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ON THE GAUSS MAP OF MINIMAL SURFACES
IMMERSED IN R

By MASAHIKO FUJIKI

1. Introduction.

The Gauss map of a minimal surface M in R™ can be considered as a
holomorphic mapping from M to the complex quadric @,-, in the complex pro-
jective space CP"-! with the Fubini-Study metric of constant curvature 2. This
paper is devoted to the question, “If a minimal surface M in R™ has a constant
curvature K in its Gaussian image, what values of K can be possible?”.

This question comes from Ricci’s classical theorem;

There exists a minimal surface in R® which is isometric with M iff (M, ds?)
satisfies Ricci condition:

(i) Gaussian curvature K of M is negative,

(ii) the new metric d82=+~/—Kds® is flat on M.

The condition (i) is known to be equivalent to the condition “K=1”. (see
Lawson [2])

Concerning the question, the following are well-known ;

(a) If K=1, then M must lie fully in R® or R°®. And all the minimal sur-
faces isometric to M make a two parameter family. (Lawson [2])

(b) Minimal surfaces in R* which have constant curvature K in their Gaus-
sian images are classified as follows;

i. K=1, and M lies in some affine R?,

ii. K=2, and M is a holomorphic curve in CZ
Here C? means R* with some orthogonal complex structure. (Osserman-Hoffman
[51

(¢) And in R?,

i. K=1or 2, and M lies in R* (these are the cases (b).)

ii. K=1/2, and the Gaussian image of M can be represented locally as;

1/2(0—w?, i+-iw?, 2w+2w?, 2iw—2w?3, 24/ 3iw?)
(Masal’tsev [4])

To get these results, Calabi’s theorem [1] plays the main role. Using the
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method in [2], [4] and [5], following results are obtained;

THEOREM A. For every positive integer m, there exists a mimmal surface
with K=1/m in 2m-+1 dimensional Euclidean space.

THEOREM B. For every integer m=5, there exists a nummal surface with
K=2/@2m—1) in 2m dimensional Euclidean space.

THEOREM C. Let k=3,5, or 7. Then there exists a mummal surface M with
R=2/k in k+3 dimensional Euclidean space.

The author wishes to express his hearty thanks to Professor S. Tanno 'and
the referee for their valuable suggestions.

2. Preliminaries.

Let M be a surface immersed in R”. It means that there exists a con-
formal immersion

X:S—>Rn, X:(le XZ: "ty X’ﬂ)
where S is a Riemann surface. Here we define the Gauss map g as follows;

g:S — Qn—zZ{ZECP"”]EZ@IO}

X 3X, 9X, 08X,
0= 550" ™ 5)

where w=u,+iu, is a local coordinate of S.
By definition a surface M is minimal if

4X,=0 for 7=1,2, -, n
0? 0?

where 4= P + T

It is known that g(w) is holomorphic iff M is a minimal surface. (see [5])
In this paper we exclude the case where M is a plane.

Let CP™-! have the Fubini-Study metric with ‘constant holomorphic curva-
ture 2;

Jse ZEk‘Zdek—deZjlz
§t=

PR

Let K’(p) denote the Gaussian curvature of g(S)C@Q,-,CCP"™! at a point p&S.
It follows immediately that

K(p)=2.



46 MASAHIKO FUJIKI

3. Results.

Let M be a minimal surface in R* with K=c¢ (constant). Then Calabi’s
results tell us that ¢ must be the form 2/k, <N, and it must satisfy

(1) E<n—1.
And furthermore, g(S) must be represented locally
tg(w)=Uy,

where U denotes an nXn unitary matrix, and

ykzl(l, «/ij, ‘/(ZT)WZ’ \/@wk, 0, -, 0).

From the fact that g(S)C@Q,-;, g(w) must satisfy

g(w)-*g(w)=0
It is equivalent to

(2) 'y UUy:=0

Now we set
tUU=A=(a.;) i, =1, -+, n.

Here A is a symmetric unitary matrix. So, a,,=aj;.

THEOREM A. For every positive integer m, there exists a minimal surface
with K=1/m in 2m-+1 dimensional Euclidean space.

Proof. From the fact

() (Y3 (),

the matrix
0 0 0 0 -1
0 0 0 1 0
0 0 -1 0 0
0 0 -1 0 0
0 1 0 0 0
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satisfies the properties of A. Because it is a real orthogonal matrix, it is diag-
onalizable in the sense of real matrices, and its eigenvalues are 1 or —1. So,
the unitary matrix U is easily calculated. q.e. d.

THEOREM B. For every integer m=5, there exists a minimal surface with
R=2/@2m—1) in 2m dimensional Euclidean space.

Proof. Let
P(j)= éo(zmi— D). = zgl(zmi— )

There exists 7, s.t. P(70)=<Q(j,), and P(j,+1)=Q(,+1). Now set

2m—1)'

P=PGy), Q=QU», R=("""

These P, Q and R satisfy the triangle inequality. So, there exist two real
numbers 0, ¢ s. 1.

(3) P+Qet’ +Rerv=0
Let us define the symmetric unitary matrix A as follows;
1 for 1=5s=j,+1 or 1=2m+1—s=<j,+1
Qg omi1-s=1 €% for j,+2<s<m—1 or j,+2=<2m+1—s=<m—1
e for s=m, m+1
as, ;=0 for t#2m+1—s
It is easy to see that the matrix A is decomposed as
A=UU

where U is a unitary matrix. Then, from (3), the equation (2) is satisfied.
q.e. d.

THEOREM C. Let k=3,5, or 7. Then there exists a minimal surface M with
R=2/k in k+3 dimensional Euclidean space.

Proof. In this case the matrix A is given as follows;
for i+j=k+2, i#(k+1)/2, (k+3)/2, a,=1,
for (G, )=((k+1)/2, (k+3)/2), (k+3)/2, (k+1)/2),
aw___a_—_{gz(f>}/(mil)<l where m=(k+1)/2,
for @, N==k+1)/2, k+2), (R+3)/2, k+3), (k+2, (k+1)/2),
(43, (k+3)/2),  a,=vI-a?,
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for @, j)=(k+2, k+3), (k+3, k+2), a,=—a,

otherwise, a,,=0. q.e.d.

Now, we know Calabi’s inequality (1) is best possible when k=#1, 3,5, 7.
And when k=1, 3, the minimum = is 4, 6 respectively. But when £=5, 7, the
minimum 7 are unknown. In other words, it is unknown whether minimal
surfaces with K=2/5 (2/7) exist in R®, R” (in R%, R® respectively), or not.

Remark 1. In theorem A., if n=3, then K=1 and matrix A must be the
form;

0 0 -1
0 1 0
—1 0 0
And,
1/2 0 -—1/2
U=|1/2 0 /2
0 1 0

(mod orthogonal transformations in R?).

From this, we can obtain classical Weierstrass-Enneper’s expression formula for
classical minimal surfaces.

Remark 2. Also in theorem A., if n=5, then K=1/2 and
1/4/2 0 0 0 —1/v/2

i/lv2 0 0 0 /N2
U= 0 1«2 0 1/v2 0
0 v2 0 —i/v2 0
0 0 i 0 0

(mod orthogonal transformations in R°®)

Combining the fact that no minimal surfaces with K=2/3 exist in R®, Masal’-
tsev’s theorem is obtained. (see [4])
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