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AN EXTREMAL PROBLEM FOR SUBHARMONIC
FUNCTIONS OF p.<1/2

By HIDEHARU UEDA

0. Introduction. Let / be an entire function. We denote the order and
the lower order of f by 2 and g, respectively. And we set

m*(r, f)=min |f@], M, /)= max|f(2)|.

Then the classical cos 72 theorem of Valiron and Wiman asserts

i log m*(r, f)
M g Mir, £)

provided that 0=4<1. In 1960 Kjellberg [15] showed that if 0=p<1, then the
above assertion (1) is valid with 2 replaced by p.

In [5], [6] Drasin and Shea considered those functions for which (1) is the
best, and discussed the “global” asymptotic behavior of such functions. Their
argument involves solving a convolution inequality. Baernstein [1] made use
of their study on the convolution inequality to prove two theorems complement-
ing the spread relation.

On the other hand, Edrei [9] also considered the extremal functions of the
cos 7y theorem, and discussed the “local” asymptotic behavior of such functions.
His idea in [9] lies in adapting the work of Cartwright [27] on a sinusoidal
indicator to his local one introduced in [8]. Further he showed in [9] that his
method is applicable to the following extremal problem :

>cos i,

For meromorphic functions, assume 0=p<1/2, k=0d(co, [)—1+cos zpu>0.
Then

= logm*(r, f) _,  mp
@ 0m = ) ke

%

This inequality is best possible. The problem is to characterize those functions
for which (2) is the best (See [9, Theorem 17.).
In connection with (2), it is natural to consider the quantity :
= log m*(r, [).

lim
T M7, f)
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for an entire or a meromorphic function f, where

matr, =5 |~ ogl frery112a0) .

In [19] we defined the local indicator for a sequence of subharmonic functions,
and considered the above problem more generally for d-subharmonic functions,
that is, those functions v(z) which can be represented as

3 w(2)=uP(2)—u®(z),

where u®(z), u®(z) are subharmonic functions in C. For a d-subharmonic func-
tion (3), we put

m*(r, v)=inf v(z), M(r, v)=supv(z), N(r, v)= —2§TAA8+%V(relo)d0 .
1z1=1 1z|=71 -z
Then the characteristic function of » is defined by
T(r, v)=N@, v)+N@r, u®)=N(r, max (u®, u®)).

With the above T(r, v), we consider the following four quantities:

szﬁglﬂul (the order of v),
p=lim log T(r, v) (the lower order of v),
-0 IOg v

2*:sup{p: im T(Ar,v) _

A T v) —OO} (the upper index of Podlya peaks for v).

. T(Ar,v) _ . , ‘
AI,ITT& A TG, v) —0} (the lower index of Polya peaks for v).
It is easy to see that py<pu=<iZ2. Drasin and Shea [7] proved that the Polya
peaks of order p for vexist iff p&€ [y, 241, p<oo. We remark that there exists
a subharmonic function satisfying px<p or 2<ZAs. Further we define d(0, v)

and m,y(r, v) as follows:

ps=inf {p:

1 i N, u®)
3(c0, v)=1— llgl T(r,v) ’

One of our results in [19] can now be described.

my(r, v)={N(r, v)}*.

THEOREM A. Let v be d-subharmonic defined by (3). Assume that p<1/2
and N(r, u®)~T(r, v) (r—oo). Further let p satisfy the following three condi-
tions :

(i) pux=p=2«, (ii) 0§p<1/2,
(iii) ka(p)=cos mp—1+4d(oo, v)/(2—0(c0, 1))>0.
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Then

@ fim P00 BO) ).

e (7, V) — V1/2-+sin 2z p/4zp

In particular, 1f v s subharmonic, then the assumption: N(r, u)~T(r, v) can be
dropped.

If 6(oo, v)=1, the estimate (4) is best possible. And an elementary but some-
what lengthy computation shows that

sup Co(0)=Cs(pts),
g
provided that d(oo, v)=1.

In this paper we shall make use of Edrei’s idea stated above to obtain the
following result.

THEOREM. Let u(z) be a subharmonic function in C and have ps<1/2.
Assume that u(z) satisfies

5) T 20 ).

oo M7, U)
Then there exists a posttive, increasing, unbounded sequence {y.}7 having all ihe
following properties:
L

(Y, u)
kco MY g, U)

(6) :CZ(/"*) )

. Ny, uw) _ sinmpe 1 - _ ,
™ lklz?o MY, u)  Tpsx A 1/24sin 2mp /A prs =Cilees),

® PR TG w

II. There also exist three positive sequences {yi}%, {y¥}7, {ex} T such that,
as k—oo,

© Yu/yi—>0,  yi/yp—>, & —>0,

and such that

(10) WEr=YE,  k=Zke
implies
r\m_ N, u) ro\E
—e) () =< AR
u 1 k)<3’k = Nyw u) _(1+Ek)<yk)
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re_ T, u) A

(12) a=e(5 ) = g0y =aten()"
my(¥, u) - o\

13 nu(yk,iu)v:(lJrek)(yk) ’

II. Further 1fps>0, then theve exist three sequences {y{}5, {0:}7, {047
such that as k—oo,

(14) YE/ye —=>00,  yi/yi—>c0, §,—>0,

and such that

(15) yESr=yE,  kzk
implies

(16) NG, u; Sp)<er N(r, u),
where

17) Sr={z: 0, Zargz—0,=21—0,}.

From the statement of I and II in Theorem, we can easily derive the fol-
lowing facts:

If u(z) has py<1/2 and satisfies (5), then

.y

. 7N(Kr, u)~~ e . ﬂKr, u)
(18) %13%1 N(r, u) =K, l;m«;; Tr,w

uniformly for K in any interval A7'<K<A (A>1), with

G=Ulan b1 (@uo0, ba/a,—co).

Further,
. N, u)
(19) l;gé T, u)
and
(20) tim 20
T my(r, u)
hold.

The above estimates (18)—(20) are no longer true if we omit the restriction
reG. To see this, we make use of the concept of a flexible proximate order
which was introduced by Drasin [4].
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Let A(r) (r>0) be a continuous, nonnegative function which is continuously
differentiable off a discrete set D, such that

(21) rA’(r) —>0  (r—oo, r&D).

Let E and E, be sets of the form

(@2) E=Ulan b, Ev=Ulkilan kb,
where

(I<ky 1o (n—c0),  [ki'an, kubudNLkwam, kubyl=0 (n+n),

(23) tidt=0(logr) (r—oo).

SElﬂ[l,T]

Now, suppose that A(r) satisfies

1) 0< P =AN=p<1,
pr (<12) (r€ Ulaw, b,
(25) Z(F):l 02 (re Qltazn—n bon-11),
o (01<p<p)) &k,

and let A(r) be extended to E,—FE so that it is continuous and

'_(,0”‘101)/108’ kan 1€ (kznasn, azn)’
(p2—p)/log kyn-1 tE(ken-1Qsn-1, Qzn-1),

tA ()=
l (0= p0/10g kon 1€ (ban, kanbn),
—(p2—p)/10g ksn-y tE(ban-1, kan-1ban-1).
Then (21) holds, and by (23), (25) it is clear that

26) (log r)‘lgzl(t)t‘ldt s p (r—oo).

Let f(z) be a canonical product with negative zeros with counting function

@n n(r) = [exp (S:Z(t)t“’dt)] .

Then (26) implies that f is of order p (<1) (cf. [2, Theorem 1.11.]) and so for
a suitable branch of log f(2)

28) log f()=z( "

T dt (Jargz| <m).
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Using the reasoning of the proof of Proposition in [4, p. 133], we have from (21),
(24), (25), (26) and (28)

29) log f(z):{ e“‘”o—i-o(l)}n(r),

sin wA(r)

where the o(1) in (29) tends to zero uniformly as z—co in any sector: |0 =z—7.
From (29) we easily obtain for u(z)=log|f(z)|,

30) Nr, w)= ZE:% (1+o(1)),

G) Tl =B UGN, =M o) G0)>1/2),
6D il W= 7T 2R A ARAR) (LoD,

@) i W= cos mA()- (o).

If K (>0) is fixed, (21) implies that AKr)=A(")+o(l) (r—co), and so by (27)
n(Kr)NK“T)ﬂ(V) (r—0). Hence by (31)

T(Kr,u) o
KioT(, w =1-+o(1) (r—o0).

Thus (25) and the definition of gy (14) imply

(34) Hx=— P01 (/2*:‘02) .
On the other hand, we have by (32), (33)
m*(r, u) ‘
(35) W §Cz(2(7’>)(1T0(1>)§Cz(,01>(1+0(1)) .

It follows from (34) and (35) that u(z) satisfies (5). However, by (30)—(33) we
have

N(Kr, u)

(36) N(r, u) =K*™(1+0(1),
T(Kr, u) .
(37 TG, u)_ =K*™(1+0(1)),
14+0(1) (A(r)<1/2
@8 W ooy, A ”)={ o sl
my(r, u) T(r, u) sin 7A(r)-(1+o(1) (A()=1/2).

(36)—(38) illustrate our assertion which we have stated above in relation to
(18)—(20). And from (22), (23) we have log dens G=0 in this case. This fact
is worth while to be compared with the result of Drasin and Shea in [6, pp.
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281-283]. Further we note from (26), (27), (31) and (34) that p,=p.<p=p=

Our theorem is unsatisfactory in one respect, that is, we cannot answer
whether in addition to (13) an estimate from below such as

v\ my(¥, u) , ”
(1*51:)<3’:> éTh(‘;};"‘u‘)’ (e=r=y¥
holds or not.

Now, we conclude § 0 by describing our plan for the proof of our theorem.
First, in §1, we shall state the definition and the elementary properties of the
local indicator for a sequence {B,(z)}T of subharmonic functions such that B,(z)
is subharmonic in the annulus: r,=|z|=ry (m=1, 2, ---) (cf. [19]). Next, we
remark that, roughly speaking, Edrei’s idea in [9] is supported by two facts—
the one is the Boutroux—Cartan Lemma and the other is a lemma due to Edrei
and Fuchs [10, p. 322]. So in §2, we shall extend these two lemmas for sub-
harmonic functions. In §3, in relation to an extremal function u(z) satisfying
(5), we define a sequence {B,,(2)}T of subharmonic functions and show that the
local indicator of {B,(z)}T is sinusoidal. This fact implies that Edrei's idea is
applicable to our problem. In §4, we shall prove a lemma which is essential
to the proof of I and II of our theorem. To do this, we need an estimate of
Miles and Shea [16] and an estimate due to Gol’dberg [11]. In §5, we follow
Edrei’s procedure in [9] to obtain I and II of our theorem. In §6, combining
some estimates obtained in §4 and §5 and the reasoning of Miles and Shea in
[177, 1II of our theorem will be proved.

For background material on subharmonic functions, see [13] or [18].

1. Definition of the local indicator of order p of a sequence {B,(z)}7
of subharmonic functions.

We now prepare several notations and their properties in order to define the
local indicator of order p of a sequence {Bn(z)}7 of the given subharmonic

functions.
(i) three infinite sequences of positive numbers {rn}, {ra}T, {rm}7 such

that 7, <rn<rl <rh+ (m=1, 2, ---), and such that, as m—oo
Vm/Tm —> 00,  rp/tn—>00.
(i) a sequence {B,(2)}7 such that B,(z) is subharmonic in the annulus:
r<lz|<rm.

(iii) a strictly positive sequence {V(r,)}7 and a quantity p (0<p<co). We
then define a sequence {V,(z)}7 of analytic comparison functions:

V@)=Vt ' =Vir) (5) et z=rert).
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The symbol V,(r) always refers to the choice of #=0.
(iv) Consider the intervals I,,=[»n, rm] (m=1, 2, ---) as well as the intervals
In(s)=[rpme, rne’l] (m=1, 2, ---; s=1, 2, --+), and let

A=Uln,  A®=Ulns) (=12 ).

(v) Let the sequence {B,(2)}T be chosen so that

mm 0 B o,

o Vo

where B(z) stands for B,(z) in the annulus: »,<|z|<rp (m=1, 2, ---). With
these preparations we now define the local indicator. Firstly we set for every

real value of 4,

10
ho)=Tm B (12,0,
i V)

and consider
h(6)=lim hy(@).

The real function A(#) is called the local indicator of order p of {B.(2)}7 at
the peaks {r,}%. With this definition, Edrei’s Fundamental Lemma can be ex-
tended straightforwardly for the sequence {B,(z)}T of subharmonic functions.

FUNDAMENTAL LEMMA. Let h(6) be the local indicator of order p (0< p< o)
of {Bn(2)}T at the peaks {rn}T. Let 6, 0, be grven such that 0<0,—0,<=/p,
and let the constants a, b be such that the sinusoid H(0)=a-cos pf-+b-sin pd
satisfies the conditions: h(0;)=<H(0;) (j=1, 2). Then given ¢>0 and any integer
s>0, there exists a bound ro=r(e, s, a, b, 01, 8,), independent of 6, such that

B(re*®)=(H(0)+¢)-V(r),
for T’EA(S), 0,.=0=0,, r=vr,.

From Fundamental Lemma, we immediately have A(6)<H(0) (6,<0=<8,),
that is, the subtrigonometric character of A(§). Itis known that many important
properties of an indicator depend only on its subtrigonometric character (cf.
[3]). For example, we have the following three facts:

1. The subtrigonometric inequality (cf. [3, p. 441). If A(@) is of order p
and if 0<6;—0,<n/p, 0<0;—0,<x/p, then

h(8,) cos pb, sin p6,
(L.1) h(f,)  cos pf, sinpf,|=0.
h(ag) Ccos ‘003 Sin ‘003
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In particular, if 0<6<x/p, then

1.2) 7_[_1(j@27+h(0)> = h(0) cos pf .
2. Continuity (cf. [3, p. 37]). If h(f,)#—co for some ¢, then /i(#) 1s uni-

formly bounded and continuous in [—z, «].
3. Uniformity (cf. [3, p. 46]). If h(f,)# —co for some @,, then it 1s possible,
given ¢>0 and s>0, to find r,=7(¢, s) such that »>r, r= A(s) imply

B(re')=(h(6)+e)-V(r)  (—z=0=n).

2. Some lemmas on subharmonic or d-subharmonic functions.

First, we shall extend the Boutroux-Cartan Lemma for positive Borel mea-
sures. For the original form of this lemma, cf. [9, p. 39].

LEMMA 1. Suppose that p s a positive Borel measure defined in the disk:
lw|=0<1 such that p (Jlw|=0)<oo. Then given § (0KEX1), there exist a finite
or countable set of disks, say {I}, whose radii {p,} satisfy

Zk Pkézfo' ’

such that
w&\kjfk, lwl<e

mply

[, loglw—Cldp©z I w] Z)1+20) tog (52-).

Proof. For each fixed positive integer v, we construct a maximal number
of mutually disjoint closed disks I'’=I"(x{", r,/2), k=1, -+, k, such that r,=
28027 and w(I'$)=u(lz| Z0)e™*, where » is the radius and x is the center
of I=I"(x, r). Clearly k,<[e¢"]. Hence

o k

>

v=1 k

04

= ie‘“ZEa 27vev =20 .

1

[

Now, suppose that w (Jw|=¢) is a point outside all the disks ['(x{’, r,) (v=
1,2, ---; k=1, -+, k,). Then it is easy to see that

plw, r/2)<p(lll=g)-e™ (v=1, 2, ).
Thus
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[, toglu—tlapo=1 . loglt—wldp(®)
15.<a Hl-wizry/2iNidi<ay

o

+2

v=1 S(rv+1/2§l:~WI<T,,/2H”|H;\<U)

logll—wldp@)
zlog () mIcI =)+ B log("y )1 o) e
=p(|C 0)e 3 log )

=u(|C|S0)ellog o 3 e —log2e- S v-e™)

= p(1C1 )7 log §o—(1+4-20) log 2¢}

Eo
(Il =0)(1+2e) log (_,2?_> _
This completes the proof.

Once the Boutroux-Cartan Lemma is established for positive Borel measures,
it is not difficult to prove the following fact which is an extension of Lemma 1
in [9, pp. 35-42] for subharmonic functions.

LEMMA 2. Let u(@) (C=te*®) be subharmonic in the sector:
s={t: ev<t<er, !<u|<$} (s>0, 721,

and let w)=0 e2), u(l)==—oco. Consider the sector

2’:{C: e <1< e, \wl<%} 0<s’<s, 7'>7).
Then there exist two positive constants H, (j=1,
and having the following properties:
Given & (0<EZ1), it is possible to associate a set S2(&) such that means (&)
<z&, and such that the conditions wes Q(€), te**< X’ imply
1

u(ter)= (H2+H1 log ?>u(l ).

2) depending only on s, s’, v, 1/,

Next, we shall extend a lemma of Edrei and Fuchs [10, p. 3227 to J-sub-
harmonic functions in C.

LEMMA 3. Let v=u®—u® be a d-subharmonic function in C. Then 1f I(r)
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1S any measurable subset of [—x, ©], 1t 1s possible to find absolute constants K,
(=1, 2) such that 0<K;<K, and

SI ! vrer’)|do = sz([(r)){l +log* }7(4“ W,

(1( ))

[v(ret?)12d 6 < Kym(I(r)){1+(log (TWr, v))*.
JI0)

m(I () )

Proof. Let p, (=1, 2) be the Riesz mass associated with u’(z). For |z|
=r<t<co, we have

w@=ho @+ gl lap@ o 0o,

where u™’(t)=p,(|{| <t) and A (z) is harmonic in |z|<¢. Here we put

@2.1) v“>(z>:v<z>+g log 12 2tC|d/.ez(C)— D(2)— h®(2)—n (1) log 2t .

Clearly v®(z) is subharmonic and satisfies v®(z)<v(z) in |z|<t. Hence the
Poisson-Jensen formula for subharmonic functions (See [13, Theorem 3.14]) gives

1 (+= 12—r? Hz—0)
YD (10— = V(10
v®(ret’) 27 S-:L (te ) —2tr cos (¢ 0)+r* g+ S log 12—z Q)
<IN, o,
v
so that
2.2) WO = ’f“ NG, 0.
We deduce from (2.1) and (2.2) that
t+r
il + << +

(2.3) @) =-—-Nt, v H"S.;,\ log| CI 7 d Q).

If we write z=re¢*? and {=se'’, we easily have

| C|>{ risin(@—p)  (1f—01=r/2),
z—Ll=
r (w/2<|p=01=m).

It follows from this and (2.3) that

(2.4) (N = N(t vH)+n®(t) log 2—

1
+S(C4s<t, 18-01=z7/2) log Ism(ﬂ—ﬁ)l d,tlz(C) )
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Now, we prove the second inequality of our lemma. The proof of the first one
is contained in the proof of the second one. From (2.4) we have

t+r 2t }2

gz - {v+(re*}2d g ém([(r)){ P N, vH)+n®() log a

t+r
t—vr

(2.5) 2077 N, v 40108 2

1
’ SI(r) dﬁgl:.s<ﬁ, 13-01=7/2) log \Sln?ﬁj‘ejl dﬂz(C)

2
+Sl(r) da{gézsq, 1B-01<7/2) log ]smv(;iﬁ); dps (C)} .

In order to estimate the integrals in the right hand side of (2.5), we put

H=int {2, m(r)) b

2 2
Then
1 H 1
Lt de< =
Szumo:;o_;:g:/z} log [sin (60— )| d0:2go log sin 6 a0
H 1 b
gZSO <log g#-log §)d0
T 1 T
= = —\< +
2H(1—Hog 5 +log H)_m(1<r>)(1+log 1) ).
Hence
1
(2.6) gur)dﬁgz::w,ua-m:/z; log ]él;l(ﬁ—ﬁ)] dp)

1
MS|:i<td'u2(c>gl(r>n(0A|0—,3|§z/2) log |sm(6—‘8)| a6

<n@@OmIr))- {I—HOg+ 771([727”)) } '

In the same way we have

Surmw:[ﬂ—ﬂgz/z; {log |sin (;:‘83 |>}2d0

o 17— 10 14210 S g 1 (s 5}

so that by Schwarz’s inequality in continuous form
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SI(T) dﬁ{gl:,s<t,l/3—0[§z/2l log |sin (;;—[B)I 40 }2

1 2
<99 (2) ;
=1 (t)gzmdﬁg(c.sa,|ﬁ—0|:,~./2;{10g |Sm(0—‘8)|} d Q)

. 1 2
@7 =n )<t)gl’;!<td‘u2(C)Sl(r)ﬂ(0.|0-ﬁls.-./z){log {sin(ﬁ—/ﬁﬂ} a6

§<n<2><z)>2m(1(r)>-{(mg H)?—2log H+2—log = > -log 11+(1og 2) .

Substituting (2.6) and (2.7) into (2.5), we obtain
[, oo <mie){(FE N, v a0 log 2)’
2.8) 2L NG, vy En @ tog 2 )no (L logt )
<n<2>(t))2((1og H)—2log H--2+log = log H- (1og %))} .

2

We remark that (2.8) also holds if we replace v* and n® by v~ and n", respec-
tively. And it is clear that

N, v)+NE, v)=2T(¢, v),

NQ@t, u™)+N@t u®) 2

log 2 -

%) @(H<
nPH+n®)= =< log

=Tt v).

All the above estimates combine to show the desired inequality (with t=2r).

3. The indicator associated with Theorem.

Let u(z) be an extremal subharmonic function satisfying (5). Take a
sequence {r,}% of Pdlya peaks of order gy for u(z), and let {r,}%, {ri}, {en}s
be the associated sequences. We define comparison functions:

Va@)=()" Wt enTlrm, w=(, ) o1t e)T(rm, w

—V(rm)(—>>ﬂ vyl (m=1, 2, ).

And let v() be the positive Borel measure associated with u(z), and put n(t)=
vy (|€|<t). With these notations, we define

m(z)g log;ll—xdn(t) (n=1,2, ).
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Let A(@) be the local indicator for the sequence {B,(2)}T at the peaks {rn}7,
with comparison functions {V,(2)}5. In [19] we have shown the existence of
h(@) and h(0)=1. In this section, we shall prove the following lemma.

LEMMA 4. (@)= h(0) cos 0 (101=m).

Proof. We define two sequences {u; »(z)}7 and {u; »(2)}T of subharmonic
functions as follows:

ul,m(z):g log‘l—%}du@, us, m(2)=u(2)— 1y n(2).

1LIST /4
As Kijellberg showed in [15, p. 192], we have

3.1) 1145, m(2)] <16—A—4L"/;,/,%fi.r (r<ri/8).

m

And the Poisson-Jensen formula for subharmonic functions gives
(3.2) Mrn/2, wE3T(r, u).
It follows from (3.1) and (3.2) that

o\ #s
(3.3) lus, m(2)| <48T(r, u) §48V(r)<—-;7~> (r<rin/8).

7
"
m

¥

Let >0 (small enough) be given, and determine s (>0) so that /i,(x)> h(x)
—7/6. By the definition of hy(x), there exists a sequence {X,} CA(s), tending
to oo, such that

(3.4) B(—13)>(h(m)—75/3)V () >(h(0) cos wpse—75/2)-V(Az)>0.
Using (3.3), we have for n>nyy, s)
(3.5) ¥, WZM* A, w)+m*An, us)

=m*Xn, B)+m*An, ug)>(h(z)—20)-VXa).
On the other hand, by Schwarz’s inequality
(3.6) My, W)=y st ) S, U+ 2V L) (2>00).

We now use an estimate due to Miles and Shea [16, p. 378], that 1s,

3.7 Me(Xn, ) Eme(Xyn, B).

In order to estimate m.(X,, B) from above, we may note (3.4) and appeal to the
Fundamental Lemma, so that

(3.8) 0< BX e HY<(HO)+e) VX))  (n>nye, s),
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where
(3.9) Hg)= MOsin (@=0pst h(z)sin O
sin 7 e
Combining (3.5)—(3.9) we have
* Xny l—E » °
T T W T
2 472.#* i T COS T

where t=h(x)/h(0)=cos mps, E(e, 7)—0 as ¢—0 and »—0.

The right hand side increases at ¢ increases, and so, it is not smaller than
Co(ps)(1—E(e, n)). It follows from this and our assumption (5) that t=cos 7.
Hence h(z)=h(—=)=h(0)-cos mys. Substituting these into the subtrigonometric
inequality (1.1), we have A(0)=<h(0)-cos s On the other hand, it is clear from
(1.2) that h(@)=h(0)-cos Ops. Thus h(8)=h(0)-cos Gps (10| =nr).

4. A preliminary lemma for the proof of assertions I and II of Theorem.

LEMMA 5. Let u(z) be a subharmonic function satisfying (5), and let {ru},
{rot, {ra), {en), (Va@}, {Bu(2)}, h(0) be defined as in §3. Then gien e
(0<e<h(0)cos mpy), 0 (0<0<0y, where 0y 15 a fixed positive number satisfying
420.26,K,(14+(log 20,))<e/6) and L (>0), 1t 1s possible to determine q=q (e, 0, L)
(a positive integer), {l.}T (a sequence of unbounded, increasing wtegers) and
{R,,}T such that

e, =R, =er, (m=1, 2, --+),

B (R, )>hO)—e)V,, (R,)  (m=1,2, ),

and such that for ¢’*R, =r=e'R,

(1=20)h(0) S0 75 V() <NG, ST, u)<(1¢s)h(0)%1/,m(r)
malr, WS (1+ 2c>\/ o+ SRR b7, ),

Proof. We define s, s’, 7, 7’ as follows:
s=2L, s'=L, 7r=1, 7¢'==za/(z—0d).

And let 5 be a number satisfying the following inequalities.
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P H2n=e/2, ot <H2+H1 log %)ée ,

25+7f77 o 7"7‘17 1y <
2t - K\(xy+20) {1+ log - Jr<e,

1 sin 27 py

aere- K(my+20){1+(log - +251)2}<<s/2>(% = (O

*

Next, we determine g=¢(y)=q(¢, d, L) so that h,(0)>h(0)—»/2. By the defini-
tion of h,(0), it is possible to find a sequence {R, }TCA(¢) tending to co such
that

(4.1 By, (Ri,)>(ho(0)—71/2)V 1, (Ri,)
>(RO) =V i, (R )>(h(0) =)V (Ry,) .

By the uniformity property of the local indicator (cf. §1), we can determine 71,
so that the conditions m>m,, r= A(2L+¢q) imply

4.2) B, (re*) S (h(O)+ne 2V, (r)  (|0]=7).
Now, we introduce a sequence {u,,({)}T of subharmonic functions:
4.3 U, (O=B1,,(2)—h(O)V.,(")—V, (R,) (C=z/R,,=te").
Further we put

S={{:e=t=e, lw|=xt, X={{:el=t=ek || =x—0}.

From (4.2) and (4.3) we deduce u,,(()=0 ({(€3). And it follows from (4.1) and
(4.3) that u,,(1)¥—oo. Hence we can apply Lemma 2 to u=u,,,. That is, it
is possible to find positive two constants H,, H,, depending only on L, 4, and
having the following properties.

Given £ (0<£=1), there exists a set 2(£) such that means 2(£)<zé and such
that the conditions we&R(8), te*e>’ imply u,,(te**)=(H,+H log (1/6)u, (1.
Returning to the variable z, we have from (4.1), (4.3) and the choice of 7,

(4.4) B, (re*)=(h(@)—e)V,, (r)>0
(e7ER,, =r=e"R,,, 0 Q(y), |0 =7—0).

Here we put Q'(np)=[—=, —x+d]J[x—0d, n]U2(n). Then by Lemma 3,

1 16 ) 1 B
So'<r,)|B’m(re )Idt9§K1(25—|—m;)(1+log %% >T(4r, B.,)

2z Jo +xy
1
=0+ mparK,(1+log iy We  n>m),
/

so that from (4.4) and the choice of 7 we have
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T L 10 __1_ i0
NG, Bip)z 27 S[—n,mw?r(r,)Bl”‘(re )40 2 Sﬁ'crnlBl’”(re )\dé
sin mpty 25—|—7r7; .
45 =X RO = h(O) g T e 4/’K1(25+m7)(1+10g25L )}Vl r)

[h%

ﬂf“ih(oxl—zs)v,m(r) ('R, <r=e*R,,, m>m).

However, since Jensen’s formula gives N(r, u)=N(r, B,,) for r=r{ /4, we have
from (4.5)

4.6) NG, u)>(1—25)h(0)'~s‘1-7-?§/i*7 Vi (r)  (ePR,, Sr=ctR, , m>m).
*

Now, we estimate T(r, u) from above. For r=r7 /8, we have

4.7) T, =T, uy, 1,11, )T, s, )T, Us0,) .

Using an estimate due to Gol’dberg [11] and (4.2), we obtain for e"‘R,mgr
§€LRzm

sin n;z*

(4.8) T, uyi =T, By )=— hO)X1+e/2)V,,,(r).

And from (3.3) we have for ¢ LR, §r§eLR,m

(4.9) T(r, us1,)< Sl“:"—*- (/2-V., () (m=mye, L).
*

Substituting (4.8) and (4.9) into (4.7) we have

sin s

(4.10) T(r, w)< - (1+e)h0)V, (1) ("R, ,=r=e"R,,, m=m,).

Finally we estimate mz(r, u) from above. First we estimate m.(r, B,,). It fol-
lows from (4.2) and (4.4) that for e"*R, =r=e¢"R,,

1 wyegg< L (7 Ll .
@iy g B ee o= {0 a0 (0
=1 2O+ S YV, ()

By Lemma 3 and the choice of 7, we have

7177&,( (Bu(re' ) *d0 = Ku(2i-+zp){1+(log — ;25)}@(4’3 B,

(4.12) <42, (26+ nn){l—%(logv—w”f Vv

<(e/2)(5 + ﬂ“—%”ﬁ*)hwxvl (" (eRi,<r=e'R,).
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Combining (4.11) and (4.12), we obtain

sin Zn,ax

(4.13) my(r, By )<(1—I—e)h(0)\/ Vi),

Remembering (3.6) and (3.7), we have

sin 271.'/1*

(4.14) ma(r, u)<(l+25)h(0)\/ >+ Vo) (m=my).

The restrictions: m=m, in (4.14), m>m, in (4.6), m=m, in (4.10) are not essential.
Thus we have the desired results.

5. Diagonalization—Proof of assertions I and II of Theorem.

In this section we follow Edrei’s procedure in [9, pp. 54-597. We set e=
€210 (n—c0), 6=0, !0 (n—c0), L=n in our previous Lemma 5. Then using
the method of diagonalization, we easily obtain the following fact:

Let u(z) be a subharmonic function satisfying (5). Then it is possible to
find a sequence {t,} of Pdlya peaks of order p for u (As usual, we denote the
associated sequences by {tr}, {t4}.), a positive unbounded sequence {x,}, {Bn}
c{B:,} and {V,L}C{Vlm} such that

(5.1) et <e Mx,,  emxn<e s,  Ba(xa)=(h(0)—en)Valxa),

and such that for e ®x,<r=<e"x,

(5.2) Bure)S(h(O)+eVatr) (10152,
63 A-2e0h© "2 T ) NG, ST, W=Ateh® O T T,
/ ©sin 27 s
(5.4) mr, WS(A4260) - A+ g B ROV ().
Am

Now, consider the sequence {én} of subharmonic functions in Q[e‘”xn, " xn]

:/T, and set \j [e™®x,, esxn]:ff(s) (s=1, 2, ---). We introduce the indicator H(c‘))
n=1

of order p. of {En} WitNh peaks {x,} and comparison functions {V,}. By (5.1),

(5.2) and (1.2) we have h(8)=h(8)=h(0)cos p+0 (10| =x). Further we put

I @)= gnwlogll———{du@ fia, n(2)= u(2)—fis. (o) .

1Jist

Then as we have shown in (3.3),

li5 o (2)| <48V (r )< i )l
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Hence if r=[e "x,, ¢"x,] we have from (5.1)
|5, 2(2)] <48e =10 (7).
Without loss of generality we may assume 48 e "“~#9<¢, so that
(.5) iy, ()| <en-Va(r)  (r€lexn, e"xa)).

Let »>0 be given. Determine s=s(y) so that Ry(—m)>h(—m)— n/2. By the
definition of /,(—=), there exists a positive sequence {r,} CA(s) tending to co
such that

B(—t)>(h(—m)—0/2V (@) >R (—m)—p)V(e,), neN,

where N is a sequence of unbounded increasing integers. Therefore it follows
from this and (5.5) that ‘

(5.6) m*(ty, u)=(h(0) cos 7 ps— 77—sn)17(rn) .

Take p=mn,=n"" in (5.6). Using the method of diagonalization, we give to %
consecutive values, and at each stage select n=n, such that

nreNE), npe>ne, nk>k+s<%>, 2en,<1/k.

If we put

Vi=Tay Vimetya, yi=etyy, Bi=B.,, Vi=V.,
then we have by (5.1)—(5.4), and (5.6)

61 (s, 0> hO)cos gt ) Tuln),
.8 Butre) < O0)(cos Bt ) Vu) (10157, yiSr=um),
(5.9) (1- )h(()) sin SEL 7 (NN, WETG, 0)

S( >h(0) SIN 7 py ey
510)  mr 0= (1+—)~/ L, sn ?;:‘* WOTar)  (vi=r=al).

Now, we prove the assertions I and II of our theorem. First by assumption
(5), we easily see that given ¢>0 there exists a bound %, such that 2= /k(e)
implies

5.11) Moy e, 1)>(1— ewz S‘””*uomm).

"l
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Hence, by (5.10), (5.11) we have (6) and (13). And from (5.10), (5.11) and (5.9),
(7) follows. (8), (11) and (12) are immediate consequences of (5.9).
6. Proof of assertion III of Theorem.
Choose a=a(px)=(0, 1/2) such that
(6.1) a™< s log 2/20, at—1+4(2r/log 2) log a >0.
Let

um(Z):S

log‘l——é— d@Q),  us @=u@—u 4(2).

Y <Ili<ay g

Further put

uz,k(z):SZ/y%/ log| 14| dn(®).

k

Similar computations as in [19] yield

62 luns@] KL% w0 log(7) + Tt w(Sp)} (2ni=r=5E).

From (11) we have

©3) Nyt = (1+e( )" ardiy, w),
Ny, u) (Y8 \m
my < (1 It
nayD=(+eda)r "k (yk )
On the other hand, by the choice of a of (6.1), we have
yZ/ 1n ‘u‘ (20>/z /// g ,/l/
64 (yk> af log 2 ) <ay?§/> <yk> (>0

Combining (6.3) and (6.4), we obtain
" . e -~ oy
Neay, wt n(ayi) log ([ ) SteoNe w(y )" b,
It follows from this and (11) that
6.5 “Nu)=NG, uy )=Nr, us )= 1+ )Ny, u)( )"‘ (0<r<co).
Vi
Next, we introduce auxiliary functions :

6.6) B,((z):gmm tog| 142 dnu)  (k=1,2, ),

where
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6.7) ()= y*(;tk—)#‘ Nym 1) (0<t<oo),

The convergence of the right hand side of (6.6) is due to Heins [14].

put for a subharmonic function u(z)

Cnlr, u)= %Si:u(re“’)e”m”dﬂ (m=0, +1, ---),

we easily have from (6.5)—(6.7)

(6.8) lentv BOI=NOw w2
6.9) NOL B o) k=12, ),

mo(ye, Be)
(6.10) len(Ve, Ue, ) SA42e0) len(ye Ba)l.
By (6.2), (11), (8) and (7) we have for |z|=y,

lus, k(@) | EKT (Vs u)(1+28k){<;)—i)#‘ log (%E') + (7%?)1-#'(20);1.}

éKacl(#*)(l+25k)5kmz(yk, u) (k=ko),

so that with a suitable {3,} | 0,

(6.11) 1-g,< MOB UL 450
my(Ye, u)

Further an estimate due to Miles and Shea gives

(6.12) len(r, s, 2)| Slenlr, us, 1)l (=1, 2, ---; m=0, £1, --).
Hence by (7), (6.11), (6.12) and (6.10), we have

Nww o Noww)

C.(1)=lim - - ,
i) =lim MoV ) koo MoV 3y Us, 1)
— N(yk, u) — N(yk, u)
>Tm e W g AV e W
=lim MY s Us, 1) = koo (s, B il
This implies, in particular, that for m=1, 2
(6.13) len(Ye ur, ) >A =0 len(Ve, s 4)] (e 10, k=1,2, --).

Now we appeal to the reasoning of Miles and Shea in [17, pp. 182-1837.

477

If we

In fact,

their reasoning in it is applicable since (6.8), (6.10) and (6.13) hold. Hence it is
possible to find a positive, increasing, unbounded sequence {M,} (M,>1) such

that
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Myy =y  (k=1,2, ),
and such that AM}*y,<r<M,y, implies

N, u; Sp<- -N(r, u)

,,;,1,
Mi®
for a suitable S,. Therefore, if we put
" ’ 7’ ]'
W=Meye, xi=Mtye x2e=Ye X=Yh Elz:max<5k’ 'jwy%’)j,
k

then all the assertions I, II and IIl of our theorem are valid for {y,}, {v}, {¥/},
{y4}, {e:} replaced by {x,}, {xi}, {x{}, {x¥}, {ei}, respectively. This completes
the proof of our theorem.
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