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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS

OF A CERTAIN SECOND ORDER ORDINARY

DIFFERENTIAL EQUATION

BY ATSUSHI YOSHIKAWA

§ 1. Introduction.

Consider the following ordinary differential operator of second order:

(1.1) P

Here k belongs to the set R+ of the positive numbers, c to the complex number
field C, and (f, y) lies in the Euclid plane R\

The purpose of the present article is to give a fundamental pair of the solu-
tions to the equation:

(1.2) Pu=0

with detailed asymptotic properties as &-*+oo. The novelty we claim here is its
derivation as we will roughly sketch immediately after the statement of our
Main Theorem (Theorem 1.1) below. Our asymptotic expansions are in fact
different from usually given ones (see Nishimoto [5]). We expect that our re-
sults will be extended to partial differential operators such as

Details on the latter case will be discussed elsewhere.
Now we explain what will be required in our formulation of asymptotics.

Let

(1.3) Tε(t, y) = et+VF+y*> ^ {+, ~K

and denote by Dε the set of (ί, y, k) such that k>0, Tε(t, y)>0, y running on the
real line R. Thus, Dε is the portion of the half space Rl—{(t, y, k); k>0) ob-
tained by deleting the quarter plane {(ί, y, k); εt^O, y=0, k>0}. Dε and the
quarter space R+xRxR+ are diffeomorphic by the bijection:

Φ.(ί, y, ft) = (T.(f, y), y, k), (ί, yf

We will consider everything in the Frechet space β{Dε) of the infinitely differen-
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tiable functions on Dε. Several particular classes of subspaces of ε(Dε) will play
essential roles in our asymptotic expansions. Denote by R+ the multiplicative
group of the positive numbers. The jR+-action in Dε:

(1.4) gP : (f, y, k) — > {p-"% p'^y, pk), p>0,

and

(1.5) hp : (t, y, k) —* (ί, y, pk), p>0,

respectively induce the differentiable /2+-action in S(D£):

(1.40 (gpu)(t,y, k) = u(gp(t,y, k))9

and

(1.50 (hpu)(t, y, k) = u(hp(t, y, k)),

u£Ξ£(Ds) (cf. Yoshikawa [9]).

Let / I G C . We denote by Γμ(Dε)hp) the set of the hp-homogeneous elements
of degree μ:

Γ^(Dε;hp)^{u^ε(Dε); hpu = p^u for all io>0}.

Γμ(Dε;gp) is defined analogously. On the other hand, for any s E β , we denote
by jφs(Dε;hp) the totality of those U<Ξ£(D£) such that for any po>O the set
{p~shpu; p^po) is bounded in β(Dε). We will also use the spaces

\ ε ; p ) r \ ( ε ; p )
r>0

and
<3-(Dε;hp)= Π <Bs(D£;hp).

^ -oo<S<^

Note Te(t, y)<^Γ~1/2(Dε;gp). The operator P is ^-^-homogeneous of degree 1 in
the sense

(1.6) gpPg'p^pP, p>0

However, we take as the symbol σP{tf y, τ, η) of the operator P the function

σP{t,y,τ, V) = -τ*+t2+y2.
Let

(1.7) Λδ

g={(t9y9kτ9kη9k); τ=eδV?+^9 η^δy log{VkTε(t, y)}} (t9 y, k)^D£},

ε, <5<Ξ {+, —}. Here we adopt the convention: ε ^ = + if ε=<5, and εo=— if ε^d
for ε, δ<^ {+, —}. The symbol σP of P vanishes on Λ\. For each ε, δ, Λδ

ε is
invariant under the /^-actions gp and hp. Λδ

ε is interpreted as a Hamilton flow
associated to the Hamiltonian τ—εδVt2-{-y2. Although
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dk
(1.8)

along Λδ, we have a generating function:

(1.9) Sδ(t, y, k)^^-W¥+J2+~y2

in the sense

(1.10) Λδ={(t, y, kdtS
δ(t, y, k), kdyS

δ(t, y, k\ k); (f, y,

Note that kSδ

s(t, y, k) is a primitive with respect to t of εδ&VP+y and is gp-
homogeneous of degree 0. The requirement on ^^-homogeneity determines Sf
uniquely from (1.8) and (1.10). By the way, Sδ(t, 0, k)=(δ/2)t2 since εt>0 when

Now we are ready for stating our main result:

THEOREM 1.1. Let s e {+, —} be fixed. There are a fundamental pair
vt(t, y> k) and vj(t, y, k) of the solutions to the equation (1.2) in R2xR+ which
enjoy the following properties:

( i ) vt(t,y,k) and vj(t,y,k) are infinitely differentiate in (t,y,k)^R2xR+.
(ii) vδ(tyyfk)exp{-V:::ΪSδ

ε(tJyfk)k}^e(Dε)f <5e { + , - } .
(iii) Let

(1.11)

There are families of functions

(1.12) ui it, y, k)

j=0, 1, 2, •••, such that

(1.13) u»,(ί f j>, * ) =

αncί

(1.14) w»(ί, >, *)exp{-V=IS»(f, y, * ) * } - Σ uij(t, y, k)

for any positive integer N {See Lemma 2.2 to decipher function spaces).
(iv) The wronskian is given by

(1.15) vΐ(t, y, k)dtvτ(t, y, k)~v~{t> y, k)dtv
+(t, y, ^ ) = - 2 V : r ϊ ^ .

Remark. (1.12) implies uδ

ttJ(t, y, k)=uδ

ε>j(t, y, l)k~J, k>0. Note also

(1.130 uδ,0(t, y, k)=\dtTt(t, y)\1/2Tε(t, y
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As far as the equation (1.2) is concerned, there might be several proofs to
Theorem 1.1. One such proof might be based on Laplace's method by giving
an integral representation of a solution of (1.2). In fact, there have been closely
related studies by such an approach (Alinhac [1], Sibuya [6], cf. Yoshikawa
[10]). Another proof would be done by relating solutions of (1.2) to particular
confluent hypergeometric functions (e.g., Erdelyi et al. [3]). Namely,

(1.16) U^Uy, k)

make up fundamental pair of the solutions of (1.2). Here, for complex a,
Ψ(a, 1/2 z) is a confluent hypergeometric function, and

Ψ(a, 1; τ V = I . )=

are entire functions of s and a (cf. Yoshikawa [8]). However, through these
methods, detailed asymptotic properties of the solutions of (1.2) might not be
easily obtained.

On the other hand, our present approach is based on classical Frobenius'
method (compare, however, with Taylor [7]). It makes visible how each term
in the asymptotic expansions (1.14) is determined from the equation (1.2). Thus,
determination of uδ

sj(t,y, k) is rather obvious. The only non-trivial part in our
approach is to show that there are actually solutions with given asymptotic ex-
pansions. We do this essentially following Erdelyi [2] by solving Volterra type
integral equations. Here lie some difficulties, though. For we will be working
on the infinite interval (0, +oo) and in the Frechet space Γ°(Dε gp)r\B'°°{D£ hp).
This means that the customary successive approximation is not recommended,
but, as we will expound below, a variant of the contraction principle will do
the work.

Some further remarks are due now. Firstly, note the operator (1.1) is in-
variant under the reflections ί->—t or y-^—y. Also Tε(t, y)=Tε>(—t, y'), eΦε',
y'=±y. Therefore, Theorem 1.1 provides two sets of fundamental pairs of the
solutions of (1.2):

vl(t, y, k), δϊΞ{+, -}
and

Λ{t,y, k), δtΞ { + , - } .

However, we do not know the explicit form of the transformation matrix 5—
(S»'(y,k))ι

t( y, *)= Σ SP\y
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Secondly, our discussions are valid even if we replace Dε by the set Dε of
(t,y, k)^CxRxR+ such that Tε(t,y) does not touch the non-positive real axis.
We then have to replace ε(Dε) by the Frechet space θφε) of the smooth func-
tions on Dε, holomorphic in t, infinitely differentiate in (y, k). Details are left
to the reader, including complex extensions of y and k.

Finally we recall that a result closely related to Theorem 1.1 has played an
essential role in constructing parametrices for a certain class of non-strictly
hyperbolic partial differential operators (See [1], [10]).

§ 2. Formal construction.

In the present section, we show the formal part of Theorem 1.1. We take
e=-{- and omit the reference to ε in what follows. So we simply write D,
Άt, y), v*(t, y> k), S\t, y, k), or uδ(t, y, k) instead of D+, T+(t, y), υ%(t, y, k),
S'+(t,y,k) or uδ

+.j(t,ytk).
Let Sδ(t,y,k), <5e{+, - } , be defined by (1.9), e = + . Then Sδ(t,y,k)k£Ξ

Γ°(D;gp)Γλ<B1+0(D;hp). Let

(2.1) Pδu=exp{-V^ΪSδ(t, y, k)k}Plexp{V=ΪSδ(t, yy k)k}u~\,

u<^β(D), δ<^{+, —}. The operators Pδ are gp-homogeneous of degree 1, but

(2.2)

where

(2.3) P'1 ^

and

(2.4) Pδ=dj

The relation (2.2) is a decomposition of the operators Pδ into hp-homogeneous
parts.

PROPOSITION 2.1. There are a pair of formal series

(2.5) u%(f, y , k)= ± u % t , y , k ) , δ<= { + , - } ,
J 0

such that v%{t, y, k)—u%(t, y, tyexpW^ΛS^t, y, k)k}, δ^ { + , —}, are formal solu-
tions of the equation Pv=0. Furthermore, for j^O,

(2.6) u%t, y, k)<ΞΓP<δ\D;gp)Γ\Γ->(D;hp),

where μ(δ) are given by (1.11), δ^ { + , —}. uδ(t,y, k) are determined from the
equations:
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(2.7) 4

and

(2.8)

for i ^ l . /n particular, we can take

(2.9) iί{(ί, y, *)=(ί β +> 8 )- 1 / 4 T(ί, j ) * ^ " 8 .

The proof of this proposition is based on two facts. One is the following
observation:

(2.10) Vt*+ydt=rdr, r=T(t, y),

and another is the following

LEMMA 2.2. Let u(t, y, k)<^ru(D;gp)n$s(D;hp), SZΞR, V^C. Then for

any ko>O, y0>0, ro>O and any integer ι,j, m^O,

(2.11) \dtdξdΓu(tf y, k)\^CT(t, y)-*κe»-ι-j+**k*-m

for T(t,y)^r0, \y\^y0T(t, y), k^k0, with a positive constant C depending on k0,

y0, r0, i, h m.

L e t u s s h o w (2.11) fo r 2 = 7 = 7 7 1 = 0 . S i n c e u^Γv(D;gp), u(t,y,k) =
r-2vu(r-H, r~xyy r

2k), r=T(t, y). Note T(r~Hf r'ιy)^l then. Since UΪΞ <Bs(D;hp),
\u{r'H9 r~ιy, r2k)\^C(r2k)s if r2k^r2

0k0 and \r~λy\ ^y0, T(r~H, r'ιy)=l, with an
appropriate constant C>0.

Returning to the proof of Proposition 2.1, we observe

(2.12) Pδ

1

(2.9) is then immediate from (2.7). Putting

(2.13) £/J(ί, y, k)=u%t, y, k)/uδ

0(t, y, k),

we obtain from (2.8) and (2.10),

(2.14) ^

r=T(t,y). Now the induction on j works. In fact, i/J=l. If U^-^Γ^D; gp)
Γ)Γ->+\D;hp), then

Thus, by Lemma 2.2, we can integrate {2^'I^kY1r--1uld\{ulUδ

)-1)t r=T(t, y), from
r = + o o to r—T(t,y) parallel to the r-axis in the (r, ;y)-ρlane. We then have
Uδj<ΞΓ0(D;gp)rΛΓ-J(D;hp), and the induction is complete.
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PROPOSITION 2.3. There are a pair of functions

(2.15) u'a(t,y, k)Gl

such that for each N— 0, 1, 2, •••,

(2.16) u'a(t,y, k)-jlu%t, y,

Here is a standard proof. Let φ(ξ)£ΞC~(R) such that φ(ζ)=l for £>1 and
φ(ξ)=O for f <l/2. Let

φn(t,y, k)=φ(pnT(t,yW~k),

pn>0 to be chosen later. We have

and
D\ gp)Γ\<B-{D\hp).

Let AΓm.p= {(t, y, k)^D; m'^ΊXU y)ύm, \y\^mT(f, y), 2~^^k^2^} m=l, 2, - ,
jfr=l, 2, •••. Then î m.p are compact and \Jm,pKmtP—D. For integers /, j ,
let

and for integers i, j , I, N^O, n, m, p^lf q=0, ± 1 , ± 2 , •••,

(r=T(t, y))9 where t/J(f, y, έ) are those of (2.13). We now take pn as follows.
p0 and /?! may be arbitrary. For nΞ>2, we take 0< i o n ^min{l, 2"n/ΛΛ}, where

An = SUp . ,^Σ,^.^ vy^ fjΦ}-j'+n-N.j',i'Ψn,ι-i',l,j-j',m,p,2j-i'+2n-2N>

supremum being taken over i,j, I, N^O, m, p^l such that i+j+l+p+m+N+l
Sn (cf. Hormander [4]). It then follows that the sums Σ»=o Uδ

n(t,yfk)φn(tfyfk)

converges in Γ°(D gp)Γ\B\D hp). Then

ul(t, y, k)=uδ

Q(t, yy k) Σ U'n(t, y, k)φn(t, y, k)

meet the requirements (2.15) and (2.16).

COROLLARY 2.4 We have

(2.17) Wi(t, y, k)=Pδui{t, y,

δ^{+t - } , and
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(2.18) R'a(t, y, k)=P(uδ

a(t, yy k)exp{V=ΪSδ(t, y, k)k})

Proof. (2.17) follows from (2.16), (2.12), (2.13), and (2.14). (2.18) is then im
mediate from (2.1).

§ 3. Exact solutions asymptotic to formal ones.

Corollary 2.4 means that

(3.1) vl(t, y, k) = uδ

a(t, y, *)exp{V=TS*(f, y, k)k}, δ^ { + , - } ,

are approximate solutions of the equation (1.2). We show in this section that
we can find complementary functions

(3.2) zδ(t, y,

so that

(3.3) v\t, y, k) = (uδ

a(t, y, k)+zδ(t, y, k))exp{V=ϊS\t, y, k)k)

are exact solutions of the equation (1.2), which admit the asymptotic expansions
(1.14).

Let

(3.4) V'S, y, k) = uδ

0(t, y, k)exp{V=ΊSδ(t} y, k)k).

Then Vδ

Q(t,y,k)<ΞΓ^δ\D;gp) and

(3.5) Wl(t,y, k)\>0.

Let

(3.6) Zδ(t, y, k)=zδ(i, y, k)/uδ

0(t, y, k).

We want to determine Zδ(t, yy k) from

(3.7) P{Vi(t, y, k) + Vδ(t, y, k)Z\t, y9 fe))=0

with

(3.8) Z\t, y , k)ς=Γ°(D; gp)n&""(D; h p ) .

It will often be more convenient to discuss in the arguments r—T{t,y),y,k
rather than in the original ones t, y, k. A given function W(t, y, k) will be
written W(r, y, k) if it is expressed in r, t, k. In other words. W(T(t, y), v, k)
= W(t,y,k).

PROPOSITION 3.1. Let
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/Q Q\ ftδ(r rf v b) — Y \ Vδ(t> v k)~2 di)-(VδPVδ)A(r' v k)

Then Zs(r,y, k) satisfy the integral equations:

(3.10) Zs(t, y, k)+[ Λ»(r, r', y, k)Z\r', y, k)dr'=Q\r, y, k)

in Γ\D\gp)Γ\&-~(D)hp). Here

(3.11) Qδ{r, y, * ) = - Γ Γ

0

+

/ 2

y Γ Vδ

0(p, y, kY2 P^J dp'Vδ

0(r', y, k)Rδ

a{r\ y, k)dr'
J°o Δr Jr' Δp

Proof. First observe that (3.7) (3.1) and (2.18) imply

or

because of (1.3) (2.10). By Lemma 2.2 and (3.8) we have

integrating along a line prallel to the r-axis in the (r, jy)-plane. Integrating once
more, and changing the order of integrations, we obtain (3.10). To verify (3.11)
as well as for a later purpose we state the following

LEMMA 3.2. For 0<rSr', y^R, k>0, we have

(3.12) Kδ(p-^rf p-u*r'9 p~1/2y, pk)=p^R\r, r', y, k)9

ρ>0, δ^ {+, —}. For any non-negative integers i, i', j , /,

(3.13) \didi',didl

kK
d(r, r\ y , k ) \ ^

if ro^r^r^r1} \y\ ̂ y0) k^k0. Here r0, rlf y0, k0 are arbitrary positive numbers
and C is a positive constant depending on i, V', j , I, r0, ru y0, k0.

Proof, Obvious.
Let

(3.14) {K'f)(t, y, k)=[R\r, r'', yy k)f{r', y, k)dr'\r=T{tty).

(3.13) then implies that Kδf belongs to Γ0(D;gp)r\^-°°(D;hp) if so does/.
Using a similar estimate to (3.13), we see (3.11) because of (2.18). This com-
pletes the proof of Proposition 3.1.
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Thus to show the existence of Zδ(t, y, k) with (3.7), (3.8), it is enough to
show

PROPOSITION 3.3. The operator I+Kδ in Γ0(D;gp)r\$-°°(D;hp) is a bijec-
tion for each d e { + , —}. Here I is the identity operator and Kδ the integral
operator (3.14).

Before giving a proof of this proposition, we rewrite the space Γ°(D;gp)
Γ\g}-°°(D;hp) in a more convenient form. We also rewrite the integral operator
(3.14) accordingly.

We begin by introducing the space S(R+xR) which consists of the func-
tions p(r, y)^C°°{R+xR) such that for each ro>O, 3>0>0 and non-negative
integers /, j , N there is a positive constant C for which

(3.15)

holds when r^r0, \y\<Lyor. Let p(r} y)^S(R+xR). We define the mapping θ by

(3.16) (θp){t, y, k)=p(VIT(t, y), VJy), P^S(R+XR).

PROPOSITION 3.4. The spaces Γ\D gp)Γ\^'co{D hp) and S(R+xR) are iso-
morphic via the mapping θ.

Proof, q{t, y, k)^$-°°(D, hp) means that for any jyo>O, r ! > r o > 0 , &0>0 and
any non-negative integers /, j , ί, N, a positive constant C is chosen so that

(3.17) \

holds when

(3.18) \y\£y

If, furthermore, ς^Γ°(D;gp), then

(3.19) q(t, y, k)=q(VTt, V~ky, 1)

=q(t/T(t, y), y/T(t, y),T(t, y)*k).

Now observe that

(3.20) VTT(t, y)^r'o, VT\y\^yWTT(t, y)

holds under (3.18) if rΌ=VYorQ and y^—y^lr^. Therefore, if p(r, y)=q(r, y, 1),
then the first equality of (3.19) implies θp=q and (3.17) is true if />eS(R+xR).
On the other hand, the second equality of (3.19) and (3.17) imply (3.15) since
T(t/T(t,y),y/T(t,y))=l, \y/T{t, y)\^yf», Tit, yfk^r1? from (3.20). In particular,
q(t, y, k)(ΞΓ0(D;gp)r\J2i-~(D;hp) if and only if q(r, y, 1)<ΞS(R+XR).

Recall (3.12). Let

(3.21) Kί(r, r', y) = &'(r, r>, y, 1),
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LEMMA 3.5. For any ro>0, 3>0>0 and any integers i, i',j^0, there is a posi-
tive constant C such that

(3.22) \dι

rd
ι

r'>dίKi(r, r', y)\^Cr/-1+ι+ί'+J{l+(r/r')δlmc+2}

holds when ro^r^rf, |:y|^3V.

Proof. Since Kδ(r, r'', 3;) contains exponential factors, the effect of one
differentiation is a multiplication by a factor of order 1 with respect to r'.
Thus, it is enough to show (3.22) for * W = ; = ( ) . If δlmc+lΦ—1, then from
(3.9), (3.21), (2.7), (2.9), (2.13) and (1.3), we have

\Ki(r,r', y)\^C Γ p1+δlmcdp
Jr'

if ro^r^r', \y\<^yor and C is an appropriate constant. (3.22) for i—i'=j=Q is
then immediate. If l+δlmc= — 1, then use the relation:

2 V ^ S ^ y, 1)},γξ(p, y, l ) ^ γ V

which is a consequence if (3.4), (2.9) and (1.9). Integrating the integral
rr t>2-\-v2 **

\ , o'g Vδ

0(p, y, l)~2dp by parts, "we obtain (3.22) for / = / ' = / = 0 even when

Now we are ready for proving Proposition 3.3. In view of Proposition 3.4,
we show the following

PROPOSITION 3.6. Let

(3.23) (Kif)(r, y) = [ K$(r, r', y)f(r', y)dr',

f<ΞS(R+xR). For any g(r, y)(ΞS(R+xR), [there is a unique h(r, y)^S(R+xR)
such that

Proof. We introduce the following auxiliary Banach spaces. Let ro>O, jyo>O
be arbitrarily given. Let N be a positive integer. We denote by S(r0, yo> N)
the space of those f(r, y) which are continuous when r^r0, \y\^yor, and
rN\f{r, y)\ are bounded from above when r^r0, \y\ ^yor. S(r0, y0, N) is a Banach

space with the norm

| |/ | |=sup{r" |/(r,3θ|; r^r0, \y\^

(3.22) and (3.23) imply that if N+2+δlmcX) then K$f<ΞS(r0, yo> N) when
f^S(ro,yo>N) and

Thus, if Â  is so large that
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then I+Ki is a bijection in S{r0, y0, N). Now if g{r, y)^S(R+xR), then g(r, y)

^<S(r0, y0, N) for any r0, y0, N. Therefore, we have h(r, y)<^S(r0, y0, N) solving
(I+K$)h~g when r^r0, \y\^yor} and N is large enough. Uniqueness of the
solution in each S(ro> y0, N) then implies that h(r, 3;) is actually defined for (r, y)

ZΞR+XR and h(r, y)^Γ\S(rOf y0, N), where S(r0, y0, N)(ZS(rΌ,yΌ,N') by the natural
restriction when rot^rΌ, yo^yί, N^N'. Using (3.22), we have similar estimates
for the drivatives of h(r, y). Thus, we have h(r, y)^S(R+xR) which solves

% 4. Completion of the proof of Theorem 1.1.

We have so far verified the statements (ii) and (iii) of Theorem 1.1. The

remaining statements ( i ) and (iv) are rather obvious. From our discussions in

§3, vδ(t,y, k), δ£Ξ{ + , - } , are C°° solutions of the equation (1.2) in D. vδ(t,y,k)

are extended to C°° solutions of (1.2) in R2xR+ because of (1.16) by solving the

Cauchy problem with data at ί = l . (Actually vδ(t, y, k) are extended to entire

analytic functions in t). The statement (iv) is also clear. For w—v+dtv~—v~dtv
+

satisfies dtw=0 so that (1.13) and (1.14) imply w=-2Vz=:ϊk.
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