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WAVE THEORY OF SPIRAL GALAXIES
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§ 1. Introduction.

The dynamical mechanism of the long term maintenance of the spiral struc-
ture observed in many disk shaped galaxies has been successfully explored
through the density wave theory of the spiral galaxies by C. C. Lin and his
collaborators. The mathematical formulation of this theory is based either on
the steller dynamic or on the hydrodynamic approach. If we adopt the latter,
the basic equation consists of the equation of continuity, the Euler's equations of
motion, the equation of state and the Poisson equation. We assume that the basic
equation has a steady axisymmetric solution, then we get equations of pertur-
bations (2.1). In the context of the linear theory, there are three levels of appro-
ximations of the equations for analysis (private communication of Prof. C. C. Lin):
{i) an integro-differential system (2.3a), (2.3b), (2.3c) and (2.4), which is exact

as the linearlized equations for the perturbations,
(ii) a third order differential system (2.7a) and (2.7b),
(iii) a second order differential equation (2.9).
Through numerical and asymptotic analyses of the second order differential
equation, Lin and his school have arrived at a consistent interpretation of the
plysical problems of the spiral galaxies, Lin and Lau [7]. Pannatoni and Lau [10]
just begun the study of the integro-differential system by elaborate numerical
analysis.

The purpose of this paper is to study the third order differential system of
the second level of approximation by the asymptotic analysis and prove that
it is asymptotically equivalent to the second order differential equation of the
last level, in an appropriate region where the spiral structure prevails.

The program of this paper is as follows. In section 2, the basic equations
and the equation of perturbation of each level of approximations are stated. In
section 3, through the block diagonalization technique (Wasow [12], p. 133 if.),
the third order differential system is split into a second order and a first order
differential equations. In section 4, we define the so-called admissible regions
in which we construct asymptotic expansions of solutions of the third order
differential system. And in the last section we consider connection formulas
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between two fundamental systems of solutions defined in two admissible regions,
and prove the splitting property, which means that one of the solutions is inde-
pendent from the other two solutions throughout the region of our interest. In
this way, we obtain the main result that the third order differential system
with certain boundary conditions is asymptotically equivalent to the second order
differential equation with the same boundary conditions. As a consequence,
we get an asymptotic formula of the global dispersion relation for the third order
differential system.

§ 2. Equations of perturbation.

The basic equation governing the behavior of the steller component are the
Boltzmann equation and the Poisson equation for the gravitational potential
(Rohlfs [11] Chapter 1). But for simplicity of analysis, a fluid dynamical model
has been often adopted for the disk stars. Since the mass distribution in a galaxy
is axisymmetrical, we describe the basic equation in the cylindrical coordinate
system (r, θ, z) with the plane z=0 coinciding with the plane of symmetry in
the disk, we idealize the disk as being infinitesimally thin. Let us denote the
surface density, the corresponding gravitational potential, by σ(t, r, θ), φ{t, r, θ, z),
and the components of velocity of unit mass of the fluid in the r- and θ-
directions by u(t, r, θ), v(t, r, θ) respectively. We can assume that the state of
equilibrium of the basic equations {σ0, u0, vQ, φ0} — {σo(r), 0, vo(r), φo(r)} has
rotational symmetry, and these quantities characterize models of galaxies. The
perturbation to the stationary state {σly ulf vlf φι) satisfies the following set of
equations in the linearlized form. [11], [7] :

dt

dui j_n dui _ o n ^ — ( β2 d°i i ^ΦΛ
5/- d# \ σ0 dr or J

(2.1)

dt + Jdθ + 2ΩUl~~ r\ σ0

dr2 r dr r2 dθ2 dz2

where δ(z) is the delta function of Dirac.
Here Ω=Ω(r) is the angular velocity=?;o(r)/r, a —air) is the mean velocity

of the gas and ιc is the epicyclic frequency defined by 2Ω(l+r/2ΩdΩ/dr)112. We
can assume that these quantities are all given real analytic functions of r and
positive. G is the constant of universal gravitation.

We may seek solutions in the form of normal modes having spiral structure
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Oi~θι{r) exp i(ωt—mθ),

ϋi=u1(r) exp i{ωt—mθ) ,
(2.2)

v1=v1(r) exp i(ωt—mθ),

φi=φi(r, z) exp i(ωt—mθ),

where ω is the complex parameter, and m is the number of spiral arms. From
(2.1.) and (2.2) we get

dux{r) / I 1 ύfσo\ , , miv^r) , ./ ω—mΩ( 2 . 3 a ) ^ U l ^ [ f 1 ! x rf(7^ ( r ) _ .
ί/r V r σQ dr / ι

(2.3b)
or

(2.3c) - ^ - M ^ + t X ω - m β ) ! ; ! ^ ) — ^ - ( ^ ( r , z)+A 1(r))=0,

where

and

(2.3d) {"TΓ^̂  ^~ + T τ ~ ~ J ^ } ^ r ' ^ ) = 4 7 r G ! ί 7 i ( r ) ^ )

The gravitational potential over the disk φ1(r)=φί(r, 0) can be expressed in
terms of an integral of the surface mass density

(2.4) φi(r)=

where K(r, r') is known (see [7], p. 116).
Equations (2.3a), (2.3b), (2.3c) and (2.4) constitute the integro-differential system

which we refer in the introduction as the equations of the first level of appro-
ximation.

To apply the asymptotic analysis, the equation (2.3d) connecting the potential
φx(r, z) with the surface density σx(r) can be approximated for rather tightly
wound spirals by the differential relation, Bertin and Mark [1],

(2 5) dφάr)_ + φ1(r) _ m2-l/4 φ i { r ) = ι Σ h i ( r )

where

2/c ,_ tea

From the equations (2.3a), (2.3b), (2.3c) and (2.5) we can eliminate uλ{r), vλ(r)
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and σλ(r) and get a second order differential equation for the two variables
ψλ(r) and h±{r) in the traditional form [7]

where

Λ = 1 dlogJl

r d log r σor '

m2 2mΩ d log (fc2/σ0Ω) 7\ AvmΩ d log tz

r2 τ2κv dlogr l—v2 r2tc(l—v2) d log r '

-K:\1-V2)

rnjω—Ω) _ / 2mΩ y d log Ω_ rnjω—Ω) _ / 2mΩ y
re ' λ \ rtc / dlogr '

By the standard transformation

2(1-^2) \ 1 / 2

the equations (2.5) and (2.6) becomes

(2.7a) ^
dr2 4

Σ

(2 7b) τ r
The above equations (2.7a) and (2.7b) constitute a third order differential system
of the second level of approximation which we shall study in this paper.

From the basis of the physical consideration, Lau and Mark [4] reduced the
equations (2.7a) and (2.7b) by replacing v in (2.7a) by — 2u and arrived at a
second order differential equation
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Σ /1 A Σf \ ί m2 , 5

Σ

which can also be rewritten as (see section 3 for details)

(2.9) ^ί

J

ΓK
2u=0}

K2=k2-\-R,

2mfl
dr \ — v r/cv dlogr

4vmΩ d log K

σor

) 1 / 2 1 d2 ( σor \ i

) dr \ tt (1—v ) /

tc\l—v2) d / σor

r 2 " dr \ /c2(σ0r
2 dr V /c2(l~v2) / 4r2 '

Equation (2.9) is of the third level of approximation that has been extensively
studied, for example Lin and Lau [5], [7] and Nishimoto [9].

§ 3. Asymptotic reduction.

In this section, we construct a linear transformation which asymptotically
splits the differential system (2.7a) and (2.7b) into a second order differential
equation of single variable and a first order differential equation of another
variable. To do so, we rewrite the equations (2.7a) and (2.7b) by using the
physical quantities and introduce a large parameter λ in order to apply the
asymptotic method.

In the equation (2.7a) and (2.7b), we replace A, B and C by their difinitions
written below the equation (2.6).

Since

, I dlogJί _l dlogJί-1 _l r d^1 _ tc\l-v2) d

r dlogr r dlogr r φ x dr σor dr

σ°r V2ί d

) \
Λ>= ( σ°r V 2 ί d ( σQr \V I ( σ*r

\ Λ ; 2 ( 1 - V ) ) \ d r \ tc\l-v2) )\ ^ V Λ: 2 (1-V 2 ) / dr2

it is easily verified that

A2 , Af ί κ\l-v2) y/2 i

σQr ) dr

σ«r V/2

Λ: 2 (1-V 2 ) / '
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and since

-ί -Λ—γ)dr=Uog r+log Λ-log ΣJ0

Γi / °O^ V 1 cίoQ Ί r Γi /Λ/1 9x w 1 r

L \ ΛΓ(1 — v 2 ) I 2/c J r 0 L 2σoJro

then we have

r

And we have

C-

Thus we have

~dr

(3.1)

where

2 dr L• * ^ κ n Δ l-v2 r2tcv dlogr

AvmΩ dlogfc ( tc2(l — v2

2m2 - 1 / 4
r2 '

fc2{l—v2) d ( σor \ Tλ 2mΩ d log (tc2/σ0Ω)/ σor \ 1 !
r2/rv dlogr

AvmΩ dlogfc 3—4m2

r tc{l—v) dlogr 4r

1 Λ:2(1 — v2) d ( σor \

2r σor ύfr V fc (l — v) /
aQ(m2-l/4)

2ιr2κ
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Now we introduce a dimensionless large parameter λ which is a typical
value of κr/a. For a realistic model of galaxies, λ is about 32. The orders of
magnitude of the coefficients k% (z=l, 2, 3) and Rt (z=l, 2, 3) on the region
where spiral structure prevails are assumed to be (this is the case for tightly
wound normal spiral galaxies, [4] and [7])

kt=(KX), (z=l, 2, 3),

Ri=<Kλ), R2=0(λ), i?8=0(l).

By using the large parameter λ, the equation (3.1) is rewritten in a simpler
notation as

or if we

then the

(3.2)

where

put

above

U1=^U , U2
= εu

equation becomes

ε

. «, .

' f
J

0

al

Co

a2

0=—λ-2kl,

z =z-

1

0

0

0

d

' , Us=l

0 N

0

do.

+ ε

' 0

0

o~—

)

0

0

0

>

and

0 ]

Jl
b!=

dλ—

" 5 - 1

ε — A ,

f Mi ^

ί U2

-λ~ιR2,

-λ-1

R,.

Let us examine singularities and turning points of the above equation (3.2)
for real ω and r. The singular points are

and the points where

r=0, the center of galaxy,

m^-Ωl=Oι + ! , _ ! .

The latter are usually designated as the corotation resonance rco, the outer
Lindbladt resonance r0LR and the inner Lindbladt resonance rILR. The function
flj(r) has poles of order two at r = 0 and r0LR, rILR and a simple pole at rco.
The function bλ(r) also has a pole of order two at r=0 and simple poles at
foLR, ΎΊLR and rco, and the function d^x) has a pole of order two at r=0, simple
poles at r0LR, rILR.
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The turning points are those at which roots of the equation

ί 0 1 0 )

at 0 0

Co 0 do .

coalesce. Since we have f(μ)=(μ—do)(μ2— at), turning points are those at which
either

or

Thus the Lindbladt resonance r0LR, rILR where v2 =1 are simple turning points.
From the numerical investigations, we reasonably assume that the function
a\{r) has a double zero at rco where v=0 and a simple zero at rce such that
riLR<rce<rC0. Thus for real ω, the function al(r) is real and has a curve like
Fig. 1, [7].

As is easily verified, the point r=0 is the irregular singular point and other

poles are regular singular points of the differential system (3.2). Thus we are

concerned with the equation having an irregular singular point, regular singular

points and turning points. But at present, there is no global theory which is

Fig. 1. Function a\ (r) for real ω
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available to our equation, and so we restrict our attention to some subregion, for
example, to a neighborhood of rco, rILR, r0LR or a segment between rce and rcot

just like other papers [4], [6], [7] and Mark [8].
Now we apply the following transformation to the equation (3.2).

(3.3) U=d

where

u2

u3 J

W=

-blCodl
Sβ2 ^2\2

2 Λ2

co(dod1 — a1)

al-dl

w2

I w3 j

, P>=

-ftiCo

\UQ UQJ

( n 2 rj^\
\U,Q UQJ

al-dl

(al-dlY +\

1

0

codo

al—dl

al-dl

0

Codo ^

al—dl

0 0
1 0

Co -,

al-dl

n 2 ΛΊ ( n 2 ^2\2 V n 2 J2 )

aQ—a0 {ao—aQ) \ aQ—a0 /

Then the resultant equation is after some calculations

dW
(3.4)

where

G0(r)=

dr

0 1 0 ]

flS 0 0

0 0 do

•={Go(r)+εG1(r)+eiG2(r9 ε)}W,

^-,7T 0

0 0 dx--
n 2 Λ2

a0 α 0

and G2(r, ε) is a polynomial of ε of degree 3 and its coefficients are rational
functions of a0 ax bλ c0 d0 and dλ. If we write down the expression of G2(r, ε),
it is easy to count the order of poles at each singularity. We don't go into the
details here about this point, but only remark that the remainder term G2(r, ε)ε2

can be written in the neighborhood of each singularity as
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5
2 = Σ

where / denotes one of singularities 0, r ILR, rco or r0LRy G[ι\r) is bounded in the
neighborhood of a singular point / and r ( 0 ( r ) is such that

τ c z ) ( r ) r =

(r—rILRy

for 1=0,

for l=rJLR,

for l—rco,

for l=r0LR.

Details of the construction of (3.3) and (3.4) are given in Appendix.
Before constructing solutions of equation (3.4), let us compare it with the

second order equation (2.9). If we neglect the terms of order higher than O(ε)
in the equation (3.4), then we have

(3.5a)

(3.5b)

where

£

d

dr[

dw3

dr

Ί4° Ή"
h J [I al 0 J [ g2

={d

The equation (3.5a) is equivalent to

(3.6)
dr'

f f gl
;=ίδieχp{-) - Γ

-dr\.

Since we have (see the notations below (3.2))

2R2
1

1'

then both equations (2.9) and (3.6) have the same principal term, and since the
quantity (1—v2)Q2 is nearly one in the neighborhoods of rce and rco, the remainder
term R in the equation (2.9) may be a good approximation of — ε"1g2 on a neigh-
borhood of the segment between rce and rco where it is the most important
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region for the wave mechanism of the density waves.
Now, we consider boundary conditions for the equation (3.4).

conditions for the equation (2.9) are such that
The boundary

(i) u{r) exponentially decays for r<rce,

(3.7)

(ii) eιωtu{r) represents an outgoing wave for r>rco.

The physical reasons for these choices of the boundary conditions are given m [7].
Since the equation (3.4) may be approximated by (3.5a), (3.5b) and the equation

(3.5a) is essentially equivalent to the equation (2.9), then it seems quite reasonable
to put the boundary conditions (3.7) for the equation (3.4).

In the next section, we shall construct asymptotic expansion of solutions of
the equations (3.4) and (3.5), and show that the solutions of (3.5) really approximate
the solutions of (3.4) in appropriate regions of the complex r-plane. From these
facts, we can say that the boundary conditions (3.7) bring us a global dispersion
relation or a quantum condition for our system (3.4) and (3.1) which is analogous
to the one for the second order equation, [6], [9].

§ 4. Asymptotic solutions.

By the transformation,

(4.1) W—TQX,

the equation (3.4) becomes

(4-2) εΆ

with

where

1 o —

ί 1 - 1 0 1

a0 an 0

1 0 0 1 J

X=

*)+εH1(r) + e2H2(r, ε)} X

{ao(r), — αo(r), do(r)} ,

I foil) JΛ1) 0 \
n 11 /z 12 u

/̂ V /2S 0 ,

. 0 0 8 z ι

a'Q } a'o . Cj . 1

Zo α0 J 2α0 ' 2α 0 2αo(αo—αΌ)

12— g l ^ 1 α0 ' α0 J 2α 0 2α 0 2ao(ao—do)
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. i - 2

a
0

2a<s{aί>+da) '

CL o d \ u\C o

0/7 2/7 2 β f (1 1" ̂ / ̂

The remainder term // 2 (Λ ε)ε2 has singularities at r—^d, r 1LR, rce, rco and r0LR,
and can be written

ε ri2\t, εj — ZJ ̂ ι U / Ί ^ v )εί

where H[ι\r) is bounded at singularities, and σa\r) is defined as

(τa\r) for / = 0 , r J L Λ , r 0 Λ Λ ,

σ c i ) (r)= ( r - r c e ) - 1 / 2 for l=rce,

{{r—rcoy
2 for l=rco.

If we apply the same transformation (4.1) to the equation (3.5a), (3.5b), we
get te equation (4.2) with H2(r, ε)ε2=0.

We further change the equation (4.2) by the transformation

(4.3) X={E+eT1}Y>

JΊ

where E is the 3-dim unit matrix, and Tλ is

2α0

a0

h+ — ) , 0

0

0, 0, 0,

By assuming that

(4.4) \εg2/2a2\<l,

we expand {det (E+εT^} " 1 = {1 — ε2gllAa'l} ~1 in power series of ε, and obtain
from (4.2) and (4.3)

(4.5) εdJ-^{Hΰ(r)+εH1(r)+ε2H2(r, ε)} Y
dr

Here H0(r)—H0(r)f H1(r)=άiag H^r) and ε2H2(r, ε) is a power series of ε such that

ε2H2(r, ε)= Σ H(

t

ι\r){μa\r)ε}ι.
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where H[ι\r) are bounded at singularities r~l and μ(l)(r) is such that

fr<"(r) for 1=0, rILR, r0LR,

μa\r)Λ ( r - r c e ) " 3 / 2 for l=rce,

i(r-rcoy
3 for l=rco,

Now we define a diagonal matrix Λ(r, ε) by

(4.6) Λ{r, ε)Ξdiag {^(r, e), Λ2(r, ε), Λ8(r, ε)}

and put

(4.7) Y{r, e)= {E+Z(r, ε)} exp Λ(r, ε),

then Z(r, ε) satisfies

(4.8)
ar

where Z is a 3 by 3 matrix with elements zXJ (z, 7=1, 2, 3). If we denote
entries of the matrix H2{r, ε) by htJ(r, ε) (i, 7 = 1, 2, 3), then z^ satisfy'equations

(4.9) e - ^ - = { A i ( r , ε)-/z,(r, ε ) } ^ + ε2{Aι;(r, ε)+ ΣA ί Λ ( r , e)^A;} ,

(i, 7 = 1, 2, 3).

Here we denote the diagonal elements of the matrix Ho+εHx by Ai(r, ε):

Ai(r, e)=ί
2α0 2α0

(4.10) A2(r, e ) = - α

The differential systems (4.9) are equivalent to systems of integral equations

(4.11) zxj(r, e ) = e Γ [exp frt/r, e )-r t/ s , ε)}]

•JAt/s, ε)+ ΣJiikis, e)zkj(s, ε)jds ,

γtJ{r, ε)=-\\r hi(r, ε)dr-\T hj{r, e)dr\ ,
ε {j Ci j cj )
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where paths of integral CtJ and C% are specified in later.
Now let us consider r as the complex variable, and solve the integral equation

(4.11) in a certain bounded region 77 in the complex r-plane. Then we assume
that each coefficient in the equation (3.2) is extended to be analytic function on
77 except singular points stated in section 3. The domain 77 is a neighborhood
of the segment between rc e and rco and does not contain the Lindbladt resonances
TILR, TOLR and r=0. Hitherto, we assumed that the turning points rce and rco

are on the real axis. For ω complex but nearly real, rce or rco may be complex
but nearly real and the general nature of the problem is not greatly changed.
Thus we assume that 77 contains rce and rco in its interior and contains no
other turning points or singular points. The reasons why we choose such a
region 77 are the followings:

(1) From the earlier works, the wave mechanism of density waves is the most
important in this region, [73 and [9].
(2) The original differential system (3.1) or (3.2) has singularities at the Lindbladt
resonances and these points are at the same time turning points of the system,
but global mathematical analysis in the region containing all singular points and
turning points is very difficult. Thus we limit our consideration to the region
77 in this paper. The wave mechanism around the Lindbladt resonances rILR and
TOLR which are not contained in 77 is very important, and was studied locally
by Mark [8] by the steller dynamical approach.

Now we prove the existence of solutions of the integral equation (4.10),
which are of the order O(ε), in several subregions of 77. First of all, let us
describe the Stokes curves in 77:

Re\ ao(r)dr=O,

where r0 is rce or rco. Then from the assumption on al(r), we have a Stokes
curve configuration in the 77 as shown in Fig. 2. Here and in the following,
Re/ denotes the real part of /, and also Im/ means the imaginary part of /.

The symbols S3 in the figure denote subregions of 77 that are bounded by
Stokes curves and the boundary of 77, and L3 are some of the Stokes curves.
By using the notation in the Fig. 2, we define four subregions Dk (k = l, 2, 3, 4)
of 77 containing parts of the real axis:

JS2}nΠ, D2=D3=l

To each Dk, we assign two points rk, r'k and a Stokes curve Lk, and denote
these quadruplets by {Dk, rk, r'ky Lk] (k = l, 2, 3, 4) such as

0 i , rcβ, rce, Lλ) , 0 2 , rce, rce, L2} , 0 3 , rco, r3, L3} ,

04, rco, r4, LJ ,
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Fig. 2. Stokes curve configuration of a\ (r)

where r'k is some point in Dk respectively different from rco. By these we
characterize the integrals of /ι/r, ε) (; = 1, 2, 3) such that

Γ h1(r, ε)dr=V' a^dr+V' eh^dr ,

I h2(r, ε)dr= — \ aodr+\ εhffdr,

I h3(r, ε)dr=\ {do + εg2}dr,

for r^Dk (k = \, 2, 3, 4). The branch a0 and \ aodr are determined by

ReΓ ao(r)dr>O on L^ (/J = 1, 2, 3, 4).

Thus we have defined the matrices A(r, ε) that are characterized by {Dk, rk}

r'ky Lk} as above. Note that the integral for hz{r, ε) is the same for every Dk.
By the suitable deformation of the above regions Dk, we construct admissible

regions Dk(γ) where we can prove the existence of asymptotic solutions of (4.11).
To do so, we introduce here a mapping ζ=ζ(r, r0) from the complex r-plane into
the complex f-plane by

(4.12) ξ(r, ro)=\ ao(r)dr
Jr0
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where r0 may be any point of Π, but it is the most convenient to take it rk

for r0 if we consider the image of Dk. Let us denote the image of Dk by Sk.

Then β)k is a bounded region in ξ-plane with vertical cuts. Next, we introduce

the domains of influence Nce and Nco, which are direct neighborhoods of rce and

rco respectively, by

Nce={(r, ε): \r-rce\ <Nε1/2, 0<ε<ε 0} ,

Nco={(r, ε): | r-r C 0 |<7Vε 1 / 5 , 0<ε<ε 0 } ,

where N and ε0 are some positive constants. By taking TV sufficiently large and

ε0 sufficiently small, the condition (4.4) is satisfied and the series of ε2H2(r, ε) is

convergent for r^Π—Nce—NC0 and ε small enough. Let 3) be one of the regions

Sk (k = l, 2, 3, 4) and let ϋlce and Jίco be the images of Nce and Nco under the

mapping (4.12), and consider regions k— Jϊce—Jlco = £>[ε~l in the f-plane. Now we

change the region ϋ [ ε ] into β)\j, ε] for small positive γ by deleting small neigh-

borhoods of cuts and some portions near the boundary, so that it satisfies follow-

ing conditions: For each ι, j (ι, j = l, 2, 3), there exists a fixed point ηl3 in

£D\j, ε] and for every point ξ in S)\j, ε] we can describe piecewise smooth

curves CtJ(s, ξ, η) for O^s^so(ξ) connecting ξ and κ]ιj, where s denotes the arc

length of the curve from ξ and it satisfies

(1) Cιj(s, ξ, ηιj) is contained in ®{_y, ε] and

(4.13) Cxβ, ξ, ητj)=ζ, Cτj(s0, ξ, ηιj)=ηιj,

(2) On this cvrve, the following inequality is satisfied

(4.14) _dRe^vO
as

where Jxfx, ε) is defined in (4.11) and we consider here γτj{r, ε) as a function of

ξ under the mapping (4.12).

We take the inverse image of this region £)[_γ, ε] and CXJ(s, ξ, ητj) as the

admissible region Z)[j] and paths of integral CXJ respectively. The union of all

such admissible regions can cover a neighborhood of the real axis between rce

and Tco except domains of influence Nce and 7VC0.

Now we specify how to construct the region 3)\j, ε] and curves Cτj(s, ξ, ητj).

Firstly for i=j, Cιj(s, ξ, Ύ]XJ) can be any of the Cτj(s, ξ, η%J) (iΦ j) specified below

since 7ιj(r, ε)=0 for ι=j.

Let iΦj, and note that

d ReΛ/ )-Re-f-Λ/r, ε)=Re(Λ1(r, ε)-/z/r, ε))-dr

1(r, ε)-h}(r, e))f l-i-^
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T h u s w e h a v e

ds

(4.15) ^ReΠs(r , e ) = - - f - R e ^ r , e)=Re{l—^
ds ds I α0

+e(h&gz)aA^
α 0 J ds

ReγUr, e ) = J ^

The domains of influence of the turning points rce and rco are deleted from

each ϋ [ ε ] , so it is sufficient to construct Ctj(s, ξ, ηi3) satisfying (4.13), and instead

of (4.14) the followings

^ on C12, Re-β->γ on C21,
as

^<T o n C 1 2 , R e β
ds as

o n

_ r o n
1 ) ^ < r o n C i t t R e ( i ) > r o n C ,

a0 I ds \ a0 / ds

for a small positive constant j , since the condition (4.14) can be satisfied by
taking ε sufficiently small. We show these for 0lf rce, rce, LJ and 0 2 , rce, rce, Lλ},
for examples, and we can treat the other cases in a similar way.
(1) Case of φlf rce, rce, Lλ).

Let i)lf rce, Lλ be images of Dlf rce, Lx under the mapping ξ=ζ(r, rce). rce

is the origin in the ξ-plane, Lλ directs upwards and L2, LΊ make a downward

cut of ϋ>i (Fig. 3). From the definition (3.2) of the functions a2

0(r) and do(r) and

the way of determination of the branch \ ao(r)dr (and then ao(r)), we have

do(r) __ — k3 Σ

aQ(r) ιkι 2kx '

where kχ(r)>0 for real r>rce and Σ positive for real r>0. Here we assume for
simplicity that I 7 is a positive constant and k1=a(r~-rce)

1/2 (a; positive constant)
in Dλ.

The case in which the above assumptions do not satisfied could be handled
with a slight modifications by taking D1 small.

Thus we have

rr 2
ζ(r, rce)=\ iaλ~Wr—rce dr=—iaλ~\r—rcef'

2,
Jrce ό
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and then

d
o
(r) Σ Σ

fl,(r) 2k, 2a(r-rcey>*

It is easy to see that for S

w>° if -f
>0 if — |

< 0 ίf Ί

By assuming Ό^ is so small that for ξ in S1 we have

. , „ do

On the other hand, since we have

ds i \ a0 / ds a0 ds

then it is clear how to construct the region £)ι[_γ, ε] and Ctj(s, f, r)τj) (i, j=^
1, 2, 3). For example, C13(s, ξ, ηn) may consist of three segments which satisfy

Re-τ^->-ζ-, and Im —^->0 for the left side of LΊwΓ2 and I m - ^ - < 0 for the
ds δ ds ds

other side (Fig. 3).
(2) Case of 0 2 , rce, rce, L2}.

In this case, we remark that from the definition α§(r) and do(r), and from
the choice of the branch of ao(r) in D2,

d
a, Vl-{l-v2)Q2 '

For real v (that is, for real ω), 0 < l - ( l - v 2 ) Q 2 < l in rce<r<rco.

Then we can assume that in the region £)2

a0
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Fig. 3.

For Im——, it is easy to see that Im dQ/a0 is positive (negative) for ξ in the
CLQ

right side (left side) of L2. Therefore the construction of <D2[j, ε] and C%J is
almost straight forwards as in the case (1), Fig. 4. Qualitative figure of A M
and D2\y] in the r-plane is given in Fig. 5.

Now we have specified so far admissible regions Dk\j2 (k = l, 2, 3, 4) and the
integral paths Cτj (z, j = l, 2, 3) in (4.11), from which it is easy to prove the
existence of solutions of the integral equation (4.11) and of the differential equation
(4.8), (4.9) in each admissible region Dk\j^\ by the standard application of the
successive approximations, and also it is clear that these solutions are of the
order 0(ε).

By transforming the differential equation (4.8) back to the differential equation
(3.2) through the transformations (4.7), (4.3), (4.1) and (3.3), we have thus est-
ablished the following existence theorem.

THEOREM 4.1. The differential system (3.2) has a fundamental system of
solutions such that it satisfies in each admissible region Dk[y~\ {k — 1, 2, 3, 4)

(4.16) ε),

where the matrices Po and Px are defined in (3.3), To in (4.1), Tx in (4.3), Λ(r, ε)
in (4.6) respectively, and the remainder term Z(r, ε) is of the order O(ε). The
expression (4.16) can be rewritten as
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Fig. 4.

Fig. 5. Admissible regions £>i[r] and Dz[χ"_
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(4.17) s ) =

1

a0

Co

- 1

a0

Co

0)
0

ao—do (Lo+do

Ίi(r, ε)

(E+Z(r, e))

•exp

r- ε

0,

0,

dr,

r-
0 ,

[r,ε)

ε

0 ,

dr,

: r Λ8(r, ε)
-dr

where hτ(χ, ε) ( ι=l , 2, 3) αr^ defined by (4.10), ami Z(r, e)=O(e).

The following corollaries are obvious

COROLLARY 4.1. 77z£ differential system (3.5) /ιαs α fundamental system of

solutions Wa:>(r, ε) such that in each admissible region Dk[_γ~^\ (k = l, 2, 3, 4) it

has an asymptotic expansion of the form

(4.18) Wik\r, e)=

{ 1 - 1 0

α0 α0 0 , ε)) exp Λ{r, ε),

l o o i

where Z(r, ε)=O(ε), and Λ(r, ε) zs the same as in (4.17).

COROLLARY 4.2. There exists a fundamental system of solutions Wik\r, ε)
of the differential system (3.4) which has the same asymptotic expansion as (4.18),
and satisfies in each admissible region Dklγ'] (k = l, 2, 3, 4) that

(4.19)

r l - l or1

a0 a0 0

1 0 0 1

, ε)} exp {-Λ(r, e)}=O(e)

§ 5. Splitting property and dispersion relation.

We have established in the previous section that there exists a fundamental
system of solutions of the differential system (3.3) with asymptotic property (4.17)
in each admissible region. Each of the solutions carries the exponential function,
exp Λj(r, ε) 0 = 1 , 2, 3), and so let us call all solutions carrying exp Λ3 the exp Λ3

type solutions. We shall show in this section a splitting property which means
that the exp Λ3 type solution is asymptotically independent from other two type
solutions throughout the region 77 and conversely exp Λλ and exp Λ2 type solutions
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are independent from the exp ΛB type solution, if the differential system (3.2)
does not have singularity (pole) at the corotation point r—rco. The singularity
of the system (3.2) at r=rco comes from the term

2mΩ d log (fc2/σ0Ω)

r2tcv d log r

in the system (3.1), but we can avoid the singularity by replacing this term with
a regular term which is obtained from the steller dynamical approach instead of
the hydrodynamical approach, Lau and Bertin [3]. Nevertheless, further mathe-
matical studies around the singularity is important.

At first, it is proved that the splitting property is valid over D1{J^JD2\J\
that is, the fundamental system Uw defined by the asymptotic expansion (4.17)
in DxZγ] is expressed in Z>2[r] by £/C2) in the splitting way. Let AsM be an
auxiliary admissible region which is obtained from D5:

and £/C5) be a corresponding fundamental system of solutions defined by the
same method as in the previous section. We denote three linearly independent
solutions of £/(ί) by {u^, uψ, uψ), (z=l, 2, 5), where uψ corresponds to expΛk

type solution (k=l, 2, 3). Now since the point rce is a regular point of the
equation, the conncetion formulas between them can be expressed as

(5.1a)

(5.1b) uP = bnU?> + bnUF + bnUP ,

M?> = 6,1M?> + 6,8M?) + 68sttί8)

(5.1c) uP=c21u?>+c2iuP+c2Zul*>.

As in the previous section, we have in the neighborhood of rce

ReΓ (±ao-do)dr=Re\\r ±ι
Jrce U

= Im λ-χr-rce)(±~aVr-rce
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where λ is a positive parameter, a and Σ are assumed to be positive constant,
and the sign(±) is determined by the branch of a0 in the admissible regions.
Therefore for r close to rce, we have

fcr Γ ] Γ Σ i ί < 0 i f I m ( r - r c e ) > 0
Re ±aodr-\ dodr\=-lm — - λ-\r~rce)\

U r c β J r c e J L 2 J [>0 if I m ( r - r c β ) < 0
This means that the region D1[_γ^r\D2[j~] contains a region where

Re I aodr>Re\ dQdr,
Jrce Jrce

and from this fact we can see that the coefficients a31 and a32 in (5 J a) asympto-
tically vanish. Then we have proved that the exp Λ3 type solution u3

ι)ϊs also
the same type solution in D2[_γ~]. By the analogous reasons we can easily conclude
that bί3^b23 = b22~0 in (5.1b) and c13 = c22 = c23 = c31 = c32 = 0 in (5.1c), which means
that u[Ό and u2

υ are linear combinations of u[2) and uψ. Thus we have obtained
the splitting property over D1{j~]xJD2[_γ']. The splitting property over D2[y~]
^JD3[y~] is trivial, and for D3[_γ~]VJDA{j^ it is easily proved if rco is not a singular
point by the analogous method as above.

THEOREM 5.1. The fundamental systems of solutions of (3.2) characterized
by the asymptotic expansions (4.17) have the splitting property throughout the
region Π if r=rco is a regular point of the differential system (3.2).

The splitting property for the fundamental systems of solutions of (3.5) is
defined analogously and is valid from the outset, and that for the system (3.4) is
also correct because the solutions of (3.2) are obtained from those of (3.4) by
applying the transformation (3.3). It is clear from the method of calculation of
connection formulas around turning points, Evgrafov and Fedoryuk [2], the
leading terms of connection matrices between two fundamental systems of the
differential system (3.4) are identical to those of the differential system (3.5).

This fact and the splitting property give us the following main theorem.

THEOREM 5.2. Suppose that the differential systems (3.4) and (3.5) have no
singular point in Π by replacing singular terms with regular terms. Then, the
principal terms of asymptotic expansions of the fundamental systems of solutions
of (3.4) are identical to those of (3.5) throughout Π. If we consider the boundary
value problem subject to the boundary conditions (3.7), then the leading terms of
global dispersion relations of (3.4) and (3.5), if exist, have the same forms, and
in particular, they are identical to thai of the second order ordinary differential
equation (3.6).

Thus the problem of finding the global dispersion relation for the boundary
value problem of the differential system (3.4) has been reduced to that of the
second order ordinary differential equation (3.6). To make use of the results for
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the second order equation with a coefficient of a cubic polynomial [9], it is
convenient to rewrite the equation (3.6) slightly. Since g2(r) is assumed to be
regular at r=rco, we can write the function a2(r)+g2(r)ε in the neighborhood of
rco as follows:

where a00 and J2 are positive constants, and g2(.rco)=α00j
2. That αOoJ2>O

corresponds to the so-called Jean's instability. We put

άl(r)= α%χ)+ α00p
2 (p2=εj'z),

then a2

)(r)Jreg2(r)=al(r)-Jrεg2(r).

Now let us consider the differential equation (3.6) with substitution al(r) and
gz(χ) by d2(r) and g2{r). Then there are three simple turning points fce, rco±pt

where fcβ is close to rc e and rco±pt is close to rco. It is clear that we can
construct fundamental systems of solutions of (3.6) m several admissible regions
by the similar method as in § 4.

We assume here that the group velocity is positive for r>rco or

- 1

>ρ for r>rco-r-δ,

where p and δ are positive constants.
Under these assumptions, we can follow the procedure in [9] and obtain

THEOREM 5.3. The leading terms of global dispersion relation for the boun-
dary value problem (3.6), (3.7) and (3.4), (3.7) have the form

ey,q
2/2

2

where q2=ιVa00J
2.

Lastly we give here a few remarks

Remark 1. We have proved that the study of the third order differential
system (3.1) or (3.2) is asymptotically reduced to that of the second order differ-
ential equation (3.6) which has the same principal term a\(x) as that of the
equation (2.9). But to estimate influences of higher order terms of the equations,
it is reasonable to study the equation (3.6).

Remark 2. In his previous paper [9], the author gave a dispersion relation
for the second order differential equation of the form (2.9) as a conjecture (see
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[9], (5.1)). But we can consider that its validity has been established in this
paper.

Remark 3. So far in the analysis of equations of the form (2.9), only two
types of solutions exp A and exp Λ2 type solutions in our terminology have been
considered. But in this note we have obtained the third type solution, exp Λs

type solution, and so roles of this solution in the density wave theory must be
studied. In the region Π, exp Λ3 type solution is independent from other types,
but they may interact with each other at the neighborhood of the Lindbladt
resonances rILR and r0LR.

Appendix

In this appendix, we construct in detail the block dίagonalization (3.3). The
letters A, B, C, D, S, and T used here are irrelevant to same letters in the
section 2, 3, 4 and 5.

Les us rewrite the equation (3.2) in the following form

(A.I)

where

(A.2)

eί/ '=

0 1

al 0

A B

C D u= u2

W° Ί
J L fli 0 J

B = εBλ^ε

C=C0=lc0, 0 ] , D^

Accordingly, we construct the transformation of the form

Wo(A.3) U=
E2+εST εS

T
W, W=

where E2 is the 2-dim unit matrix, and 5, T are (2-1), (1-2) matrix functions to
be determined. By applying (A.3) to (A.I), we get

(A.4)

with

εW'=GW, G =
n G12
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G22=-T(εAS+B+ε2S')Jr(lJreTS){εCS-{-D-ε2(TSy} .

Here we put S=S0 and T=To+eTΊ in the above equations and replace the
matrices A, B, C and D by their power series of ε (A.2). Then we have

+ ε2{A1S0T0-S0C0SQT0-S0D1T0-S0Γ0+(A0S0-S0D0+B1)T1}

+ εz{A1SoT1-SoCoSoT1-SoD1T1-SoT
/

1} ,

Gli=ε(AoSo-SoDQ+B1)+ε\A1So+S'Q-SoCQSo-SoD1)

+ T0S0(C0S0T0+D1TQ+T'0)
JrT1S0C0-T0(A0S0-S()D0-{-B1)T1

-T1(A0S0'-SoD0+B1)To}+ε1ι{-T0A1SoT1'-T1A1SoTo

+ T0So(C0SoT1+D1T1+T'1)+T1So(C0SoT0+D1T0+T'0)

+ T1S0(D1T1+T>)},

G22=Do+ε{Dι+CoSo-To(AoSo-SoDo+B1)}

+ε2{-T0(A1S0+S/

Q-SoC0So-SoD1)-(T0Soy-T1(AQS0-S0D0+B1)}

o(r i5o)/} +ε 5 7 1 S 0 (T 1 5 0 ) / .

In order that G12 and G21 are of the order ε2, So, To and Tλ must satisfy

Thus we have
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_

dl~at I'

7- _ / + (0) f(0)\ — ( _
/

J — I 2 J 2 » 2 Λ2 / »

where

co(dod1—a1)

al-dl
codo

By these determinations of S and T, the transformation (A.3) becomes (A.5)

and the

(A.β)

where

p .

p

1

0

codo

al—d

(al—dlf

{ al-dl

resultant equation is

eJ™L = { G o ( r ) + S

2
0

(α

0

0

α

J

al

1

0

0

0

1

Co
2 J2
0 " 0

-d0a2

-dl

s*G2

0

0

d

0

0

1

βo—dl

al-dl

[r, e)} PF
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aλ-

0 0

0 0

0 d1

and G2(r, ε) is a polynomial of ε of degree 3 and its coefficients are rational
functions of a0, aX) blf c0} d0 and dλ. Since a\— d\-=κ\\—v2)/a2, it is easy to count
the order of poles of So, To and Tx at each singularity. We give at Table 1 the
order of poles of Alt Blf Dλ and So, To, 7\.

bi

Ax

B,
D

x

So

To

center (r=0)

2

2

2

2

2

2

2

0

2

r ILR

2

1

1

2

1

1

2

I
4

1

1

0

1

1

0

1

0

1

TOLR

2

1

1

2

1

1

2

1

4

Table 1. Order of poles at singularities.

From the expression of Gtj(r) (i, j = l, 2) in power series of ε and the above
Table, the remainder term G2(r, ε)ε2 can be written in the neighborhoods of
singularities as

Glr, ε)ε2=

where / denotes one of singularities 0, rILR, rco and TOLR, G[ι\r) is bounded in
the neighborhood of singular point / and τ α ) (r) is defined by

(r-rILRY

for 1=0,

for l=rILR,

for l=reo,

for l=r
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