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CHARACTERIZATIONS OF THE EXPONENTIAL FUNCTION

BY THE VALUE DISTRIBUTION

BY YOJI NODA

1. Introduction. Baker [1] has shown the following characterization of
the exponential function.

Let f(z) be a transcendental entire function. Assume that for every com-
plex number w there is a straight line Lw of the complex plane on which all
the solutions of f{z)—w lie. Then f(z)=a-\-b-exp(Az) with constants a, b, A.

Recently Kobayashi [6] has shown the following theorem.

THEOREM A. Let f(z) be a transcendental entire function. Assume that there
are three distinct finite complex numbers a0 and three straight lines L3 of the
complex plane on which all the solutions of f{z)~a3 lie (j—1, 2, 3). Assume
further that these three values never lie on any straight line of the complex plane.
Then f(z)=P(exp Az) with a quadratic polynomial P(z) and a non-zero constant A.

In this note we shall give a generalization of Baker's result. In what fol-
lows we shall mean a strip by the set {az+b; \Rez\^ϊ\, where a (Φθ) and b
are constants.

THEOREM 1. Let f{z) be a transcendental entire function and k a positive
number. Assume that for every complex number w there is a strip Sw of width
k of the complex plane in which all the solutions of f(z)—w lie. Then f(z)=
a+b-exp (Az) with constants a, b, A, bAφO.

THEOREM 2. Let f(z) be a transcendental real entire function of finite lower
order and k a positive number. Assume that for every real number w there is a
strip Sw of width k of the complex plane in which all the solutions of f(z)—w
lie. Then f(z)=a+b-exp(Az) with real constants a, b, A, bAφO.

THEOREM 3. Let f(z) be a transcendental entire function and G an open sub-
set of the complex plane. Assume that for every w^G there is a straight line
Lw of the complex plane on which all but a finite number of the solutions of
f(z)~w lie. Then f(z)=a+b exp(Az) with constants a, b, A, bAφO.

THEOREM 4. Let f(z) be a transcendental entire function, G an open subset
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of the complex plane and n a positive integer. Assume that for every w^G there
are n straight lines LWtl, •••, Lw,n of the complex plane, which are parallel with
one another, on which all the solutions of f{z)—w lie. Then f(z)~Q (exp Az) with
a rational function Q of order at most n and a non-zero constant A.

Remarks. The function ez-\-eaz (α>l) shows that the assumption "for every
complex number" in Theorem 1 cannot be improved. If G is a straight line of
the complex plane, then the conclusion of Theorem 3 cannot hold generally.
This is shown by the function f(z)—z cos z. It is easily seen that for every
real number w all but a finite number of the solutions of f(z)=w lie on the
real axis.

The auther wishes to express his sincere thanks to Professor Ozawa and
Dr. Kobayashi for their valuable advice and suggestions.

2. Statement of known results. We need the following theorems.

THEOREM A [5]. Let f(z) be an entire function of finite genus q (^1). //
its zeros {an} satisfy

limarg an=0 (|arg an\^π),
n~*oo

then f{z) has zero as a deficient value.

THEOREM B [5]. Let f(z) be an entire function of finite genus q (^2). //
its zeros {an} lie in a strip of the complex plane, then f{z) has zero as a deficient
value.

THEOREM C [5]. Let f(z) be a non-constant entire function satisfying

Then the smallest convex set which contains the zeros of f{z) also contains the
zeros of f'{z).

LEMMA A [5]. Let f{z) be an entire function of genus at most one. Assume
that 0 is not a lacunary value of f(z) and all the zeros {an} of f{z) lie in the
strip

{z; \Rez\^h}.
Then

Re- ζ^-^Λ+ΣRe — —
f(z) n z—an

with a real constant A. Further if A is positive, zero, or negative, then for real
number x
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lim 1/001 = + oo,
X — + 00

lim | / 0 0 | = lim 1/001 = + 00, or lim | /00 |=
X-* + co #-»-oo ;r->-co

respectively.

LEMMA B [5]. // f{z) is regular in the half plane {z\ Rez>h>0} and fails
to take there 0 and 1, then

(Rez=x>h),

where A is a positive constant.

3. Lemmas. In this section we shall prove the following lemmas.

LEMMA 1. Let f{z) be an entire function. Assume that there exist four dis-
tinct finite complex numbers a3 and four strips S3 of the complex plane such that
all the solutions of f(z)=a3 lie in S3 (j = l, ••• , 4). Assume further that the four
strips Sj are parallel with one another and SiΓ\S3=0 (tΦj). Then f{z) has at
most order one.

The proof is essentially the same as that of Theorem 4 in [5], hence omitted.

LEMMA 2. Let f{z) be an entire function. Assume that there exist three
distinct finite complex numbers a3 and three strips S3 of the complex plane such
that all the solutions of f(z)=a3 lie in S3 (j = l, 2, 3). Assume further that no
two of the three strips S3 run parallel with each other. Then the order p, of
f(z), is finite and

( π π π 1
~~ I ω1

Jrω2 ' 0)2+0)3 '

where ω3- (j = l, 2, 3) are apertures of those three angular sectors which are com-
ponents of C\(SiVJS2^S3) and adjoin.

Proof. We assume, without loss of generality, that

(zeιω*)\^k}, (θ<ω2, OJ3^J,

Let ε be an arbitrarily fixed positive number less than min (ω2, Q)ΰ). We choose
real numbers α, β such that

{zβeιa;
Let
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then for a suitable positive number h F(z) fails to take 0 and 1 in Rez>h.
Thus by Lemma B

(3.1) l o g + | F ( z ) | ^i

Let ύ be an arbitrarily fixed number in (0, π/2). We choose a positive num-
ber γ satisfying cosδ—(h/r)>γ for every sufficiently large r. Then by (3.1)

$ n 1 Cδ dθ
\og+\F(reι ) dθt^A(l + h + r ) 2 — \ 7r~~,--t-δ r J-δ cos θ — h/r

for every sufficiently large r. Thus

(3.2) [ g\f(
J-βδ+a

If ε is sufficiently small and δ is sufficiently close to π/2, then

{e*θ; βδ+a>θ>-βδ+a} D{e*θ; j

Further if ε tends to 0 from above, then 1/β tends to π/(ω2+ω3) from above.
Thus by (3.2)

lim sup (log r)- 1 l o g f ί ^ 2 log+ \f(reι°) \dθ)^π/(ω2+o)3).
r->oo \J-ω3/2 /

For other angular sectors we obtain similar results. Thus the order of f{z) is
at most

maxi , r , r — r
Di J

LEMMA 3. Let f(z) be an entire function. Assume that there exist three
distinct finite complex numbers a3 and three straight lines L3 of the complex plane
on which all but a finite number of the solutions of f(z)=a3 lie (j — 1, 2, 3). Then
the order of f(z) is finite.

Proof. It is sufficient to consider only the case that the three lines L3 are
distinct and parallel with one another. Indeed in other cases the assertion of
Lemma 3 follows at once from Theorem 1 in [2] .

We can assume, without loss of generality, that

L * = { z ; Rez=hi} {h,>Q, Λ 2 =0, Λ 8 < 0 ) ,

and that f(z)Φat for every z in C\({z; \z\ < 1 } U L 1 ) (z = l, 2, 3). Let w = φ(z)=
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z—z~\ then the function z—φ'\w) maps the half plane Re w>0 conformally
onto the region {z;Rez>0, \z\>l}. Let g(z)=(f(z)—a2)/(as~a2), then g(φ~ι(w))
fails to take 0 and 1 in Re w>0. Thus by Lemma B

(3.3) log+\g(φ-Kw))\^-—y->----- (Re w>0).
Re w

If z (Rez>0) is sufficiently large, then Re w=Re ( z ( l - \z\ ~2))>Re (z/2). From
(3.3) we thus obtain

for sufficiently large z. Therefore

(3.4) l o g + | / ω i ^ ^ ^ - (Rez>0)
Rez

for sufficiently large z. Similarly, we obtain

(3.5) log + | /(z) |^

for sufficiently large z. Applying the essentially same method as in the proof
of Theorem 4 in [5] to (3.4) and (3.5), we conclude that f{z) has at most order
one. Lemma 3 is thus proved.

LEMMA 4. Let {an}n=i be a sequence of non-zero complex numbers such that

an—>oo as n^co, and n{r, an) the counting function of the sequence {an}. Assume

that

1
Σ

n = l

Then
1 i

A I ~ I 2 n d Z l > a n )
n- \z-an

Proof. Let z be an arbitrarily fixed non-zero complex number. Let \z\—r,
then

CO 1 1

(r+\an\γ

Lemma 4 is thus proved.
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4. Proof of Theorem 1. Firstly by Lemma 1 and Lemma 2 the order of
f(z) must be finite. Let us denote

< 7 * - { a e C ; δ(α,/)=0}.

Then by Theorem B the genus of f(z)—a is at most one for every α e C * .
Further by the following lemma all the strips Sa (a^C*) are parallel with one
another.

LEMMA 5. Let f(z) be a transcendental entire function of finite order, and
A an infinite set of complex numbers containing no deficient value of f{z). Assume
that the genus of f(z)—a is at most one for every a^A, and that for every a^A
there is a strip Ta of the complex plane in which all the solutions of f(z)=a lie.
Then all the strips Ta ( a e A ) are parallel with one another.

Proof. We consider the following two cases.

(1) liminf T ( r , / ) / r = 0 . (2) lim inf T(r, f)/rφθ .

Firstly we consider the case (1). If there exist two values, a, b (^A) such
that Ta and Tb are not parallel with each other, then by Theorem C f\z) has
at most a finite number of zeros. Therefore by (1) f(z) must be a polynomial.
This is a contradiction. Thus all the strips Ta (a<=A) are parallel with one
another in this case.

Secondly we consider the case (2). Suppose that Ta and Tb are not parallel
with each other for some a, b (e^4). There exist infinitely many elements
{an}n=i of A and a straight line

L={tetω; t^R] (0^ω<π)

such that the direction of Tan approaches that of L as n-^cΌ. Then using
Lemma A and Lindelόf-Iversen-Gross' theorem [7] we deduce that

lim \f(retθ)\= + oo

uniformly for \θ-ωJ

rπ/2\^θ*<π/2 or for | θ-ω-π/2\ ^θ*<π/2, where θ* is
an arbitrarily fixed number in (0, τr/2). Thus β-points or £>-points of f{z) must
lie in a half strip. Therefore by Theorem A and (2) we conclude that a or b
is a deficient value of f(z). This is a contradiction. Thus all the strips Ta

(a^A) are parallel with one another in this case. Lemma 5 is thus proved.

By Lemma 5 we can assume, without loss of generality, that all the strips
Sa (a^C*) run parallel with the imaginary axis. We now consider a sequence
{xn}n=-Z of complex numbers such that Re(xn+1)—Re(xn)^3k, and that f(xn)
= W ; B G C * (n = 0, ± 1 , ±2, •••)• Then SWlr\SWj=0 (ιΦj). From Lemma A
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(4.1) Re -TΓΓ^— =^» + Σ Re
f{z)—Wn in Z—am

where An is a real constant and {am} the ι^n-points of f(z) ( n = 0 , ± 1 , ± 2 , •••).

Next we prove

LEMMA 6. The following two cases donot occur.

(1) An>ΰ, Am<§ (n>m). (2) An=Am=0 (n'Φm).

Proof. Firstly we assume that the case (1) occurs. Let us write An=A,
— — B, wn=a, wm=b, Re(xn)+k=r, Re(xm)—k=s. Let

L={a+t(a-b); fe(0, oo)}.

By (4.1) and (1) we obtain

(4.2) arg (f(x+iy)-a)-arg (f(x)-a)

for every (x, y)^{r, oo)χi2. Thus from (4.2)

(4.3) {arg(/(* + r y ) - α ) ; 3^^[0, 2ττM]}=)[0,

for every x (>r). On the other hand, Lemma A and Lindelof-Iversen-Gross'
theorem [7] imply

(4.4) lim \f(x+ιy)\= + oo
x+

uniformly for y (Q^kyt^Zπ/A). By (4.3) and (4.4) we see that for some point zλ

in Rez>r, f{zx) lies on L. Hence using the same argument as in the proof of
Lemma 9 in [5], we can deduce that every sufficiently large value on L can be
taken by f(z) in the half plane Rez>r. For completeness we shall give a proof
of this assertion.

Let v1=f(z1), and E(w, Vi) be the regular element of f~\w) with center v1

which satisfies E(vlf v^)—zx. Put v1 = a + eιat1 with real constants a, tλ (ίi>0).
We continue E(w, vλ) analytically along the segment {aJrtexa ί 1^ί
Put

Then

(4.5)

If Z(t*) (O^t*<t2—ti) is contained in the half plane Rez>r, then Z(t) is differ-
entiate at ίsic and from (4.5)

(4.6)
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From (4.1) and (1)

<«»

By (4.5), (4.6) and (4.7) we conclude

ReZ'(f*)>0.

Therefore Z(t) must be contained in R e z > r for every t (^[0, t2 — ti)). If this
analytic continuation defines a transcendental singularity at the point α-W2exp(zα),
then the path Γ={Z(t); 0^t<(t2—ίi)} must be an asymptotic path of f(z) and
as z tends to infinity along this path Γ, f(z) approaches the value a+t2 exp(zα).
Thus, by Lindelδf-Iversen-Gross' theorem [7], we deduce that for real number x

lim f(x)=a+t2e
ta .

This contradicts (4.4). Thus E(w, vλ) can be continued analytically along the
half line L up to infinity. Hence we conclude that every sufficiently large value
on L can be taken by f(z) in the half plane Rez>r.

Similarly, every sufficiently large value on L can be taken by f(z) in the
half plane Rez<s. Some sufficiently large value on L is in C*. Thus we have
a contradiction, since every strip Sa (α^C*) is parallel with the imaginary axis.
Thus (1) cannot occur.

We next show that the case (2) cannot occur. Indeed, if otherwise, then by
(4.1) and (2) f\z) fails to take 0 in C. Further by Lemma 1 the order of /(z)
is at most one. Thus f(z)=a+b-exp(Az) with constants a, b, A. On the other
hand by Lemma A and (2) we deduce that for real number x

lim | / ( * ) | = lim | / 0 0 | = + oo.

However the function f(z)=a+b-exp(Az) does not satisfy this asymptotic be-
havior. Thus (2) cannot occur. Lemma β is thus proved.

By Lemma 6 we have only the following two possibilities.
1) There exists an integer TV such that An>0 for every n^N.
2) There exists an integer N such that An<0 for every n^N.
In each case by (4.1) f\z) fails to take 0 in C. Further by Lemma 1 the

order of f(z) is at most one. Thus f(z)=a+b-exp(Az) with constants a, b, A,
bAφΰ. The proof of Theorem 1 is now complete.

5. Proof of Theorem 2. Let L be the real axis. If a (^R) is not a
Picard exceptional value of /(z), then SaZ)L or Sa is at right angles to L.
Thus by the theorem in [4] we see that Sa is at right angles to L for every
sufficiently large a (ei2). Further by Theorem 4 in [5] we see that the order
of f(z) is at most one.

If there exist two real numbers a, b satisfying SaZ)L, SbZ)L, then by
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Lemma A and Lindelόf-Iversen-Gross' theorem [7] we deduce that

lim \f{reιθ)\

uniformly for | θ-π/2\ ^θ*<π/2 and for | θ + π/2\ ^θ*<π/2, where θ* is an
arbitrarily fixed number in (0, π/2). Hence every sufficiently large real number
must be a Picard exceptional value of f{z). This is a contradiction. Thus Sa

is at right angles to L for every a (ejR) with at most one exception.
We now choose a sequence {xn}n=-^ of real numbers such that Re(xn+1 — xn)

^3k and that SWn (wn=f(xn)) is at right angles to L (n=0, ± 1 , ± 2 , •••). We
define An by (4.1). Then as the proof of Theorem 1 we have only the follow-
ing two possibilities.

1) There exists an integer JV such that An>0 for every n^N.
2) There exists an integer N such that An<0 for every n^N.
In each case by (4.1) f(z) fails to take 0 in C. Thus f(z)=a+b-exρ(Az)

with real constants a, b, A, bAφO. Theorem 2 is thus proved.

6. Proof of Theorem 4. Firstly we prove that the number of directions
of the straight lines LwΛ (w^G) is finite. Indeed, if otherwise, by Lemma 2
the order of f{z) must be finite. Therefore Theorem 1 in [3] implies that f{z)
has at most a finite number of deficient values. Thus without loss of generality
we can assume that G contains no deficient value of f(z). Hence by Theorem
B, the genus of f(z)—a is at most one for every a ( G G ) . Thus by Lemma 5
we conclude that all the straight lines LwΛ (WGΞG) are parallel with one another.
This is a contradiction.

From the above result it is easily seen that there is an open subset G* of
G such that all the straight lines LwΛ (M/GG*) are parallel with one another.
We can assume, without loss of generality, that they are also parallel with the
imaginary axis. Further we assume that there exists a points a ( G G * ) such
that a is not a Picard exceptional value of f(z), and that {Lα)ί}?=i are n dis-
tinct straight lines each of which carries at least one αr-point of f(z).

We choose n + 1 α-points {zJSίi1 such that z1 and z2 lie on one of {La,i}?=i>
say La i, and that z% lies on La,t-ι (z=3, •••, n + ϊ). By the assumption on a it
is easily seen that f'(zt)Φθ (ι = l, •••, n + 1). Thus there exist neighborhoods Uι

of zt (z = l, ••• , n + 1) and a neighborhood A of a satisfying the following con-
ditions.

1) f{z) is univalent in Ut 0 = 1, 2, •••, n + 1).

2) f(Ut)=A 0 - 1 , 2 , .», n + 1).

3) AC.G*.

4) {Rez; z^Ux}r\{Rzz; z^Ui}=φ 0=3,

{Rez; z(ΞU2}(^{Rez; z^Ui}=φ 0=3,

{Rez;
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If w^Λ, then by 1) and 2) there exists one u/-point of f{z) in each Uι,
which is denoted by pτ (z=l, 2, •••, n + 1). By 3) and 4) we deduce that Re p!
~Rep2. Put F=(/|Z72)-1o(/|C Γ l), then F is holomorphic in Ux and F(z)—z is
purely imaginary for every z in Uλ. Thus F(z)^z+c in a neighborhood of zx

with a constant £. Hence we have

(6.1) f(z+c)=f(z).

Therefore f(z)=Q(expBz), where Q is a regular function in C\{0} and B is a
non-zero constant. From the assumption of Theorem 4, it is easily seen that Q
is a rational function.

We may assume that Q(w) has no factorization of form Q(w)=P(wN), where
P is a rational function and N is an integer (Ξ>2). Let m be the order of Q(w).
Then by the assumption of a there are m distinct roots {αj of (?(u/)=α, which
lie on n distinct circles whose center is at the origin. If m>n, then there exist
two of {at}, say aιr aJ} such that 1^1 — | β ; |. Then using essentially the same
method which is used in showing (6.1), we easily deduce that

Q(w)=Q(weιθ) (θ=arg β*-arg a3).

Thus Q(ιv)=P(wN) with a rational function P and an integer Λ̂  (^0, ±1). This
is a contradiction. Thus m—n. Theorem 4 is thus proved.

7. Proof of Theorem 3. By Lemma 3 the order of f{z) must be finite.
Hence Theorem 1 in [3] and the Denjoy-Carleman-Ahlfors Theorem imply that
f{z) has at most a finite number of deficient values and asymptotic values. Thus
we may assume that G contains neither deficient nor asymptotic values of f(z).
By Theorem B the genus of f(z)—a is at most one for every a (eG). By
Lemma 5 all the straight lines La (a^G) are parallel with the imaginary axis.

Let us write for every a ( G G )

(7.1) Λ(α)=Rex (x^La),

(7.2) Re /[z) =Λ( f l )+ΣRe——,

where A(a) is a real constant and {an} the α-points of f(z). (7.2) follows from
Lemma A.

Next we show the following Lemma 7 and Lemma 8. Which are modifica-
tions of Lemma 5 and Lemma 7 in [5].

LEMMA 7. // h(a)<h(b) then Λ(a)<0 or Λ(b)>0 (a, 6eG).

Proof. Suppose that Λ(a)^0, Λ(b)£0. Let {an} be the α-points of f(z)
which lie on Lα\{0}. We choose a positive number R such that f(z)Φa for
every z (Rez>R). Put ε=(hφ)-h(a))/3, S={z;
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^ ) = R e τ έ τ - V
Then by (7.2)

(7.3) φa(z)>0 (Rez>R)

and

(7.4) φa(z)=A(a)+±Re-
z—a7ι

By (7.4) and Lemma 4 it is easily seen that

(7.5) φa(z)>0

for every sufficiently large z ( G S ) . From (7.3) and (7.5) f'{z) has at most a
finite number of zeros in Rez^h(a)-\-ε.

Similarly f'{z) has at most a finite number of zeros in Rez^hφ) — ε. Thus
f'(z) has at most a finite number of zeros in C. Therefore

(7.6) f(z)=P(z) eaz + β

with constants a, β and a polynomial P(z). The assumption M(α)Ξ>0 and A{b)
^ 0 " , Lemma A and Lindelof-Iversen-Gross' theorem [7] imply that

lim \f(rexΘ)\ = + co

uniformly for | θ\ SΘ*<π/2 and for | θ — π\ ^θ*<π/2, where θ* is an arbitrarily
fixed number in (0, ττ/2). This asymptotic behavior contradicts (7.6). Lemma 7
is thus proved.

LEMMA 8. For every a (GΞG) we have

(f(z+h(a))-a)=( f(-z+h(a))-a)
with a polynomial Pa(z) and a real constant B(a).

Proof. Let {an} be the α-points of f(z) which lie on La and {a'm} the ap-
points of f(z) other than {an}. Let us write

(7.7) f(z+h(a))-a=z*eAt+B Π
aΦh( an — h(a)

(7.8)
m am

-h(a) i exists,

1 if a'm does not exist,

(7.9) ga(z)=(f(z+Ka))-a)/Pa(z),



CHARACTERIZATIONS OF EXPONENTIAL FUNCTION 437

where E(z, 1) is the Weierstrass primary factor of genus 1. Since all the zeros
of ga(z) are purely imaginary, by Lemma 5 in [5]

(7.10) ga(z)=ga(-z) exp(A(a)z+ιB(a))

with a real constant B{a), where

(7.11) A(a)=2 Re U + Σ - 7 A 7 - r )

From (7.7)

(7.12) Re -τ-;~--=^(α)/2+Σ Re — — + Σ Re — V
}κz)—a n z—an m z—am

By (7.2) and (7.12)

(7.13) 2A(a)=A{a).

From (7.9), (7.10) and (7.13) we have the desired result.
Next we prove

LEMMA 9. Let a, b^G. Assume that h(a)>h(b), A(a)A(b)>0. If A(a)>0,
then there exists a neighborhood E (ClG) of a, such that h(p) is continuous in E
and that A(p)>0 for every p in E. If A(a)<0, then there exists a neighbor-
hood E' (CG) of b, such that h(p) is continuous in E' and that A{p)<ΰ for
every p in E\

Proof. In what follows we assume that A(a)>0. When A(a)<0, we only
have to consider the function f{—z) instead of f{z).

Let ε be an arbitrarily fixed positive number less than (h(a)—h(b))/3 such
that the set

C={z; 0<

contains no a -point of f(z). Using the same argument as in the proof of Lemma
7, we deduce that

(7.14) R e 7 g £ L

(7.15)

for every z satisfying Λ(α) + ε^Re2r^Λ(α)+2ε and | I m z | ^ i ? 0 , where Ro is a
suitable positive number.

Let γ=\a—b\ and δ a positive number satisfyihg

(7.16)

Put



438 YOJI NODA

L={z; Rez=h(a)-i-ε}.

(7.17) S={zeZ,; |α-/(z) |<3},

(7.18) T={z^L; \a-f(z)\^δ}.

Let j e S and \\mz\^R0, then by (7.15)

(7.19) \og\f(z+ε)-b\-\og\f(z)-b\

By (7.16), (7.17) and (7.19)

Thus \f(z+e)-b\^γ+δ. Hence

(7.20) \f(z+ε)-a\^

Similarly, by (7.14) and (7.18)

(7.21)

Since f{z)—a does not vanish on Rez=Λ(α)+2ε, by (7.20) and (7.21) we
see that for a suitable positive number η

(7.22) \f(z)-a \^η (Re z=h(a)+2ε).

By Lemma 8 and (7.22)

(7.23) \f(-z

Since f(z)—a does not vanish on Rez~h(a)—2ε, by (7.22) and (7.23) we con-
clude that for a suitable positive number ζ

(7.24) \f(z)-a\^ζ (Rez=h(a)±2ε).

Let {ai\ be the distinct α-points of f(z) outside C and d a positive number
satisfying the following conditions.

1) DinDj=φ (iψj), where Dt={z; \z-aι\^d).

2) DtnC^φ.

Put

(7.25) 77Ϊ= min \f(z) — a

Let r be an arbitrarily fixed positive number less than min (ζ, 7/z) and E=
{w; \w-a\<r}dG. By (7.24) and (7.25)
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(7.26) Γ\E)r\{dC^{\JdDx))=φ.

Since E contains no asymptotic value of f(z), each component of f~\E) con-
tains at least one α-point of f(z). Thus by (7.26)

(7.27) /

By (7.27) for every p in E

(7.28) \h(a)-h(p)\^2ε.

Since ε can be taken arbitrarily small, h{p) is continuous at the point a. By
(7.28)

(7.29) h(p)>h(b)

By Lemma 7 and (7.29)

(7.30) Λ(p)>0 (pt=E).

Applying the same method to (7.29) and (7.30), we conclude that h{p) is con-
tinuous in E. Lemma 9 is thus proved.

Let H={p<=G; A(p)=0}. If p, q^H, then by Lemma 7 Lp=Lq. Thus
Hdf(Lp) (p&H), or H—φ. Hence G\H has infinitely many elements. Thus
there exist two elements a, b ( G G ) satisfying A(a)Λ(b)>0. There are the fol-
lowing two cases.

1) h{a)Φh{b). 2) h{a)=h{b).

In the case 1), by Lemma 9, we easily see that for some two points a, β in Ey

or in E'y h(a)=h{β) and A(a)A(β)>0. Thus in both cases there exist two ele-
ments a, β^G such that h(a)=h(β) and A(a)A(β)>0.

In what follows we assume, without loss of generality, that a=0, /3=1,
h(a)=h(β)=0. From Lemma 8 we have

Put

.4=2.4(0), B=2A(1).
Then

Since BφQ, we easily have
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(7.31) f{z)={eBz-Y{z))/{X{z)e'B-A'z-Y{z)).

We now consider the following two cases.

(1) A=B. (2) AφB.

Firstly we consider the case (1). There are the following two subcases.
(1.1) X(z) and Y(z) are both constants.
(1.2) X(z) or Y(z) is not a constant.
Case (1.1). In this case, the assertion of Theorem 3 follows at once from

(7.31) and (1).
Case (1.2). For instance, we assume that X(z) is not a constant. Another

case, when Y(z) is not a constant, can be treated by the same method.
Let p^G, and {zn} be the ^-points of f(z). Put

F(z, p)=

Then by (7.31) and (1)

exp(Bzn)=F(zn, p)

for sufficiently large n. Thus

(7.32) I F{zn, p) i -exp (B Re * n )=exp (B h{p))

for sufficiently large n. Since F{z, p) is regular at z=co, by (7.32)

(7.33) \F(z, />)| = |F(oo, p)\ (zt=Lp),

(7.34) Lp={z; Re z=(log | F (oo, p) \ )/B).

Since X{z) and Y(z) have no common pole, any pole of X(z) must be also a pole
of F(z, p) for every p in G\{0}. Let t0 be a fixed pole of Z(*). Then (7.33)
and Schwarz' reflection principle imply that F(z, p) vanishes at the point

ίo-2((Re/o)-Λ(ί)).
Put

c(p)=to-2((Reto)-h(p)).

F(oot p) is an analytic function of p. Hence there exists a point x in G\{0, 1}
satisfying

(7.35) |F(oo, x)| = |F(oo, 1)|.

By (7.34) and (7.35) we have c(x)=c(l). Thus

Hence (l — x)Y(c(l))=0. Since X{z) and Y{z) have no common pole, Y(c(l))ΦQ.
Thus x — l. This is a contradiction. Thus the case (1.2) cannot occur.

Secondly, we consider the case (2). In this case by (7.31) we easily conclude
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that B/(B-A) must be an integer. Put q=B/(B-A). Then from (7.31)

(7.36) f(z)=(eq(-B-Λ>z-Y (z))/(X(z)eCB~A^-Y(z)).

Let {an} be the zeros of X(z) exp((B—A)z)—Y(z). From (7.36)

Thus
(Y(an)/X(an))q=Y(an).

Therefore

(7.37) Yizy-^Xiz)*.

By (7.36) and (7.37), q cannot be 0 or 1. Therefore X{z) and Y{z) are both con-
stants, since X(z) and Y(z) have no common pole. Let us write X(z)=:χ, Y(z) = y.

From (7.36) and (7.37)

(7.38)

(7.39) y^=xq.

If qΦ2, 1, 0, —1, then the order of the rational function

Q(w)=(ιvq-y)/(xw-y)

is at least two. In this case, by the same method in the proof of Theorem 4,
the function f(z)=Q(exp(B—A)z) cannot fulfill the assumption of Theorem 3.
Thus this case cannot occur. Hence #=2 or — 1.

By (7.38) and (7.39) we have the following results.
(1) If q=2, then

f(z)=(e<B-Λ:>z + x)/x.

(2) If tf=-l, then

f(z)=(e-<B-Λ>')/(-y).

The proof of Theorem 3 is now complete.
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