}(t)$$

on I_2 , where $\theta_g(t) \in K(I_2)$ $(g=1, 2, \dots, s)$.

It follows from the representations (9) on I_1 and (13) on I_2 , that

$$\sum_{g=1}^{s} (\boldsymbol{\zeta}_{g}(t) - \boldsymbol{\theta}_{g}(t)) \boldsymbol{p}_{g}(t) \equiv \boldsymbol{0}$$

on $I_1 \cap I_2$, and hence by Lemma 1, we obtain

$$\zeta_g(t) \equiv \theta_g(t) \qquad (g=1, 2, \cdots, s) \qquad \text{on} \quad I_1 \cap I_2.$$

Therefore, by defining functions $\zeta_g(t) \in K(I_1 \cup I_2)$ (g=1, 2, ..., s) as follows:

$$\boldsymbol{\zeta}_{g}(t) = \begin{cases} \boldsymbol{\zeta}_{g}(t) & \text{on } I_{1}, \\ \boldsymbol{\theta}_{g}(t) & \text{on } I_{2}, \end{cases}$$

we have the representation (9) on $I_1 \cup I_2$.

By repeating the process mentioned above for the intervals I_{κ} ($\kappa=1, 2, \dots, \kappa_0$) successively, we obtain the representation (9) on the whole interval I.

Remark. The fact stated in the above theorem was used by Y. Sibuya without proof in his paper [3].

References

- HIRASAWA, Y., On solutions of a homogeneous linear matrix equation with variable components, Kodai Math. J., 6 (1983), 70-79.
- [2] HIRASAWA, Y., On the construction of linearly independent vectors with variable components, Kodai Math. J., 7 (1984), 34-55.

270

[3] SIBUYA, Y., Some global properties of matrices of functions of one variable, Math. Ann. 161 (1965), 66-77.

> DEPARTMENT OF MATHEMATICS Tokyo Institute of Technology