ON THE GROWTH OF ENTIRE FUNCTIONS OF ORDER LESS THAN 1/2

By Hideharu Ueda

0. Introduction. Let $f(z)$ be meromorphic in the plane. Throughout this paper we shall assume familiarity with the standard notation of the Nevanlinna theory,

$$
T(r, f), N(r, f), m(r, f), \delta(a, f), \cdots
$$

We define

$$
M(r, f)=\max _{|z|=r}|f(z)|, \quad m^{*}(r, f)=\min _{|z|=r}|f(z)|
$$

In [2], Anderson proved the following result.
THEOREM A. Let $f(z)$ be meromorphic in the plane and such that for some $\rho, 0<\rho<1$, either

$$
\pi \rho N(r, 0, f) \leqq \sin \pi \rho \log M(r, f)+\pi \rho \cos \pi \rho N(r, f)
$$

or

$$
\begin{equation*}
\sin \pi \rho \log m^{*}(r, f) \leqq \pi \rho \cos \pi \rho N(r, 0, f)-\pi \rho N(r, f) \tag{1}
\end{equation*}
$$

for all large r. Then

$$
\beta=\lim _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho}}>0 .
$$

If, further, $\beta<\infty$ then

$$
\alpha=\varlimsup_{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho}}<\infty
$$

The inequality (1) and its conclusion have been used to show that for a meromorphic function of lower order $\lambda<1 / 2$,

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} m^{*}(r, f)}{T(r, f)} \geqq \frac{\pi \lambda}{\sin \pi \lambda}(\cos \pi \lambda-1+\delta(\infty, f)) \tag{2}
\end{equation*}
$$

Later, Edrei [6] obtained this estimate by making use of the notion of the local form of the Phragmén-Lindelöf indicator. The estimate (2) is best possible. (For example, see [6, p 151].)

Received April 15, 1981

If $f(z)$ is an entire function of order $\rho<1 / 2$, (2) implies that

$$
\begin{equation*}
\overline{\lim }_{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{m(r, f)} \geqq \pi \rho \cot \pi \rho . \tag{3}
\end{equation*}
$$

An important consequence of Theorem A is that if $f(z)$ is an entire function of order $\rho(0<\rho<1 / 2)$ and minimal type, then

$$
\begin{equation*}
\log m^{*}(r, f)>\pi \rho \cot \pi \rho m(r, f) \tag{4}
\end{equation*}
$$

holds for a sequence of $r=r_{n} \uparrow \infty$.
The main purpose of this paper is to refine the estimate (3) for entire functions of order $\rho(0<\rho<1 / 2)$ and mean type.

Theorem 1. Let $h(r)$ be positive and continuous for $r \geqq r_{0}$ and, for each $s>0$,

$$
\frac{h(s r)}{h(r)} \longrightarrow 1 \quad(r \rightarrow \infty)
$$

Suppose that $h(r) \rightarrow 0(r \rightarrow \infty)$ and that

$$
\int^{\infty} \frac{h(t)}{t} d t=\infty
$$

If $f(z)$ is an entire function of order $\rho(0<\rho<1 / 2)$ and mean type, then

$$
\log m^{*}(r, f)>\pi \rho \cot \pi \rho(1-h(r)) m(r, f)
$$

on a sequence of $r \rightarrow \infty$.
This result is regarded as an analogue of the Barry's one [4, Theorem 2] for the $\cos \pi \rho$ theorem. It is worth while to be pointed out that in his above theorem the assumption that $h^{\prime}(r)>-O\left(r^{-1}\right)(r \rightarrow \infty)$ can be dropped. The proof is essentially contained in the proof of our theorem.

For an entire (or a meromorphic) function $f(z)$, we define

$$
m_{2}(r, f)=\left[\frac{1}{2 \pi} \int_{-\pi}^{+\pi}\left\{\log \left|f\left(r e^{i \theta}\right)\right|\right\}^{2} d \theta\right]^{1 / 2}
$$

In [9], we showed that if $f(z)$ is an entire function of order $\rho(<1 / 2)$ then

$$
\begin{equation*}
\overline{\varlimsup ⿱}_{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{m_{2}(r, f)} \geqq \frac{\cos \pi \rho}{\sqrt{ } 1 / 2+\sin 2 \pi \rho / 4 \pi \rho} \equiv A(\rho) . \tag{5}
\end{equation*}
$$

(The estimate (5) is best possible.) The method of the proof of Theorem 1 yields the following results.

Theorem 2. Let $f(z)$ be an entire function of order $\rho(0<\rho<1 / 2)$ and minimal type. Then

$$
\log m^{*}(r, f)>A(\rho) m_{2}(r, f)
$$

for a sequence of $r \rightarrow \infty$.
Theorem 3. Let $h(r)$ be given as in Theorem 1. If $f(z)$ is an entire function of order $\rho(0<\rho<1 / 2)$ and mean type, then

$$
\log m^{*}(r, f)>A(\rho)(1-h(r)) \cdot m_{2}(r, f)
$$

on a sequence of $r \rightarrow \infty$.

1. Proof of Theorem 1.

1.1. Preliminary discussion.

Let $f(z)$ be an entire function of order $\rho(0<\rho<1 / 2)$ and mean type. Since $\rho<1$, we know that

$$
\begin{equation*}
f(z)=c z^{p} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \tag{1.1}
\end{equation*}
$$

where a_{n} 's are the nonzero zeros of $f(z)$ arranged in order of increasing magnitude. Set

$$
\begin{equation*}
f_{1}(z)=|c| z^{p} \prod_{n=1}^{\infty}\left(1+\frac{z}{\left|a_{n}\right|}\right) . \tag{1.2}
\end{equation*}
$$

Then we have (cf. [5, 3.2])

$$
\begin{equation*}
m^{*}(r, f) \geqq m^{*}\left(r, f_{1}\right)=\left|f_{1}(-r)\right| \quad(r \geqq 0) . \tag{1.3}
\end{equation*}
$$

And also

$$
\begin{equation*}
m(r, f) \leqq m\left(r, f_{1}\right) \quad(r \geqq 0) . \tag{1.4}
\end{equation*}
$$

This is due to Gol'dberg [7]. By (1.2),

$$
\begin{aligned}
\log M\left(r, f_{1}\right) & =\log f_{1}(r) \\
& =r \int_{0}^{\infty} \frac{n(t)-n(0)}{t(t+r)} d t+p \log r+\log |c| \\
& \leqq \int_{0}^{r} \frac{n(t)-n(0)}{t} d t+r \int_{r}^{\infty} \frac{n(t)}{t^{2}} d t+O(\log r) \\
& \leqq N(r)+r \int_{r}^{\infty} \frac{d N(t)}{t}+O(\log r) \\
& =r \int_{r}^{\infty} \frac{N(t)}{t^{2}} d t+O(\log r) \\
& \leqq r \int_{r}^{\infty} \frac{\log M(t, f)}{t^{2}} d t+O(\log r)
\end{aligned}
$$

Since $f(z)$ is of order $\rho(<1)$ and mean type, (1.4) and (1.5) imply that $f_{1}(z)$ is also of order ρ and mean type. By (1.3) and (1.4),

$$
\frac{\log m^{*}(r, f)}{m(r, f)} \geqq \frac{\log m^{*}\left(r, f_{1}\right)}{m\left(r, f_{1}\right)},
$$

provided that $\log m^{*}\left(r, f_{1}\right) \geqq 0$. Hence, we may prove our theorem for $f=f_{1}$.
1.2. An inequality on a class of entire functions of order $<1 / 2$.

Let $f_{1}(z)$ be a nonconstant entire function of order $<1 / 2$, where $f_{1}(z)$ is of the form (1.2). Assume that, corresponding to $f_{1}(z)$, there exists a function $H(z)$ defined in the whole plane satisfying the following conditions.
(2.1) $H(z)$ is a one-valued positive continuous function in the whole plane, and is harmonic in $|\arg z|<\pi$.
(2.2) $B(r) \equiv \max _{|z|=r} H(z)$ is of order less than $1 / 2$.
(2.3) $\log f_{1}(r)=o(H(-r)) \quad(r \rightarrow \infty)$.

Under the conditions (2.1)-(2.3), Barry's argument in [3, Lemma 5] implies that given $\varepsilon>0$, there are two numbers $a(\varepsilon), r(\varepsilon)$ such that

$$
\begin{array}{r}
\log \left|f_{1}(-r)\right|-\frac{H(-r)}{H\left(r e^{\imath \theta}\right)} \log \left|f_{1}\left(r e^{\iota \theta}\right)\right| \geqq a(\varepsilon)\left\{1-\frac{H(-r)}{H\left(r e^{2 \theta}\right)}\right\} \tag{2.4}\\
(|\theta| \leqq \pi, r \equiv r(\varepsilon) \rightarrow \infty, a(\varepsilon) \rightarrow \infty \text { as } \varepsilon \rightarrow 0) .
\end{array}
$$

1.3. Some properties of the Legendre's polynomials $P_{n}(x)(n=0,1,2, \cdots)$.

In the proof of our theorem, we need some properties of the Legendre's polynomials $P_{n}(x)(n=0,1,2, \cdots)$ defined by

$$
P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{n}-1\right)^{n} .
$$

For the sake of convenience, we write down some properties.

$$
\begin{align*}
& \left(1-2 t \cdot \cos \theta+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(\cos \theta) \cdot t^{n} \quad(|t|<1) . \tag{3.1}\\
& \left|P_{n}(\cos \theta)\right| \leqq 1 \quad(n=0,1,2, \cdots) . \tag{3.2}\\
& \left|P_{n}(\cos \theta)\right| \leqq 2(n \pi \sin \theta)^{-1 / 2} \quad(0<\theta<\pi, n=1,2, \cdots) . \tag{3.3}\\
& \left|P_{n}(-\cos \theta)\right|=\left|P_{n}(\cos \theta)\right| \quad(n=0,1,2, \cdots) . \tag{3.4}
\end{align*}
$$

1.4. A harmonic function $H(z)$.

We set

$$
h(t)=\left(t / r_{0}\right) \cdot h\left(r_{0}\right) \quad 0 \leqq t \leqq r_{0},
$$

and let

$$
\begin{equation*}
L(r)=\exp \left\{\delta \int_{1}^{r} \frac{h(t)}{t} d t\right\} \tag{4.1}
\end{equation*}
$$

where $\delta>0$. Since $h(t) \rightarrow 0(t \rightarrow \infty), L(r)$ varies slowly. Hence

$$
\begin{equation*}
\Lambda(r) \equiv r^{\rho} L(r) \tag{4.2}
\end{equation*}
$$

has order ρ. Further, by our assumption on $h(t), L(r) \uparrow \infty(r \rightarrow \infty)$. Hence, if $f_{1}(z)$ is of order $\rho(<1 / 2)$ and mean type, then

$$
\begin{equation*}
\log M\left(r, f_{1}\right)=o(\Lambda(r)) \quad(r \rightarrow \infty) \tag{4.3}
\end{equation*}
$$

Now, we put

$$
\begin{equation*}
H\left(r e^{i \theta}\right)=\frac{1}{\pi} \int_{0}^{\infty} \frac{r^{1 / 2}(r+s) \Lambda(s) \cos (\theta / 2)}{s^{1 / 2}\left(r^{2}+s^{2}+2 r s \cos \theta\right)} d s \tag{4.4}
\end{equation*}
$$

which provides a solution of the Dirichlet problem with boundary values

$$
\begin{equation*}
H(-r)=\Lambda(r) \quad(r \geqq 0) . \tag{4.5}
\end{equation*}
$$

In view of (4.1)-(4.5), $H(z)$ satisfies the conditions (2.1)-(2.3), and thus, (2.4) holds.
1.5. An estimate of $H\left(r e^{i \theta}\right)$.

We write

$$
H\left(r e^{i \theta}\right)=I_{1}(r, \theta)+I_{2}(r, \theta),
$$

where

$$
\begin{aligned}
& I_{1}(r, \theta)=\frac{1}{\pi} \int_{0}^{\infty} \frac{r^{1 / 2}(r+s) s^{\rho} L(r) \cos (\theta / 2)}{s^{1 / 2}\left(r^{2}+s^{2}+2 r s \cos \theta\right)} d s \\
& I_{2}(r, \theta)=\frac{1}{\pi} \int_{0}^{\infty} \frac{r^{1 / 2}(r+s) s^{\rho}[L(s)-L(r)] \cos (\theta / 2)}{s^{1 / 2}\left(r^{2}+s^{2}+2 r s \cos \theta\right)} d s
\end{aligned}
$$

First, we compute $I_{1}(r, \theta)$. Putting $s=r t$, we have

$$
I_{1}(r, \theta)=\Lambda(r) \cos \left(\frac{\theta}{2}\right)\left[\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{\rho+1 / 2}}{t^{2}+2 t \cos \theta+1} d t+\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{\rho-1 / 2}}{t^{2}+2 t \cos \theta+1} d t\right]
$$

Residue calculation shows that

$$
\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{\alpha} \sin \theta}{t^{2}+2 t \cos \theta+1} d t=\frac{\sin \theta \alpha}{\sin \pi \alpha} \quad(-1<\alpha<1)
$$

Hence

$$
\begin{align*}
I_{1}(r, \theta) & =\Lambda(r) \cdot \cos \left(\frac{\theta}{2}\right) \cdot-\frac{1}{\sin \theta} \frac{1}{\cos \pi \rho}\{\sin \theta(\rho+1 / 2)-\sin \theta(\rho-1 / 2)\} \tag{5.1}\\
& =\Lambda(r) \frac{\cos \theta \rho}{\cos \pi \rho}
\end{align*}
$$

Next, we estimate $I_{2}(r, \theta)$.

$$
\begin{align*}
I_{2}(r, \theta) & =\frac{r^{1 / 2}}{\pi} \cos \left(\frac{\theta}{2}\right) \cdot \int_{0}^{\infty} \frac{(r+s) s^{\rho}[L(s)-L(r)]}{s^{1 / 2}\left(r^{2}+s^{2}+2 r s \cos \theta\right)} d s \\
& =\frac{r^{1 / 2}}{\pi} \cos \left(\frac{\theta}{2}\right)\left[\int_{0}^{r}+\int_{r}^{\infty}\right] \frac{(r+s) s^{\rho}[L(s)-L(r)]}{s^{1 / 2}\left(r^{2}+s^{2}+2 r s \cos \theta\right)} d s \tag{5.2}\\
& \equiv \frac{r^{1 / 2}}{\pi} \cos \left(\frac{\theta}{2}\right)\left[A_{\theta}(r)+B_{\theta}(r)\right], \text { say. }
\end{align*}
$$

By (3.1)

$$
\left(t^{2}+2 t \cdot \cos \theta+1\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(-\cos \theta) \cdot t^{n} \quad(|t|<1) .
$$

Hence

$$
\begin{aligned}
& A_{\theta}(r) \\
&= \int_{0}^{r} \frac{\left[s^{\rho-1 / 2} r+s^{\rho+1 / 2}\right][L(s)-L(r)]}{r^{2}} \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left(\frac{s}{r}\right)^{m+n} d s \\
&= \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[\frac{1}{r} \int_{0}^{r} s^{\rho-1 / 2+m+n r_{r}-(m+n)}[L(s)-L(r)] d s\right. \\
&\left.+\frac{1}{r^{2}} \int_{0}^{r} s^{\rho+1 / 2+m+n} r^{-(m+n)}[L(s)-L(r)] d s\right] \\
&= \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[-\frac{1}{m+n+1 / 2+\rho} r^{-(m+n+1)} \int_{0}^{r} s^{m+n+\rho-1 / 2} s L^{\prime}(s) d s\right. \\
&(5.3) \quad\left.-\frac{1}{m+n+3 / 2+\rho} r^{-(m+n+2)} \int_{0}^{r} s^{m+n+\rho+1 / 2} s L^{\prime}(s) d s\right] \\
&= r^{\rho-1 / 2} \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[-\frac{1}{m+n+1 / 2+\rho} \int_{0}^{1} t^{m+n+\rho-1 / 2} r t L^{\prime}(r t) d t\right. \\
&\left.-\frac{1}{m+n+3 / 2+\rho} \int_{0}^{1} t^{m+n+\rho+1 / 2} r t L^{\prime}(r t) d t\right] \\
&=-r^{\rho-1 / 2} \int_{0}^{1} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+1 / 2+\rho} t^{m+n+\rho-1 / 2} d t \\
&-r^{\rho-1 / 2} \int_{0}^{1} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+3 / 2+\rho} t^{m+n+\rho+1 / 2} d t .
\end{aligned}
$$

The inversions in the order of integration and summation are legitimate because

$$
\left\{\begin{array}{l}
\sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+1 / 2+\rho} \int_{0}^{1}\left|r t L^{\prime}(r t) t^{m+n+\rho-1 / 2}\right| d t<+\infty \tag{5.4}\\
\sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+3 / 2+\rho} \int_{0}^{1}\left|r t L^{\prime}(r t) t^{m+n+\rho+1 / 2}\right| d t<+\infty
\end{array}\right.
$$

Here, we prove the first estimate of (5.4). Since $h(t)$ is continuous in $[0, \infty)$ and $h(t) \rightarrow 0$ as $t \rightarrow \infty$, there exists an $M>0$ such that

$$
\begin{equation*}
(0<) h(t) \leqq M \quad(t \geqq 0) . \tag{5.5}
\end{equation*}
$$

The positivity of $h(t)$ implies that $L(r)$ is increasing. Hence

$$
\begin{equation*}
0<r t L^{\prime}(r t)=\delta h(r t) L(r t)<\delta M L(r) . \tag{5.6}
\end{equation*}
$$

From (5.5), (5.6), and (3.2)-(3.4) it follows that

$$
\begin{aligned}
& \sum_{m, n=1}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+1 / 2+\rho} \int_{0}^{1}\left|r t L^{\prime}(r t) t^{m+n+\rho-1 / 2}\right| d t \\
& \leqq \delta M L(r) \sum_{m, n=1}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{(m+n+1 / 2+\rho)^{2}} \\
&= \delta M L(r)\left\{\sum_{m \geqq n \geqq 1}+\sum_{n>m \geqq 1}\right\} \\
& \leqq \delta M L(r)\left\{\sum_{m \geqq n \geqq 1} \frac{1}{(m+n+1 / 2+\rho)^{2} \sqrt{m \pi} \sin \theta}\right. \\
&+\sum_{n>m \geqq 1} \frac{1}{(m+n+1 / 2+\rho)^{2}} \frac{2}{\sqrt{n \pi \sin \theta}\}} \\
& \leqq \delta M L(r) \frac{2}{\sqrt{\pi \sin \theta}\left\{\sum_{m=1}^{\infty} \frac{m}{(m+3 / 2+\rho)^{2}}-\frac{1}{\sqrt{m}}\right.} \\
&\left.+\sum_{n=2}^{\infty} \frac{n-1}{(n+3 / 2+\rho)^{2}} \frac{1}{\sqrt{n}}\right\} \\
& \leqq \frac{2 \delta M}{\sqrt{\pi \sin \theta}} L(r)\left\{\sum_{m=1}^{\infty} m^{-3 / 2}+\sum_{n=1}^{\infty} n^{-3 / 2}\right\}<+\infty .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \sum_{m=0}^{\infty}-\frac{\left|P_{m}(-\cos \theta)\right|}{m+1 / 2+\rho} \int_{0}^{1}\left|r t L^{\prime}(r t) t^{m+\rho-1 / 2}\right| d t \\
& \quad \leqq \delta M L(r) \sum_{m=1}^{\infty} \frac{1}{(m+1 / 2+\rho)^{2}}<+\infty
\end{aligned}
$$

Therefore, the first estimate of (5.4) holds.
For $B_{\theta}(r)$, we have

$$
\begin{aligned}
B_{\theta}(r)= & \int_{r}^{\infty} \frac{\left[r s^{\rho-1 / 2}+s^{\rho+1 / 2}\right][L(s)-L(r)]}{s^{2}} \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left(\frac{r}{s}\right)^{m+n} d s \\
= & \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[\int_{r}^{\infty} s^{\rho-5 / 2-(m+n)} r^{1+m+n}[L(s)-L(r)] d s\right. \\
& \left.+\int_{r}^{\infty} s^{\rho-3 / 2-(m+n)} r^{m+n}[L(s)-L(r)] d s\right]
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{m, n=0}^{\infty} p_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[\frac{1}{m+n+3 / 2-\rho} r^{1+m+n} \int_{r}^{\infty} s^{\rho-5 / 2-(m+n)} s L^{\prime}(s) d s\right. \\
& \left.+\frac{1}{m+n+1 / 2-\rho} r^{m+n} \int_{r}^{\infty} s^{\rho-3 / 2-(m+n)} s L^{\prime}(s) d s\right] \tag{5.7}\\
= & r^{\rho-1 / 2} \sum_{m, n=0}^{\infty} P_{m}(-\cos \theta) P_{n}(-\cos \theta)\left[\frac{1}{m+n+3 / 2-\rho} \int_{1}^{\infty} t^{\rho-5 / 2-(m+n)} r t L^{\prime}(r t) d t\right. \\
& \left.+\frac{1}{m+n+1 / 2-\rho} \int_{1}^{\infty} t^{\rho-3 / 2-(m+n)} r t L^{\prime}(r t) d t\right] \\
= & r^{\rho-1 / 2} \int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+3 / 2-\rho} t^{\rho-5 / 2-(m+n)} d t \\
& +r^{\rho-1 / 2} \int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+1 / 2-\rho} t^{\rho-3 / 2-(m+n)} d t .
\end{align*}
$$

In order to prove

$$
\left\{\begin{array}{l}
\sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+3 / 2-\rho} \int_{1}^{\infty}\left|r t L^{\prime}(r t) t^{\rho-5 / 2-(m+n)}\right| d t<+\infty \tag{5.8}\\
\sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+1 / 2-\rho} \int_{1}^{\infty}\left|r t L^{\prime}(r t) t^{\rho-3 / 2-(m+n)}\right| d t<+\infty
\end{array}\right.
$$

we may use (5.5), (3.2)-(3.4), and the fact that

$$
\frac{L(r t)}{L(r)}=\exp \left[\delta \int_{r}^{r t} \frac{h(t)}{t} d t\right]<t^{\delta M}
$$

(If we choose δ such that $\delta M<1 / 2-\rho$, (5.8) holds.) Substituting (5.3) and (5.7) into (5.2), we have

$$
\begin{align*}
\left|I_{2}(r, \theta)\right|= & \frac{r^{\rho} \cos (\theta / 2)}{\pi} \left\lvert\,\left\{-\int_{0}^{1} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+1 / 2+\rho} t^{m+n+\rho-1 / 2} d t\right.\right. \\
& -\int_{0}^{1} r t L^{\prime}(r t){ }_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+3 / 2+\rho} t^{m+n+\rho+1 / 2} d t \\
& +\int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+3 / 2-\rho} t^{\rho-5 / 2-(m+n)} d t \\
& \left.+\int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{P_{m}(-\cos \theta) P_{n}(-\cos \theta)}{m+n+1 / 2-\rho} t^{\rho-3 / 2-(m+n)} d t\right\} \mid \\
5.9) & <\frac{r^{\rho} \cos (\theta / 2)}{\pi}\left\{\int_{0}^{1} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+1 / 2+\rho} t^{m+n+\rho-1 / 2} d t\right. \tag{5.9}\\
& +\int_{0}^{1} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+3 / 2+\rho} t^{m+n+\rho+1 / 2} d t
\end{align*}
$$

$$
\begin{aligned}
& +\int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+3 / 2-\rho} t^{\rho-5 / 2-(m+n)} d t \\
& \left.+\int_{1}^{\infty} r t L^{\prime}(r t) \sum_{m, n=0}^{\infty} \frac{\left|P_{m}(-\cos \theta) P_{n}(-\cos \theta)\right|}{m+n+1 / 2-\rho} t^{\rho-3 / 2-(m+n)} d t\right\} \\
& \equiv \frac{r^{\rho} \cos (\theta / 2)}{\pi}\left\{J_{1}+J_{2}+J_{3}+J_{4}\right\}, \text { say. }
\end{aligned}
$$

Further,

$$
\begin{aligned}
J_{1}(r, \theta)< & \int_{0}^{1} r t L^{\prime}(r t) \sum_{m \geq n \geq 1} \frac{2 t^{m+n+\rho-1 / 2}}{(m+n+1 / 2+\rho) \sqrt{m \pi \sin \theta}} d t \\
& +\int_{0}^{1} r t L^{\prime}(r t) \sum_{n>m \geq 1} \frac{2 t^{m+n+\rho-1 / 2}}{(m+n+1 / 2+\rho) \sqrt{n \pi} \sin \theta} d t \\
& +\int_{0}^{1} r t L^{\prime}(r t) \sum_{m=0}^{\infty} \frac{2 t^{m+\rho-1 / 2}}{m+1 / 2+\rho} d t, \quad \text { etc. }
\end{aligned}
$$

Here, we use a result of Aljančić, Bojanić, and Tomić [1, p82] to obtain

$$
\begin{aligned}
J_{1}(r, \theta) \leqq & \frac{2}{\sqrt{\pi \sin \theta}}(1+o(1)) \delta h(r) L(r)\left\{\int_{0}^{1} \sum_{m \geq n \geq 1} \frac{t^{m+n+\rho-1 / 2}}{(m+n+1 / 2+\rho) \sqrt{m}} d t\right. \\
& \left.+\int_{0 n>m \geq 1}^{1} \sum_{m} \frac{t^{m+n+\rho-1 / 2}}{(m+n+1 / 2+\rho) \sqrt{n}} d t+\sqrt{\pi} \int_{0}^{1} \sum_{m=0}^{\infty} \frac{t^{m+\rho-1 / 2}}{m+1 / 2+\rho} d t\right\}, \text { etc. }
\end{aligned}
$$

where the $o(1)$ tends to zero uniformly as $r \rightarrow \infty$ in $\theta \in(0, \pi)$. Hence by (5.9)

$$
\begin{equation*}
\left|I_{2}(r, \theta)\right| \leqq \frac{\delta h(r) \Lambda(r)}{\sqrt{\sin \theta}} \cos \left(\frac{\theta}{2}\right) \cdot C(\rho) \quad(0<\theta<\pi, r \geqq 0) \tag{5.10}
\end{equation*}
$$

where $C(\rho)$ is a positive constant depending only on ρ.
1.6. The final proof.

Let $f_{1}(z)$ be an entire function of order $\rho(0<\rho<1 / 2)$ and mean type. Then as we have shown in 1.4, $H(z)$ defined by (4.4) satisfies (2.4). By (5.10) and (4.5)
(6.1) $\quad H\left(r e^{2 \theta}\right) \geqq\left\{\frac{\cos \theta \rho}{\cos \pi \rho}-\delta h(r) C(\rho) \frac{\cos (\theta / 2)}{\sqrt{\sin \theta}}\right\} H(-r) \quad(0<\theta<\pi, r \geqq 0)$.

Since $h(r) \rightarrow 0$ as $r \rightarrow \infty$, for given $\eta>0$ (small) there exists a $R_{0} \equiv R_{0}(\eta)$ such that $r \geqq R_{0}, \eta \leqq \theta \leqq \pi-\eta$ imply

$$
g(r, \theta) \equiv \frac{\cos \theta \rho}{\cos \pi \rho}-\delta h(r) C(\rho) \frac{\cos (\theta / 2)}{\sqrt{\sin \theta}} \geqq 1
$$

Hence

$$
\begin{equation*}
H\left(r e^{i \theta}\right) \geqq H(-r) \quad\left(\eta \leqq|\theta| \leqq \pi-\eta, r \geqq R_{0}\right) . \tag{6.2}
\end{equation*}
$$

Net, we consider $g(r, \theta)$ for $\pi-\eta<\theta<\pi$. Put $\theta=\pi-\xi(0<\xi<\eta)$. Then

$$
\begin{aligned}
g(r, \theta) & \equiv G(r, \xi)=\frac{\cos (\pi-\xi) \rho}{\cos \pi \rho}-\delta h(r) C(\rho) \sqrt{\frac{\cos ((\pi-\xi) / 2)}{2 \sin ((\pi-\xi) / 2)}} \\
& =\cos \rho \xi+\tan \pi \rho \sin \rho \xi-\delta h(r) C(\rho) \sqrt{\frac{\sin (\xi / 2)}{2 \cos (\xi / 2)}} \\
& \geqq 1-\frac{(\rho \xi)^{2}}{2}+\tan \pi \rho\left(\rho \xi-\frac{(\rho \xi)^{3}}{6}\right)-\delta h(r) C(\rho) \sqrt{2\left(1-\xi^{2} / 8\right)} \\
& >1+(\rho \tan \pi \rho) \xi-\left(\frac{\rho^{2}}{2} \xi^{2}+\frac{\rho^{3} \tan \pi \rho}{6} \xi^{3}\right)-\delta h(r) C(\rho) \sqrt{\xi} .
\end{aligned}
$$

If we choose $\eta \equiv \eta(\rho)>0$ small enough, we have

$$
g(r, \theta)>1+\frac{\rho \tan \pi \rho}{2} \xi-\delta h(r) C(\rho) \sqrt{\xi} \quad(0<\xi \leqq \eta(\rho)) \text {, }
$$

so that

$$
\begin{equation*}
g(r, \theta) \geqq 1 \quad\left(\xi \geqq \frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}\right) . \tag{6.3}
\end{equation*}
$$

From (6.1) and (6.3), it follows that

$$
\begin{equation*}
H\left(r e^{i \theta}\right) \geqq H(-r) \quad\left(\eta(\rho) \leqq|\theta| \leqq \pi-\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}\right) . \tag{6.4}
\end{equation*}
$$

It remains to consider $H\left(r e^{i \theta}\right)$ for $|\theta| \leqq \eta$. By (4.4)

$$
\begin{equation*}
H\left(r e^{i \theta}\right) \geqq \cos \frac{-\eta}{2} H(r) \quad(|\theta| \leqq \eta) . \tag{6.5}
\end{equation*}
$$

An estimate for $H(r)$ has been done by Barry [4, pp 53, 54], which gives

$$
\begin{equation*}
H(r) \geqq\left\{\frac{1}{\cos \pi \rho}-\delta h(r) C_{1}(\rho)\right\} \Lambda(r) \quad\left(r \geqq 0, C_{1}(\rho)>0\right) . \tag{6.6}
\end{equation*}
$$

Combining (6.5) with (6.6), we have

$$
\begin{array}{r}
H\left(r e^{\imath \theta}\right) \geqq \cos \left(\frac{\eta}{2}\right)\left(\frac{1}{\cos \pi \rho}-\delta h(r) C_{1}(\rho)\right) H(-r) \geqq H(-r) \tag{6.7}\\
\quad\left(\eta<2 \pi \rho, r \geqq R_{1}=R_{1}(\eta)\right) .
\end{array}
$$

In view of (6.2), (6.4) and (6.7), we have

$$
\begin{equation*}
H\left(r e^{i \theta}\right) \geqq H(-r) \quad\left(|\theta| \leqq \pi-\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}, r \geqq R_{2}>0\right) . \tag{6.8}
\end{equation*}
$$

Now, we use (2.4). Taking (6.8) into consideration, we deduce that
(6.9) $\quad 0<\frac{\log \left|f_{1}\left(r e^{i \theta}\right)\right|}{\log \left|f_{1}(-r)\right|} \leqq \frac{H\left(r e^{i \theta}\right)}{H(-r)} \quad\left(r=r_{n} \uparrow \infty,|\theta| \leqq \pi-\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}\right)$.

Hence by (5.10) and (6.9)

$$
\begin{aligned}
& \frac{1}{\log \left|f_{1}(-r)\right|} \frac{1}{2 \pi} \int_{-\pi+4 \delta \delta^{2} h(r) 2 C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}^{\pi-4 \delta 2(r) 2 C(\rho) 2 / \rho^{2} \tan ^{2} \pi \rho} \log \left|f_{1}\left(r e^{i \theta}\right)\right| d \theta \\
& \quad \leqq-\frac{1}{2 \pi} \int_{-\pi}^{+\pi}\left\{\frac{\cos \theta \rho}{\cos \pi \rho}+\delta h(r) C(\rho) \frac{\cos (\theta / 2)}{\sqrt{\sin \theta}\}}\right\} \\
& \quad<\frac{\tan \pi \rho}{\pi \rho}+\sqrt{2} \delta h(r) C(\rho) \quad\left(r=r_{n} \uparrow \infty\right)
\end{aligned}
$$

Since $\log \left|f_{1}\left(r e^{i \theta}\right)\right|$ is decreasing for $|\theta|(\leqq \pi)$, we have

$$
\begin{aligned}
& \frac{1}{\log \left|f_{1}(-r)\right|}-\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \log \left|f_{1}\left(r e^{i \theta}\right)\right| d \theta \\
& \quad<\left\{\frac{\tan \pi \rho}{\pi \rho}+\sqrt{2} \delta h(r) C(\rho)\right\}\left\{1+\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}{\pi-4 \delta^{2} h(r)^{2} C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}\right\}\left(r=r_{n} \uparrow \infty\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\log m 2^{*}\left(r, f_{1}\right)}{m\left(r, f_{1}\right)} & \geqq-\frac{1-4 \delta^{2} h(r)^{2} C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}{\tan \pi \rho / \pi \rho+\sqrt{2 \delta h(r) C(\rho)}}\left(r=r_{n} \uparrow \infty\right) \\
& >\pi \rho \cot \pi \rho\left\{1-\frac{\pi \rho \sqrt{2} \delta}{\tan \pi \rho} C(\rho) h(r)\right\}\left\{1-\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}\right\} \\
& >\pi \rho \cot \pi \rho(1-h(r)) \quad\left(r=r_{n} \uparrow \infty\right),
\end{aligned}
$$

if $\delta>0$ is sufficiently small. This completes the proof of Theorem 1 .
1.7. A complementary note.

In Theorem 1, the assumption

$$
\int^{\infty} \frac{h(t)}{t} d t=\infty
$$

is essential. In this section, we prove the following result.
"Let $h(r)$ be positive and continuous for $r \geqq r_{0}$ and, for each $s>0$,

$$
\frac{h(s r)}{h(r)} \longrightarrow 1 \quad(r \rightarrow \infty)
$$

Suppose that $h(r) \rightarrow 0(r \rightarrow \infty)$ and that

$$
\begin{equation*}
\int \frac{h(t)}{t} d t<\infty . \tag{7.1}
\end{equation*}
$$

Then, there exists an entire function $f(z)$ of order $\rho(0<\rho<1 / 2)$ and mean type for which

$$
\log m^{*}(r, f)<\pi \rho \cot \pi \rho(1-h(r)) \cdot m(r, f) \quad\left(r \geqq r_{1}\right) . "
$$

Proof. We refer to Barry's argument in [4, pp 55-58]. Define $L(r)$ by (4.1).

Let $f(z)$ be an entire function of genus zero, all of whose zeros are negative and such that $f(0)=1$ and $n(r, 0, f)=\left[r^{\rho} L(r)\right]$. Then

$$
\begin{align*}
& \log m^{*}(r, f)<r^{\rho} L(r)\left[\pi \cos \pi \rho \cdot \operatorname{cosec} \pi \rho-\delta h(r) \sum_{n=0}^{\infty}\left\{(n+\rho)^{-2}\right.\right. \tag{7.2}\\
&\left.\left.+(n+1-\rho)^{-2}\right\}+O\left\{\log r / r^{\rho} L(r)\right\}+o(h(r))\right] \quad(r \rightarrow \infty),
\end{align*}
$$

and

$$
\begin{equation*}
\log M(r, f) \sim r^{\rho} L(r) \cdot \pi \operatorname{cosec} \pi \rho \quad(r \rightarrow \infty) \tag{7.3}
\end{equation*}
$$

By (4.1), (7.1) and (7.3), $f(z)$ is of order ρ and mean type. Now, we estimate $N(r, 0, f)$. Evidently,

$$
\begin{aligned}
N(r, 0, f) & =\int_{0}^{r}-\frac{\left[t^{\rho} L(t)\right]}{t} d t \\
& =L(r) \int_{0}^{r} t^{\rho-1} d t+\int_{0}^{r} t^{\rho-1}\{L(t)-L(r)\} d t+K_{1}
\end{aligned}
$$

where

$$
\left|K_{1}\right| \leqq \int_{1}^{r} \frac{d t}{t}=\log r
$$

Also

$$
\begin{aligned}
& \int_{0}^{r} t^{\rho-1}\{L(t)-L(r)\} d t= {\left[\frac{t^{\rho}}{\rho}\{L(t)-L(r)\}\right]_{0}^{r} } \\
&-\frac{1}{\rho} \int_{0}^{r} t^{\rho} L^{\prime}(t) d t=-\frac{\delta}{\rho} \int_{0}^{r} h(t) L(t) t^{\rho-1} d t \\
& \sim-\frac{\delta}{\rho^{2}} h(r) L(r) r^{\rho} \quad(r \rightarrow \infty),
\end{aligned}
$$

since $h(r) L(r)$ is slowly varying. Hence
(7.4) $\quad N(r, 0, f)>\frac{r^{\rho} L(r)}{\rho}\left[1-\frac{\delta(1+o(1))}{\rho} h(r)-O\left\{\log r / r^{\rho} L(r)\right\}\right] \quad(r \rightarrow \infty)$.

It is well known that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\{(n+\rho)^{-2}+(n+1-\rho)^{-2}\right\}=\sum_{n=-\infty}^{+\infty}(\rho-n)^{-2}=\frac{\pi^{2}}{\sin ^{2} \pi \rho} . \tag{7.5}
\end{equation*}
$$

It follows from (7.2), (7.4) and (7.5) that

$$
\frac{\log m^{*}(r, f)}{m(r, f)} \leqq \frac{\log m^{*}(r, f)}{N(r, 0, f)}<\frac{\rho\left\{\begin{array}{l}
\pi \cot \pi \rho-\delta h(r) \pi^{2} / \sin ^{2} \pi \rho \\
+o(h(r))+O\left(\log r / r^{\rho} L(r)\right)
\end{array}\right\}}{1-(\delta(1+o(1)) / \rho) h(r)-O\left(\log r / r^{\rho} L(r)\right)}
$$

$$
\begin{aligned}
& <\frac{\rho\left\{\cot \pi \rho-\delta(1-o(1))\left(\pi^{2} / \sin ^{2} \pi \rho\right) h(r)\right\}}{1-(\delta(1+o(1)) / \rho) h(r)} \\
& =\pi \rho \cot \pi \rho\left\{\frac{1-\delta(1-o(1)) \pi(\sin \pi \rho \cos \pi \rho)^{-1} h(r)}{1-\delta(1+o(1)) \rho^{-1} h(r)}\right\} \\
& <\pi \rho \cot \pi \rho\left\{1-\left[\frac{\delta(1-o(1)) 2 \pi \rho(\sin 2 \pi \rho)^{-1}-\delta(1+o(1))}{1-\delta(1+o(1)) \rho^{-1} h(r)}\right] \frac{1}{\rho} h(r)\right\} \\
& <\pi \rho \cot \pi \rho\left\{1-\delta\left(\frac{2 \pi \rho}{\sin 2 \pi \rho}-1\right) \frac{1}{\rho}-\frac{h(r)}{2}\right\} \quad(r \rightarrow \infty) \\
& <\pi \rho \cot \pi \rho\{1-h(r)\},
\end{aligned}
$$

if we choose $\delta>2 \rho(2 \pi \rho / \sin 2 \pi \rho-1)^{-1}$. This completes the proof.
The method of this section can be used also when we prove the following results.
(i) Let $h(r)$ be given as in Theorem 1. Then there exists an entire function $f(z)$ of order $\rho(0<\rho<1 / 2)$ and minimal type for which

$$
\log m^{*}(r, f)<\pi \rho \cot \pi \rho \cdot(1+h(r)) \cdot m(r, f) \quad\left(r \geqq r_{1}\right) .
$$

Compare this with the estimate (4).
(ii) Let $h(r)$ be given as in Theorem 1. Then there exists an entire function $f(z)$ of order $\rho(0<\rho<1 / 2)$ and maximal type for which

$$
\log m^{*}(r, f)<\pi \rho \cot \pi \rho \cdot(1-h(r)) \cdot m(r, f) \quad\left(r \geqq r_{1}\right) .
$$

This shows that the conclusion of Theorem 1 does not hold in general for entire functions of order $\rho(0<\rho<1 / 2)$ and maximal type.

2. Proof of Theorem 2.

Given $f(z)$, we associate $f_{1}(z)$ as (1.2). Then Miles and Shea proved in [8] that

$$
\begin{equation*}
m_{2}\left(r, f_{1}\right) \geqq m_{2}(r, f) . \tag{8.1}
\end{equation*}
$$

Since $f(z)$ is of order $\rho(<1 / 2)$ and minimal type, (1.4) and (1.5) imply that $f_{1}(z)$ is also of order ρ and minimal type. By (1.3) and (8.1),

$$
\frac{\log m^{*}(r, f)}{m_{2}(r, f)} \geqq \frac{\log m\left(r, f_{1}\right)}{m_{2}\left(r, f_{1}\right)}
$$

provided that $\log m^{*}\left(r, f_{1}\right) \geqq 0$. Hence we may prove Theorem 2 for $f=f_{1}$.
Now, define $H\left(r e^{i \theta}\right)$ by (4.4) with $\Lambda(r)=r^{\rho}$. A simple computation gives

$$
\begin{equation*}
H\left(r e^{i \theta}\right)=\frac{\cos \theta \rho}{\cos \pi \rho} r^{\rho} \quad(r \geqq 0,|\theta| \leqq \pi) . \tag{8.2}
\end{equation*}
$$

Hence $H\left(r e^{i \theta}\right)$ satisfies (2.1)-(2.3), so that (2.4) holds. By (8.2), $H\left(r e^{i \theta}\right)>H(-r)$ $(|\theta|<\pi)$. It follows from this and (2.4) that

$$
0<\frac{\log \left\lvert\, \frac{f_{1}\left(r e^{i \theta}\right) \mid}{\log \left|f_{1}(-r)\right|}<\frac{H\left(r e^{i \theta}\right)}{H(-r)}=\frac{\cos \theta \rho}{\cos \pi \rho}(|\theta|<\pi)\right., ~}{\text { a }}
$$

for a sequence of $r=r_{n} \uparrow \infty$. Therefore

$$
\begin{aligned}
\frac{m_{2}\left(r_{n}, f_{1}\right)}{\log m^{*}\left(r_{n}, f_{1}\right)} & <\frac{1}{\cos \pi \rho}\left\{\frac{1}{\pi} \int_{0}^{\pi} \cos ^{2} \theta \rho d \theta\right\}^{1 / 2} \\
& =\frac{1}{\cos \pi \rho} \sqrt{1 / 2+\sin 2 \pi \rho / 4 \pi \rho}
\end{aligned}
$$

This proves Theorem 2.

3. Proof of Theorem 3.

By a similar argument as in the proof of Theorem 2, we may prove Theorem 3 for $f=f_{1}$. Define $H\left(r e^{i \theta}\right)$ by (4.4). For our proof, the estimate (5.10) is not suitable because

$$
\int_{0}^{\pi} \frac{\cos ^{2}(\theta / 2)}{\sin \theta} d \theta=\infty
$$

However, we can obtain the estimate

$$
\begin{equation*}
\left|I_{2}(r, \theta)\right| \leqq \delta h(r) \Lambda(r) \cos \left(\frac{\theta}{2}\right) C(\rho) \quad(|\theta| \leqq \pi / 2, r \geqq 0) \tag{9.1}
\end{equation*}
$$

instead of (5.10). To prove this we may note that in (5.2)

$$
\begin{aligned}
I_{2}(r, \theta) & <\frac{r^{1 / 2}}{\pi} \cos \left(\frac{\theta}{2}\right) B_{\theta}(r) \\
& <\frac{r^{1 / 2}}{\pi} \cos \left(\frac{\theta}{2}\right) B_{\pi / 2}(r) \quad(|\theta|<\pi / 2)
\end{aligned}
$$

In view of (6.9), (5.10) and (9.1), we have for $r=r_{n} \uparrow \infty$,

$$
\begin{aligned}
& \frac{1}{\left(\log \left|f_{1}(-r)\right|\right)^{2}} \frac{1}{2 \pi} \int_{-\pi+4 \delta^{2} h^{2}(r) C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}^{\pi-4 \delta 22(r) c(\rho) 2 / \rho^{2} \tan 2 \pi \rho}\left\{\log \left|f_{1}\left(r e^{2 \theta}\right)\right|\right\}^{2} d \theta \\
& \quad<\frac{1}{\pi} \int_{0}^{\pi / 2}\left\{\frac{\cos \theta \rho}{\cos \pi \rho}+\delta h(r) \cos \frac{\theta}{2} C(\rho)\right\}^{2} d \theta \\
& \quad+\frac{1}{\pi} \int_{\pi / 2}^{\pi}\left\{\frac{\cos \theta \rho}{\cos \pi \rho}+\delta h(r) \cos \frac{\theta}{2} C(\rho) \frac{1}{\sqrt{\sin \theta}}\right\}^{2} d \theta \\
& \quad<\frac{1}{\cos ^{2} \pi \rho}\left[\frac{1}{2}+\frac{\sin 2 \pi \rho}{4 \pi \rho}\right]+\frac{3 \delta h(r) C(\rho)}{\cos \pi \rho}+\left(\frac{1}{2}+\frac{\pi}{16}\right) \delta^{2} h^{2}(r) C(\rho)^{2}
\end{aligned}
$$

Since $\left\{\log \left|f_{1}\left(r_{n} e^{i \theta}\right)\right|\right\}^{2}$ is decreasing for $|\theta|(\leqq \pi)$, we have

$$
\begin{aligned}
\frac{m_{2}^{2}\left(r, f_{1}\right)}{\left(\log m^{*}\left(r, f_{1}\right)\right)^{2}}< & \left\{\frac{1}{\cos ^{2} \pi \rho}\left[\frac{1}{2}+\frac{\sin 2 \pi \rho}{4 \pi \rho}\right]+\frac{3 \delta h(r) C(\rho)}{\cos \pi \rho}+\left(\frac{1}{2}+\frac{\pi}{16}\right) \delta^{2} h^{2}(r) C(\rho)^{2}\right\} \\
& \times\left\{1+\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}{\pi-4 \delta^{2} h(r)^{2} C(\rho)^{2} / \rho^{2} \tan ^{2} \pi \rho}\right\}\left(r=r_{n}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\{\frac{\log m^{*}\left(r, f_{1}\right)}{m_{2}\left(r, f_{1}\right)}\right\}^{2}> & (A(\rho))^{2}\left\{1-\frac{3 \delta h(r) C(\rho)}{\cos \pi \rho} A(\rho)^{2}-\left(\frac{1}{2}+\frac{\pi}{16}\right) \delta^{2} h(r)^{2} C(\rho)^{2} A(\rho)^{2}\right\} \\
& \times\left\{1-\frac{4 \delta^{2} h(r)^{2} C(\rho)^{2}}{\rho^{2} \tan ^{2} \pi \rho}\right\} \\
> & (A(\rho))^{2}\left\{1-\frac{2 A(\rho) \sqrt{ } \delta C(\rho)}{\sqrt{ } \cos \pi \rho} h(r)\right\}^{2} \\
& >(A(\rho))^{2}(1-h(r))^{2} \quad\left(r=r_{n} \uparrow \infty\right)
\end{aligned}
$$

if $\delta>0$ is sufficiently small. Since $\log m^{*}\left(r_{n}, f_{1}\right)>0$, we obtain

$$
\frac{\log m^{*}\left(r, f_{1}\right)}{m_{2}\left(r, f_{1}\right)}>A(\rho)(1-h(r)) \quad\left(r=r_{n} \uparrow \infty\right)
$$

This proves Theorem 3.

References

[1] S. Aljančić, R. Bojanić, and M. Tomić, Sur la valeur asymptotique d'une class des integrales définies, Publ. Inst. Math. Acad. Serbe. Sci. 7 (1954), 81-94.
[2] J. M. Anderson, Regularity criteria for integral and meromorphic functions, J. Analyse Math. 14 (1965), 185-200.
[3] P.D. Barry, The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc. (3) 12 (1962), 445-495.
[4] P.D. Barry, On the growth of entire functions, Mathematical essays dedicated to A. J. Macintyre, Ohio Univ. Press (1970), 43-60.
[5] R.P. Boas, Jr., Entire functions, Academic Press, New York (1954).
[6] A. Edrei, A local form of Phragmén-Lindelöf indicator, Mathematika 17 (1970), 149-172.
[7] A.A. Gol'dberg, On an inequality for logarithmically convex functions, (Ukrainian) Dopovidi Acad. Nauk. Ukrain. R.S.R. (1957), nr 3 227-230.
[8] J. Miles and D.F. Shea, An extremal problem in value distribution theory, Quart. J. Math. Oxford (2) 24 (1973), 377-383.
[9] H. Ueda, On the minimum modulus of a subharmonic or an algebroid function of $\mu_{*}<1 / 2$, Kodai Math. J. Vol. 4 No. 2, (1981), 298-314.

Daido-cho, Minami-ku, Nagoya, Japan

