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ON THE INITIAL BOUNDARY-VALUE PROBLEM FOR

VISCOUS HEAT CONDUCTING COMPRESSIBLE FLUIDS

BY BUI AN TON

Abstract

The existence of a weak solution, local in time of an initial boundary-
value problem for the basic system of partial differential equations of the
theory of viscous, heat conducting compressible fluids is shown.

Introduction. The purpose of this paper is to show the existence of a weak
solution, local in time, of an initial boundary-value problem for viscous, heat con-
ducting compressible fluids.

Let u — (ιιly w2, u3) be the velocity of the fluid, p and θ be the density and
the absolute temperature of the fluid respectively. The motion of the fluidΠs
described by the initial boundary-value problem:

(0.1)
\-u. luj — eAu — ε grad(div u)+grad(p+θ)=ρf on (0, T)XG ,

u(x, 0 = 0 on (0, T)XdG, u{x, 0)=0 on G .

G is a bounded open subset of R3 with a smooth boundary dG.
The conservation of mass is expressed by the initial value problem:

(0.2) -^- + p div(u)+u. grad p=0, ρ>0 on (0, T)xG, p(x, 0)^=p°(x) on G.

The conservation of energy is described by the initial boundary-value problem :

(~+u.gτadθ-pdiw(u)^-XJΘ-εBu=0f0>0 on (0, T)xG ,

-=0 on (0, T)xdG and θ(x, 0)=6\x) on G .

(0.3)

v is the unit exterior normal vector to dG and B is the nonlinear operator Bu =

(—^— -̂f ~ j with the usual summation convention. For the derivations of
V ϋxk ύx% /
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(0.1M0.3), we shall refer to Tani [8].
In this paper we shall consider the case when the viscosity ε and the coef-

ficient of heat conduction 1 are both constants and for simplicity of notations we
shall set e = Z = l .

There are few mathematical works on the theory of viscous compressible
fluids. The pioneering work was done by Nash [7] in 1962 who proved the
existence of a unique local solution of the Cauchy problem:

(0.4) p[-^- + u.Vu)-εAu-εgrad(divu)+grad(p+θ)=pf on (0, T)xR\

u(x, 0)=0 on R3

and

(0.5) Ί5f~ + i° d i v ^JrU- β r a d i 0 ^ 0 ' i ° > 0 o n (°> ^)X^ 3 ,

p(x, 0)=p\x) on # 3

with

(0.6) ^ - g ^ + M.grad^-/} div u)-XAΘ-εBu=Q, θ>0 on (0, T)xR3,

θ(x, 0)=θ\x) on 7?3.

He used a characteristic transformation, an iteration method and together with
estimates for fundamental solutions of parabolic equations solved a parabolic
system at each step. The validity of Nash's proof is, however, in doubt. Cf
Tani [8].

Recently, mathematical works on compressible fluids have been done by Itaya,
Matsumura and Nishida and by Tani. In [2], Itaya has shown, independently of
Nash, the existence of a unique local solution of the Cauchy problem for (0.4)-
(0.6). Tani has in [8] proved the existence of a unique local solution of the
initial boundary value problem (0.1)-(0.3). In both works, as done earlier by Nash,
a characteristic transformation and estimstes for fundamental solutions of a
parabolic equation are used. The approaches taken by Itaya and by Tani involve
very delicate computations.

Using energy estimates and an iteration method, Matsumura and Nishida [6]
have proved the existence of a unique classical solution of the Cauchy problem
for (0.4)-(0.6), the solution is global in time if the data are "small".

By a completely different approach, using equations of Sobolev-Galpern type
as approximants, the writer has in [9] shown the existence of a unique local
solution of the Cauchy problem for (0.4)-(0.6) and studied the convergence of the
solution as the viscosity tends to zero. In [10], the writer has established the
above results by a simpler argument using an iteration method and some simple
properties of the quasi-norms of Leray and Ohya.

For the initial boundary-value problem (0.1)-(0.3),- the only known result is
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due to Tani [8] who proved the existence of a unique local solution {u, p, θ] in
the space

C 2 + α, l/2(2 + « ) ( g r ) χ C 2 + fl, l/2(2+α)(grt) χ C 2 + α, l/2(2+α)(Qr)

for 0 < α < l and where QΓ =(0, T*)XG. In this paper we shall show the exis-
tence of a weak local solution of (0.1)-(0.3) with minimum regularity hypothesis
on the data. The solution obtained is, in a sense reminiscent of the Hopf solu-
tion of the Navier-Stokes equations for incompressible fluids with constant density.
The solution {u, p, θ) is such that u belongs to L°°(0, T* L2(G)r\L2(0, T* HI),
p is in L°°(0, T* L°°(G)) with θ in L°°(0, T* L2(G))ΓΛL%0, T* H1). We shall
use standard techniques, the proof is rather simple although long and is com-
pletely different from the usual approach to compressible fluids.

The notations, the main result of the paper as well as a detailed outline of
the proof of the basic theorem are given in Section 1.

Section 1: Notations, Definitions and statement of the main result. Let G
be a bounded open subset of R3 with a smooth boundary dG. For each triple
α=(«i, a2, cxs) of non-negative integers we write:

Da=flD?J with \a\=hoίj and D3^=d/dx3.
3 = 1 3 = 1

T h e inner product and the norm in H=L2(G) are denoted by ( . , . ) and by

|| || respectively. T h e Sobolev space

Wk'p(G)={u: u in LV(G), Dau in LP(G) for \a\^k}

is a reflexive separable Banach space with the norm

Σ W"

lαisife

We shall write Hk for Wk'\G) and HI is the closure in the H*-norm of the set
of all infinitely differentiable functions with compact support in G. We shall
identify H with its dual by the inner product ( . , . ) .

H'k is the dual of Hk

0 and W~k>q(clG) is the dual of Wk v(G) with q as the
conjugate exponent of p. By abuse of notations we shall also use ( . , . ) for the
various pairings.

The following results of the Sobolev imbedding theorem will be used throu-
ghout the paper.

lip

H'CLXG); H2CL~(G)', W

The above natural injection mappings are all continuous and moreover H2 is
algebra with respect to pointwise multiplication.

L2(0, T Hk) is the set of equivalence classes of functions w(., t) from (0, T)
to Hk which are ZAintegrable over (0, T). It is a Hubert space with the norm
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and the usual inner product.

L°°(0, T Hk) is similarly defined with the obvious modification. The deri-

vative of u with respect to t is written as —=— or simply as ur when there is

no confusion possible.

For the convenience of the reader we shall state the following two basic
compactness theorems used in the paper.

THEOREM (Aubin [1]). Let W, V and X be three real reflexive Banach spaces
with WaVcX. The natural injection mapping of W into V is assumed to be
compact and that of V into X is continuous. Suppose that:

C is independent of n. Then there exists a subsequence denoted again by {un}
such that: un—*u in Lp(0, T; V).

THEOREM (Murat's compensated compactness theorem. See [5] p. 72, rela-
tion (1.64)).

Suppose that: (i) \\ρn\\L^o,τ; H - I ) + IIJ0{IIIZ.2CO,Γ, H-V^C,

(ϋ) \\un\\L2to,τ,Hi)^C.

C independent of n. Then there exists a subsequence {un, pn} such that unpn —>
up in the distribution sense on (0, T)xG.

DEFINITION 1. Let u be a vector-valued function in L2(0, T H^) and p° be
a scalar function with 0<a^ρ°(x), \grzά p°\^b on G. Then a scalar function
p in L°°(0, T ; L^G)) with 0<p(x, t) on (0, T)xG is said to be a weak solution
of the initial-value problem:

(1.1) p' + v. grad p +p div(z;)=0, p>0 on (0, T)xG, p(x, 0)=p°(x) on G ,

if

\\ ^\ (p\ φ(., 0))

for all scalar functions φ in L2(0, T, H1) with φ' in L2(0, T ; H) and φ(., T)=0.
Let v be as above and consider the initial boundary value problem

(1.2)
u) + grsiά(p+S)=pf on (0, T)xG ,

u(x, 0 = 0 on (0, T)XdG, u{x, 0)=0 on G .

DEFINITION 2. Let v be as before, / be a vector-valued function in L°°(0, T H)
and θ be a scalar function in L°°(0, T L°°(G)). Let u be a vector-valued func-
tion in L°°(0, T ; H)r\L2(0, T ; HI). Then {̂ , w} is said to be a weak solution
of (1.1M1.2) if:
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(i) p is a weak solution of (1.1) in the sense of Definition 1,

(ϋ)

— [T(pu, w')dtΛ-[T(lu, Vw)df + Γ(div u, div w)dt — [T(ρ+8, div (w))dt
Jo Jo Jo Jo

-\T{pv.lw, u)dt=[T(pf, w)dt
Jo Jo '

for all vector-valued functions w in L2(0, T; H\r\H2) with w' m L\0, T, H)
and w(., T)=0.

Let v, p and θ be as before and consider the initial boundary-value problem:

( L 3 )

W~^Θ2)-p2θ div (v)-Bv = 0, θ>0 on (0, T)xG ,

dv
=0 on (0, T)xdG, θ{x, 0)=θ\x) on G .

DEFINITION 3. Let v, p and θ be as before with θ>0 on (0, T)xG. Then
{p θ) is said to be a weak solution of (1.1)-(1.3) if:

(i) p is a weak solution of (1.1) in the sense of Definition 1,
(ii) θ is a scalar function in L°°(0, T; L~{G))r\L\ΰ, T; H1) with

0<θ on (0, T)XG,

(iϋ)

J ^φ~ιlθ\ lφ)dt-2^\Bυ, φ)dt

(v), φ)dt-[\pθ\ v.gr2iάφ)dt=(p0θl, φ(., 0))
Jo

for all scalar functions φ in C\Q, T; H2) with <ί(., T)=0.

DEFINITION 4. Let /, ^°, °̂ be as before. Then {u, p, θ} in

{L°°(0, T H)r\L2(0, T; HI)} X L~(0, T ; LTO(G))

X{ITO(0, T ; LTO(G))π^2(0, T ; Z/1)}

is a weak solution of (0.1)-(0.3) if:
(i) p is a weak solution of (1.1) in the sense of Definition 1 with v — u in (1.1)

(ii) u is a weak solution of (1.2) in the sense of Definition 2 with v — u, θ—d
in (1.2)

(iii) θ is a weak solution of (1.3) in the sense of Definition 3 with

v = u,θ=θ in (1.1M1.3).

We shall now state the main result of the paper.
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THEOREM 1.1 Let f be a vector-valued function in L°°(0, T H), ρ° be a
scalar function with 0<a^p°(x), |grad p°\^b on G and θ0 be a positive constant
c. Then there exist:

(1) a non-empty interval (0, T*),

(2) {u, p} θ) in {L~(0, T*; H)nL\0, T* Hi)} xL°°(0, T* L~{G))

X{L°°(0, T*; L°°(G))πL2(0, T*; i/1)},

u;£α& solution of (0.1)-(0.3) in the sense of Definition 4.

We now give a detailed outline of the proof of the theorem.

Step 1. It will be carried out in Section 2. Let v and p° be as in Definition
1. By a standard method we show the existence of a weak local solution of

(1.4) io
/+i;.grad /0 + iodiv(z;)=O, p>0 on (0, T)xG, p(v, 0)=p°(x) on G.

Moreover: 0<(l-η)a^p(x, t)^b+τja on (0, T*)xG and

C is a constant independent of v, p and depends only on a, b.
Step 2. It will be carried out in Section 3. Using the Galerkin approxima-

tion method and estimates for the kinetic energy, we prove the existence of a
weak solution of (1.4)-(1.5) with

on (0,
(1.5) " ' " ' " " " "

u(Xf t)=0 on (0, T*)XdG, u(x, 0 ) = α on G .

Moreover

\\u(., OII2H~ \ llw(., s)\\ιt2<is^Ct {l + ll^lli^co, r*:L°°cσ))}> and

IK/θW)/||χ,2Co,Γ*; fl--2)^C{l+|| V \\ L2(0, T*;HQJΓ \\θ\\ L°°<lQ, Tf.L^CG))} ,

C is aconstant independent of v, p, θ, u and depends only on / and on the
bounds of ^o0.

Step 3. It will be carried out in Section 4. Using, first a discretisation of
the time-variable, then a nonlinear elliptic perturbation of the discretised equation
we show the existence of a weak local solution of (1.4)-(l.β) with:

-p2θά\v(v)-Bv=0, θ>0

( L 6 ) M
i r - = 0 on (0, T*)X3G, θ{x, O)=θo(x) on G .
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The existence of a non-empty subinterval (0, T*) where β>0 is shown.
Moreover:

/2c on (0, T*)xG; 0<η<l and

Furthermore:

Let δ>0, then an estimate of Kajikov's type holds:

C is independent of δ, v, θ, θ, p, u.
Step 4. It will be carried out in Section 5. We construct a sequence of

successive approximations. Consider the initial-value problem:

I Pn + Un-rgrad pn+pnάiviUn^O on (0, T)XG,

[ pn>0 on (0, T)XG, pn(x, 0)=p°(x); uo=O, n=l, 2-

and the initial boundary-value problem

ίu'n + Un-L "7un)~Aun-gτ8iά(dίv un)+graά(pn+On-iy^pnf on (0, T)xG ,
(1.8) ,

unix, t)=0 on (0, T)xdG, un(xf 0)=0 on G.

together with the initial boundary-value problem

1

α 9) ,β

- ^ 7 " = 0 on (0, T)xdG, θnix, 0)=θ0ix) on G .

From steps 1—3, we show:
(i) there exists a non-empty interval (0, T*) independent of n,

i'ύ) [un, pn, θ) f solution of (1.7)-(1.9) in the sense of Definitions 1.3.
It is then not difficult to check that un, ρn and θn are all uniformly bounded

in the appropriate norms. Using then Aubin's compactness theorem as well as
the compensated compactness arguments of Murat as applied by Lions, we get
the desired result.

Acknowledgment: The writer is indebted to the referee for his comments
and a careful reading of the paper.

Section 2: Initial-value problem (1.4).
We shall now carry out Step 1 of the proof of Theorem 1.1. The main

result of the section is the following theorem.
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THEOREM 2.1. Let υ be a vector-valued function in L2(Q, T HI) and let ρ°
be a scalar function with 0<a^p\x), I g r a d ^ l ^ b on G. Then there exist:

(i) a non-empty interval (0, T#),
(ϋ) a weak solution p in L°°(0, T* L°°(G)) of the initial-value problem (1.4).

Moreover: 0<(l-η)a^p(x, t)£b+ηa on (0, T*)xG for 0 < ^ < l
Furthermore:

II jOΊLzco, Γ Cff 1)*) + I I ( / O 2 ) Ί I L 2 ( 0 , Γ ;C//D ) ^ C { 1 + II V || L2(0, Γ*;i7j)}

C is a constant independent of p, v and depends only on the bounds of ρ° on G.
If x° is the x-coordinate of the intersection of y = x exp(x) with y = ηa, then

T* is determined by CTJ/2||z;||L2(o(r;i/J)^^0. C is a constant independent of v, p.

First we have the lemma.

LEMMA 2.1. Let vn be in (7(0, T; Co(G)) with vn-^v in L2(0, T; H1,). Then
there exist:

1) pn in CKO, T C\G)) such that

(2.2) p'n+υn-gV2Apn+Pnάvί(υn)=Q on (0, T)xG, pn(x, 0)=p\x) on G.

2) a non empty interval (0, T#) independent of n, vn and as in Theorem 2.1,
such that :

0<(l-η)a^pn(x, t)£b+rja on (0,

Furthermore:

C is independent of n and depends only on the bounds of ρ° on G.

Proof. The existence of pn satisfying (2.2) is well-known. We shall now
determine the time-interval where io7i>0 and establish some uniform estimates
for pn.

1) Set hn=pn-p°. Then hn is in C\0, T; Wι-~(G)) and

ί Λ; + Vn grad/ι n+Λ ndiv(i;n)+iθ 0div(i; n)+!; n grad io
0=0 on (0, T)xG ,

(2.3)
I hn(x, 0)=0 on G .

Let s be a large positive integer, then hn'1 is also in C\0, T WliOO(G)).
Multiplying (2.3) by h\Tl and integrating over G, we obtain :

(2.4) s^-^-IIAnC, Ollί+(vn gradΛn+Λndiv(ι;n, h\rx)

An integration by parts yields:



ON THE INITIAL BOUNDARY-VALUE PROBLEM

n ) , hS

n) .

105

Hence:

(2.5) | | A n ( . , OIIJ" 1 d

d t

+2b\\vn\\1>2}

C is independent of n, s, t and vn. It depends on G and on the upper bound of
p°, grad p° on G.

Let

Gs={x: xmG,2-"^\\hn\\L~ω,<\hn{x)\}.
Then:

(2.6) 2- 1 ^-

Using (2.6) in (2.5) we get:

d

dt
n C , OIL

Thus,

\\hn{., OL^COnes G9γM\\vn{., ζ)| | l l 2{l + ||An(., OIL-cc)} rfζ .
Jo

Since hn is in LTO(0, T ; L°°(G)) we have by letting 5-> + oo :

HA»( , OIL-c^^cf'lli;^ ., C)||1>2{1 + ||An(., ζ)\\L^} dζ .
Jo

It follows from the Gronwall lemma that:

(2.7) ||A»(., OllL«cG>^cJj|!;n(., OI| 1 > 2 C exp (tfj\vn(., ζ)\\ί>2dζ).

2) Consider the curve 3/=1 exp(1) and the line y—rja with 0<3?<l. We
know that they intersect at xo{η)>ΰ and clearly i e x p ( i ) ^ ^ α for 0<x
Thus, from (2.7) we obtain:

»(.,(2.8)

The estimate (2.8) holds if in particular:

Let T* be such that

if
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Then (2.8) holds for all O^t^T*. Therefore:

0<(l-η)a^pn=hn+ρ0^b+ηa on (0, T*)XG

3) Let φ be a scalar function in H\ We have:

(p'n> φ)+(vn grad pn + pn div(υn), φ)=0.

Since υn is in C\Q, T; CS°(G)), an integration by parts gives

(ρ'n, φ)=(vn, pn

This,

\(p'n, φKύ

Hence:

C is independent of n, v and depends only the bounds of ô0 on G.
Finally with φ as above, we have:

^ n t φ)'\-j(p2

nάiv(vn)f φ)=0.

An elementary computation gives:

((PΪ) , φ)=-\(pϊdiv(vn), φ) + j(p2

n, Va>

S o :

\((plY,φ)\^-

Therefore:

C is as before independent of n, v, pn and depends only on the bounds of p°
on G.

LEMMA 2.2. Let {pn} be a sequence of scalar functions with

II Pn II L°°CO, Γ*;L°°(C?)) + II jθή || Z,2(0( Γ Cff D*) ^ M .

M is α constant independent of n. Then there exists a subsequence denoted again
by ρn such that:
(i) pv-*p in Ls(0, T* (Hψ) 2^s<oo and in the weak*-topology of L°°(0,

(ii) ρ2n-+p2 in the weak*-topology of L°°(0, T*
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Proof. It is clear that there exists a subsequence such that pn—>p in the
weak*-topology of L°°(0, T* L°°(G)) and p'n-+p' weakly in L2(0, 7* (Ή1)*) with
pl—1 in the weak*-topology of L°°(0, T* L°°(G)).

Since the natural injection mapping of H1 into H is compact, that of H into
(7/1)* is also compact by Schauder's theorem. From the above estimates and
from Aubin's theorem [1] we obtain:

pn-+p in Ls(0, T*; (/f1)*) for 2 ^ s < o o .

We now prove the key assertion of the lemma, namely that 1— ρ2.
1) From the theory of linear elliptic boundary-value problems we have a

unique wn in HQΓ\H2, solution of:

—Aιvn = pn on G, wn=0 on dG
Moreover:

C is independent of n. Hence: wn-+w in L2(0, T^ HI) and weakly in
L2(0, T*; //2) as n-^+cχ). Moreover:

—Aw=p on G, w—0 on dG .

2) Let ^ be a C^(G)-function, then:

Since ^n is in L°°(0, T* L°°(G)), there exists {ψnk} in C?(0, T* C?(G)) such
that

φnk-+Pn in L2(0, T*; //),

Hence:

As

So:

, we obtain:

n in L2(0, T*

n, D jψn k' φ + ψn kDjφ)d t .

n, Djpn φ+pnDjφ)dt.

Σ [TXDjWn, φDjPn)dt- Σ
J=IJO ;=

l, φ)dt.

Since DjWn-*DjW weakly in L2(0, T* H1), ρn-*p in the weak*-topology of
L°°(0, T* L°°(G)) with p'n-+p' weakly in L2(0, T* (7/1)*), it follows from the
compensated compactness argument of Murat as applied by Lions in [5], p. 72
relation 1.64 that:
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pnDjWn >pDjW, DjWn'Djpn >D3W'Djp

both in the distribution sense on (0, T*)xG.
Hence:

- Σ [ T \ D φ D ) d ΣJW, φDjP)dt- Σ \T\Dow, pDjφ)dt = [TXx, φ)dt.
J = 1JO JO

But DjW is in L2(0, T* H1) and φ is a testing function, thus όDμv is in
L2(0, T* #J) and hence:

Djφ, p)dt.
o jo

It follows that:

, pώ)dt=\TXx, ό)dt
' r Jo

i.e. — pAw=p2=X.

Proof of Theorem 2.1. Let v be in L2(0, T ; HI). Then there exists
in C\0, T; C%(G)) such that vn->v in L2(0, T ; HI).

Consider the initial-value problem:

ρ'n+vn-gτ&d pn+pn diγ(vn)=0, pn>0 on (0, T)xG, pn(x, 0)=p°(x) on G.

From Lemma 2.1, we have a non-empty interval (0, T*) independent of n and ^ n ,
solution of the above problem on (0, T*)xG. With the estimates of Lemma 2.1,
we obtain by taking subsequences: ρn-^ρ in the weak*-toρology of L°°(0, T*
L°°(G)), pf

n->p' weakly in L2(0, T* (Hψ) and in view of Lemma 2.2, (io
2

n)
/-^(io

2)/

weakly in L2(0, T* (Z/1)*). Moreover: 0<(l-)7)α^^(.τ, t)^b+ηa on (0,
Furthermore:

C is independent of p, v and depends only on the bounds of ρ° on Cs.
It is trivial to check that p is a solution of (1.4) in the sense of Definition 1.

Section 3. The initial boundary-value problem (1.5). We shall now carry
out Step 2 of the proof of Theorem 1.1. We now state the main result of the
section.

THEOREM 3.1. Let v, p, T* be as in Theorem 2.1 and let θ be a scalar func-
tion in L°°(0, T* L°°(G)). Let f be in L°°(0, T* H). Then there exists u in
L°°(0, 7 * ; H)r\L\0, T* HI) such that {p} u) is a weak solution of (1.4)-(1.5) in
the sense of Definition 2. Moreover:

IK., OIIM-fW,
Jo
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and

C is a constant independent of t, p, v, θ, u and depends only on f, the bounds of
p° on G.

We shall use the standard Galerkin method and estimate the kinetic energy.
Let {iVj} be a vector basis of HI and set

Consider the system of linear ordinary differential equations in cjk(t):

ί (puί, Wj)+C7uk, Vw/^+Cdivw*, div w,)+(pv-luki w3)

(3.1) -(p+8, άιγ w^ipf, w3),

[ cjk(0)=0,

LEMMA 3.1. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then
there exists uk in C(0, T% HI), solution of (3.1).

Proof. We have:

Since {iVj} is linearly independent in H and 0<(l — τ])a^p^b+ηa on (0, T*)xG,
it is clear the {p1/2wj} is also linearly independent in H and thus det(/n<;;, ιυs)
Φθ. The lemma is an immediate consequence of the Caratheodory theorem.

LEMMA 3.2. Let uk be as in Lemma 3.1. Then:

for O^t^T*.
C is a constant independent of t, k, p, v, θ and depends on the bounds of p°

on G.

Proof. To show that the local solution uk of Lemma 3.1 is in fact a global
solution we shall estimate the kinetic energy.

1) Multiplying (3.1) by cjk and taking the summation with respect to j from
1 to k we obtain:

(3.2) (puί, uk)+\Nuk\\*+\\div uk\\2+(pv'VuΛf uk)-{p+θ, divuk)=(pf, u k ) .

On the other hand since p is a weak solution of (1.4) we have:

(3.3) (p\ φ)-(vgradφ, p)=0
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for all scalar functions φ in H1.
Since uk is in C(0, T& #§) and H\ is an algebra, | uk | 2 is also in C(0, T& //§)

and thus by taking 0 = — | u f t | 2 in (3.3) we get:

(3.4) »-(/, |w* | 2 )-y(z; g r a d | ^ ( 2 , ^ = 0 .

Adding (3.4) to (3.2) we obtain :

(3.5) -jf(Pu>» uk)+2\\Vuk\\2+2\\άivuk\\2+2(pvVuk9 uk)

- ( v g r a d l w * ! 2 , p)-2(p+ff, diγuk)=2(pf, uk).

But:

2{pvluk, uk)—{v-grad| uk \2, p).
So:

Hence:

C is a constant independent of k, t, θ, p, f, v but depends on the bounds of p°
on G. Therefore:

( p ( . , t ) u k ( . , t), M A ( . , t ) ) + c Λ \ \ U k ( . , s)\\2

1>2ds

t=ΞiCt {1+ ll̂ llî CO, Γ*,L°°Cf7)) + ll/llî CO, T*;HU

Since 0 < ( l — η ) a ^ ρ on (0, T*)xG, the lemma is proved.

o/ Theorem 3.1. 1) Let w& be as in Lemma 3.2. We have by taking
subsequences if necessary: uk—>ιι weakly in L2(0, T* HI) and in the weak*-
topology of L°°(0, T* H). Moreover :

C is independent of t, u, v, p, θ and depends only on the bounds of ρ° on G.
2) We have:

(3.6) (pu'k, Wj)+(Vuk, Vwj)+(divuk, div

—(p+ff, div wj)=(pf, Wj).

With p as in Theorem 2.1, we get:
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(3.7) (p', φ)-(vgradφ, p)=0

for all φ in H\

Since uk and w3 are in HI, uk. w3 is also in HI and hence by taking φ=
Uk. Wj in (3.7) we obtain:

(3.8) (p', uk. Wj)-{v. grad {uk. w3), ρ)=0.

It follows from (3.6) and (3.8) that

(3.9) ((pukY, Wj)+(luk, Vwj)+(divuk, div w3)-(pv.lw3, uk)

—(p+θ, άivw3)—(pf} w3).

Let ψ be a C\0, T*)-function with 0(T*)=O. Then:

-\T\puk, φ'wJ)dt+¥'X!uk, ^wj))dt + [T\aivukt άiv(φw3))dt
Jo Jo Jo

-\TXpv.l{ψw3), uk)dt-\TXp+θ, ά'Mψw3))dt = \TXpf, φwj)dt.

Keep j fixed and let ^-^+oo. We get

^X\γu, άiv(φw3))dt

^pf, φw3)dt.

By a standard argument, we have:

(3.10) -\TXρu, w')dt+[TX!u, 7w)dt+[TXdiv u, άiv(w))dt
Jo Jo Jo

f, w)dt

for all w in L2(0, T* //§) with w' in L2(0, T* H) and w;(., T*)=0. From
(3.10) it is clear that :

Applying (3.5) and Theorem 2.1 we get:

C is a constant independent of /9, M, I;, θ but depends on / and on the bounds
of ρ° on G.
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Section 4. The nonlinear initial boundary-value problem (1.6). The proof of
Step 3 of Theorem 1.1 will now be given. The main result of the section is the
following theorem.

THEOREM 4.1. Let p, v, T* be as in Theorem 2.1 and let θ be a scalar func-
tion in LTO(0, T*; L°°(G)) with 0<(l-η2)υ2c^θ(x, t)^(l + η2)ί/2c on (0, T*)xG.
Then for any θ°(x)=c>0 on G, there exist:
(i) a non-empty interval (0, T*) with T*tίT*,

(ii) a scalar function θ in L°°(0, T* L°°(G))π^2(0, T* H1) such that {p, θ) is
a solution of (1.4) and (1.6) in the sense of Definition 3.

Moreover: Q<(l-V

2)1/2c^θ(x, t)^(l + vΎ/2c on (0, T * ) x C ;

il$llL2(o,r\tfi) =

Furthermore for any δ>0,

Jo

C is a constant independent of δ, θ, v, p. It depends only on f the bounds of ρ°
on G and on c. The interval (0, T*) is such that

The proof of the theorem is long and involved. We shall use a discretisa-
tion of the time-variable, then a nonlinear perturbation of the discretised equation
to show the existence of θ and of a nonempty interval where θ>0.

Set w~θ2—c2 and consider the initial boundary-value problem:

[ pw/-W-1Vw)-2p2θdiv{v)-irpv.gradw-2Bv=Q on (0, T*)XG ,

} ow/dv=0 on (0, T*)XdG , ω(x} 0)=0 on G.

Let Λ~ be a large positive integer and let h = T*/hτ with T* as in Theorem
2.1. Set

J Cn + Όh
p{x, t)dt, 0^?2^AΓ-l.

nh

Similarly for θn and for vn. Let A be the nonlinear elliptic operator

Aφ=\φ\2φ-±DJ{(DJφ)2DJψ}

with

(Aφ, φ)=a(φ, ψ)={\φ\2φ, ψnΈdDjφYDjφ, D,φ)

for all φ, ψ in W1>d-(G). It is clear that A is a monotone, coercive operator map-
ping bounded sets of Wh\G) into bounded sets of W^'
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LEMMA 4.1. For each ε>0 and each n, there exists ωn in Wλ'\G) which we
write as ωn, solution of the nonlinear elliptic boundary value problem:

(4.3) + hpnVn.grad (ωn)=0 on G,

- ^ - = 0 on 3G, ωo=O, n^N.

Proof. The lemma is an immediate consequence of the well-known theory
of coercive pseudo-monotone operators mapping bounded sets of a reflexive
Banach space into bounded sets of the dual space, e. g. Cf. [4].

LEMMA 4.2. Let ωε

n be as in Lemma 4.1. Then there exists an integer N*f

independent of ε, p such that

Furthermore N* is the largest integer with N*^T*/h and

\τ* {\\v\\i*+\\θ\\l^} dt^v*cyc

for some C independent of ε, v, p, θ.

Proof. For simplicity of notations we shall write ωn for ωε

n. Since G is a
bounded open subset of R3, Wli4(G) is contained in L°°(G) and thus, \ωn\

s~2ωn is
in WX'\G) for s^2. From (4.3) we have :

(4.4) {pnωn-pnωn-u \ωn\
s-2ωn)Λ-εha(ωn, lωJ'-'ωΛ+λC^Vωn, l{\ωn\

s-2ωn))

-\-h{ρnvn. grad ωn—2Bvn—2p2

nθn div (vn), \ωn \
 s~2ωn)=0.

It is easy to check that:

(4.5) a{ωn, \ωn\
s-2ωn)^0, (foVωn, VdωJ^^^^ίs-D^Hω^^V^H 2.

Taking (4.5) into account in (4.4) we obtain by an elementary computation:

\\pnvnωf'2

Λ-Ch\\pn

ISωn\\ΆG

Thus,

Wp^ωn

(4.6)



114 BUI AN TON

We note that:

(4.7) \(pnωn-u \ωn\
s-2ωn)\^\\plίsωn\\r\\pΆωn-Λs\\pn\\Ά^

Furthermore as done earlier in Section 2 (cf. relation 2.6)

(4.8) \\pi!tωn\\L»ι

So from (4.6)-(4.8), we have:

(4.9) I l ^ ^ ^ ^ l U ^ I I ^ ^ . ^ ^ - J U I I ^ ^

+Ch\\vn\np\ίsωn\\L^G,/{s-l).

Since

and ωn is in L°°(G) we obtain by letting s ^ + cχ> in (4.9):

Therefore:

(4.10) \\a>n\\L~cG)^Ch Σ {||^ll!.

The different constants C are all independent of ε, n, v, θ, p.
Let T* be such that:

(4.H)

Since θ is in L°°(0, T^ L°°(G)) and v is in L2(0, T* Z/1), such T* exists and is
non-zero. It is clear that T* is independent of ε, h.

With N* as the largest integer such that N*^T*/h, then it follows from
(4.10M4.11) that:

\\ωn\\L^G^r]2c2 for

LEMMA 4.3. Let N* be as in Lemma 4.2. Then for each n^N* there exists
ωn in L^G)^!!1, solution of the elliptic Neumann boundaryvalue problem:

[ pnWn—pnwn-ι — hlφn^ωn)—2hBvn—2hpl§ndiv(vn)+hpnvn.grsLdωn=0,

1 dωn/dv=0 o n 3 G , ωo=O, n = l , •••, iV* .

Moreover: \\ωn\\L°°(G^η2c2 and

T* is as in Lemma 4.2.

C is a constant independent of h, n, p, v, θ and ωn.
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Proof. Since \\coε

n\\LooίG^γj2c2, it is not difficult to get from (4.3)

\\U^K{h, n)

115

K(h, n) is independent of ε.
From the weak compactness of the unit ball in a reflexive Banach space we

get by taking subsequences: ωε

n->ωn weakly in H1 and in the weak*-topology of
L°°(G), ε1/4ωε

n->0 weakly in WX-\G) as ε—0. Moreover:

\\ωn\\L~tG,ύη2c2 for n^N* .

It is easy to check that :

pnωn~-ρnωn-1 — hl{θn1lωn)—2hBvn—2hplθn div(vn)+hpnvn. grad ωn=0 .

2) We now prove the crucial estimate of the lemma. From (4.12) we have:

(4.13) (pnωn, ω7l) + c1/z||7ά;7l||
2^(io7iω7l-1, ωn)+2h(Bvn, ωn)

+2h(plSndiv(vn), ωn)—h{ρnVn.grd,άωn, ωn).

On the other hand, it is easy to see that:

(4.14) \(pnωn-lf ωn)\^—{ρnωn, <θn)+-y(pn(ι>n-i, (on-\)

^~{pnθ)n, (On)-\--^{pn-i^n-U (Dn-^ + ^dpn — Pn-l)θ)n-i, <On-l)

It follows from (4.13)-(4.14) that:

(ρn(θn, ωn)
 Jrhc1\\lωn\\2^{pn-1ωn-1} ωn-i)+((ρn — pn-i)o)n-i, o)n-ι)

With our estimate for ωn, we get:

(4.15) (ρnωn, cΰr^Λ-hc^lωnψ^pn- ^ωn-u ωn-i)+((pn — pn-i)o)n-u ωn-i

+Ch{\\vn\\t2+\\θn\\l^ω}.

C is a constant independent of n, h, p, v, θ.
On the other hand

(4.16) \(pn — pn-l)θ)n-l, Cύn-i)\ ^ N l - l i l l , 2\\(pn — pn-l)\\ (#1)*

P_n—_P_n-l\\

h \\cHb*
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In the above inequality we have used the estimate for ωn in L°°(G).
From (4.15)-(4.16) we obtain:

ll2 — Cλ — ||Va>n-il|2^(/0n-i<un-i, ωn-i)

Taking the summation from 1 to n and noting that ωo=O, we have:

(4.17) (pnαι», | ^

Since υ is in L2(0, T* H1), θ is in L°°(0, T* L^G)) and io
/ is in L2(0, T*

(Jϊ1)*), we obtain:

Δ .7=1

It then follows from Theorem 2.1 that:

h Σ ||ωi||ϊ,2^C{||i;||i.co.ΓM/i) + l|ίrll2L«Co>Γ.;Lcocσ))} for n^

The different constants C are all independent of h, n, p, v, θ.

LEMMA 4.4. Suppose all the hypotheses of Theorem 4.1 are satisfied. Then
there exists θ in L°°(0, T* L°°(G))nL\0, T* H1), solution of (1.6). Moreover:

/2c on (0, T * ) x G ,

2) ||^|L2C0,r*;i7l)^C{l+||z;||L2(0,Γ*;ίΓl) + II^ILoo(0,Γ*;L(C?))}

C is independent of p, v, θ, θ and depends on ρ°, c.

Proof. 1) Set ωh(x, t)=ωh(x) for nh^t<(n+l)h; n = l, •••, N*. Similarly

for θhy vh. Then from Lemma 4.3 we have:

By taking subsequences if necessary we get: wh-^w weakly in L2(0, T* H1)
and in the weak*-topology of L°°(0, T*; L°°(G)) as A—0. Furthermore

II w II L-co, Γ*;L~(G)) ̂  ^ 2 c 2 and

C is as in the lemma.
2) Let w be a vector-function in i/2, and let ^ be a scalar function in

C\0, T*) with φ(T*)=0. We have by a standard argument from (4.12) (e.g. cf
[4] Chapter 4, 433-436):
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(4.18) Σ {-{phωh, w){φ{nh)-φ{nh-h)+h{θ-h

ιlωh, φ{nh)Ίw)
n=l

—2h{Bvh, φ(nh)w)^~h(ρfιvh.gτaάωh, φ(nh)w)

-2h(p2Jhάiv(vh), φ(nh)w)+h(-(ph-ph-1)h-\ coh-^(nh)w)}=0.

Since ph->p, θh-+θ, fc-^ff-1 in L~(0, T*; L~{G)\

vh-*v in L2(0, T*; i/J)n^(0, T* H\ (ph-p^h'^p' in L2(0, T* (i/1)*),

ωΛ-^ω weakly in L2(0, T* H1) and the weak*-topology of L°°(0, T* L~(G)) we
get:

(4.19) Έ-Kphωh, w)h-1{φ(nh)-φ(nh-h)}-+--\i

T\pω, φ'w)dt,

and

(4.20) ίί-2(Bvh, φ(nh)w)h-+- [T*2(Bv, φw)dt
n=l JO r

with

(4.21) Έhdpn-pn-ύh-1, a)h-^(nh)w)-»\T\p', ωφw)dt.
71 = 1 J 0

On the other hand we have:

and

lli0^A-i08^llL»C0.Γ-H)^ll(/0i-i0a)^||Loo^

Thus,

(4.22) Σ {Φ~hlχJωhi φ{nh)lw)+{phvh. grad ωh-2p\θη div(vA), (̂nΛ)M )} Λ

), φw)}dt.

From (4.18)-(4.22), we get:

Since /? is a solution of (1.4), we have



118 BUI AN TON

S T* rr*

(ρ'φωw)dt=^ — \ (div (vp), φωw)dt.

Therefore by a standard argument we obtain:

(4.23) -\T\pωy w^dt + ̂ φ^lω, lw)dt+[T\pv. graάω-2p2θ άiv{v)y w)dt
Jo Jo Jo

-2^\BV, φw)dt+\T\άiv(vp), ωw)dt=0
for all w in C\0, T* H2) with w(., T*)=0.

Set Θ2=ω+(ΘΎ, then: (1 — ^ 2 ) c 2 ^ ^ 2 ^ ( l + ^ 2 ) c 2 on (0, T*)xG and

X.2C0. Γ*;«

Replacing ω by Θ2—(Θ0)2 in (4.23) we get after an elementary computaiion the

result stated it the lemma.

Proof of Theorem 4.1. In view of Lemma 4.4 it remains to show t h a t :

for any small δ>0.
C is a constant independent of δ, v, θ, p. It is an estimate of the type in-

troduced by Kajikov [3] in the study of non-homogeneous incompressible fluids.
From Lemma 4.4 we g e t :

{pθ2)f-lφ-1lθ2)-2Bv-p2θ ά\

Let w be in L°°(G)r\H\ Then:

((pθ2)', w)+φ-1l(β2)y lw)-2(Bv, w)-(p2θάiv(v), w)-{pθ2v,

Let F{., t) be defined by :

( F ( . , ί), ιv)=2(Bv, ιv)+(p2θάW(υ), w)J

r{pθ2v1 gπiάw)-^-

Then applying Theorem 2.1 and Lemma 4.4 we obtain:

., t\ ^ )̂ I ̂ C | | ̂  || x, 2 {|| .o^H ̂ ooC0, ̂ ;Z.ooCσ,, || ̂  || -f-1| ̂ 2^| | ôoCo, Γ*;Z.ooCG^ || z, || ±,

So:

{{pθ2)', w)=(F(., 0, w).

Integrating with respect to t from t to t+δ we get:
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((Pθ
2)(., t+δ)-(pθη(., t), u>)=()( F{., s)ds, w).

With ιv=θ{., t+δ)-θ(., t), we have:

(4.25) ((Pθ*)(., t+δ)-(pθ2)( .,t),θ(., t+δ)-θ(., 0 )

= ( J t

t

+ V ( . , s)ds,θ(., t+δ)-θ(., ί)).

Consider the left hand side of (4.25). We may write it as :

((pθ'X ., t+δ)-(pθ2)(., t), θ{., t+δ)-θ(., 0)

=( J o(. ) t+δ){θ\., t+δ)-θ\., t)},θ{., t+δ)-θ(., t))+E(t)

(4.26) with E(t)=((p(., t+δ)-p(., tW(., t), θ(., t+δ)-θ{., t)).

Therefore from (4.25) we obtain:

(4.27) {P{., t+δ){θ\., t+δ)-θ\., t)},θ{., t+δ)-θ{., t))

=(j'+V(., s)ds, θ(., t+δ)-θ(., t))-E{t).

2) We consider the expression E(t). Since p is a weak solution of (1.4) we
have:

(p', φ)=(vρ. grad^) for φ in H1.

Thus,

(p(., t+δ)-p(., t), φ)=(^*"v(., s)p{., s)ds, grad φ) .

Since θ is in L~(0, T* L " ( G ) ) π ^ 2 ( 0 , T* H1), θ\., i){θ(., t+δ)-θ(., t)} is in
L2(0, T*; H1) and so with φ=θ\., t){θ{., t+δ)-θ(., t)} we get:

, grad{<92(.,

Applying the Sobolev imbedding theorem H1CL*(G) and the Fubini theorem
we obtain:

) - ( ? ( . , t)\\<

+ \\θ(., f ) l l i - ( « l l < ? ( . , t+δ)-θ(., t ) \ \ h 2 } .

Hence:

[ + δ . , s)h.*ds. {\\θ(., O l l i . . + l l 0 ( . , t+δ)\\1,t}(l+ηty"tc.
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C is a constant independent of δ, t, θ, v, p.
Applying the Holder inequality we have:

., t+δ)\\h2}.

Therefore by taking into account Lemma 4.4 we get:

(4.28)

3) We now consider :

T*-δ\ /Γt+δ5 T*-

From (4.24) we have:

Γt+δT*-δ
., s)ds,

., s)ds, θ(., t+δ)-θ(., t))\dt,

-θ{.,t)) dt

., t+δ)\\hΛ+\\<K., ί)||i,

Now exactly as in [5] p. 67, we have by taking into account Lemma 4.4 and
using a change of order of integration:

5 T*-δ
t + δ

{., s)ds,θ{., dt

It follows from (4.25)-(4.29) that:

~\p(., t+δW(., t+δ)-ΘK., t)), θ(., -θ(., t))dt

The different constants C are all independent of δ, v, θ, p. But; ^ ( 1 — 7
and Θ^a-y2)1/2c, thus:

Γ*"Vc, t+δ)-θ(., tψdt

(., t+δ){θ\.} t+δ)-θ2(., t)}, 0(., t+δ)-θ(., t))dt.

The theorem is proved.
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Section 5. Successive approximations and proof of the main result. We shall
now carry out the last step of the proof of Theorem 1.1. First we shall con-
struct a sequence of successive approximations to (0.1)-(0.3). Let u0 be a fixed
an arbitrary element of L2(0, T ; HI) and consider the initial-value problem.

on (0, 7)XG,

on (0, T)xG, - ^ - = 0 on (0, T)x9G, 0n(*, 0)=^°(x)=c on G .

p p p n - ^ O , f)n>0 On (0, T)XG ,

1 pn(x, 0)=p\x) on G, n=l, 2,

together with the initial boundary-value problem:

(pnUnϊ—Δun—grad(div un)+grad(pn-i

(5.2) +un(div(pnun-1))=pnf on(0, T)XG,

Un(Xf t)=0 on (0, T)x3G, un(x, 0)=0 on G.

and the initial boundary-value problem:

( 5 t 3 )

LEMMA 5.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
for each n, there exist:
(i) a non-empty interval (0, T*) independent of n,

(ii) W «n, #„} in L°°(0, T* L°°(G))X {L°°(0, T* H)nL\0f T* i/J)} x

{L-(0, T*; L°°(G))nL2(0, T* Z/1)},

solution of (5.1)-(5.3). Moreover:

1) 0 < ( l - ? ? ) α ^ ( ; t , 0 ^ ^ + ^ α on (0, T*)xG ,

2) ll^πll/^co, Γ*;Ctfl)*) + II (^n)'II £2(0, T*;(H^*) ^C ,

3) || WniliL^Co, Γ*;//) + II ̂ nllz.2C0, Γ*;i/J) + II(^n^n)ΊIZ.2(o, Γ*;iy-1)+ II ̂ nllz,2(o. Γ*;iyl) ^ C ,

4) 0<{l-η2)1/2c^θn(x, t)^(l+η2)1/2c on (0, T*)xG ,

5) \T*~δ\\θn(., t+δ)-θn(., tψdt^Cδ1'2 for any δ>0.
Jo

C is a constant independent of n and of δ.

Proof. For n = l , the lemma follows from Theorems 2.1, 3.1 and 4.1. Suppose
the lemma holds for n—1 and we shall show for n. With our inductive hypo-
theses, we have:
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0<(l-η)a^pk^b+ηa; 0<(l-r]ψ2c^θk^{l + r]2)ll2c on (0, T*)XG,

(5.4) \\uk(.f ί ) | | 2 + Γ | | M * ( . , s ) | | ϊ l 8 d s ^ C ί { l + | | β Λ - 1 | | i , c o ( 0 i Γ # > L c o ( σ ) ) }
Jo

^Ct{l+(l+y2)c2}, and

(5.5)

The interval T* is such that:

(5.6) ^'{cKl+y^+WuΛ2} dtSCT*{1+2(1 +??2)c2} ^η2c2 k^n-1.

The constant C is independent of k^n — 1.
2) We now show for n and show that the same T* as in (5.6) will hold.

Applying Theorems 2.1, 3.1 and 4.1 with v = un-lt θ—θn-1 and we have from
Theorem 2.1:

a on (0, T*)xG .

With Theorem 3.1 we g e t :

(5.7) | | M n ( . , OII 2

by the inductive hypothesis.
From Theorem 4.1 we obtain: ( l - ^ 2 ) 1 / 2 c ^ # 7 l ^ ( l + ??2)1/2c on (0, Tλ)xG with

Ti such t h a t :

Jo

In view of (5.7), 7\ may be choosen such that

CTi {1+2(1 +)?2)c2} g)? V ; i.e. T^T* as in (5.6).

Fur thermore :

II #π II Z,2(o, Γ*;Hl) =

by the inductive hypothesis again.
3) It remains to prove the estimates for p'nj (p2

n)', (pnun)' and for

0nC, tψdt.

- A proof by induction as above gives the stated result without any difficulty.
We shall not reproduce the proof here.
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We need some technical convergence lemmas before going into the proof
of Theorem 1.1.

LEMMA 5.2. Let {pn, un} be as in Lemma 5.1. Then there exists a subse-
quence denoted again by {ρny un} such that:

(i) pn-+p in the weak*-topology of L°°(0, 7* L°°(G)) and in L2(0, 7* (H1)*)
with 0<(l-7})a^p(x, t)^b+ηa on (0, T*)xG, p'n—pr and (pD'—ip2)' both
weakly in L2(0, 7* (if1)*).

(ii) un-*u weakly in L2(0, T* H\) and in the weak*-topology of L°°(0, 7* H),
(iii) pnun—pu weakly in L2(0, 7* H) and in L2(0, 7 * ; H~ι),
(iv) un-+u in L2(0, 7 * ; H).

Proof. 1) It is clear that pn-+p in the weak*-topology of L°°(0, 7* ; ί/°(G))
with 0<(l-η)a£p(x, t)^b+ηa on (0, 7*)xG and that ^ - ^ ' weakly in
L2(0, 7* (H1)*). Since G is bounded, the natural injection mapping of H1 into
H is compact and hence by Schauder's theorem that of H into (H1)* is also
compact. It follows from Aubin's theorem [1] and from the estimates of Lemma
5.1 that pn—ρ in L2(0, 7 * ; (H1)*). From Lemma 2.2 we know that pi—p2 in
the weak*-toρology of L°°(0, 7 * ; L°°(G)) and it is easy to see that (plY-^ip2)'
weakly in L2(0, 7* (i/1)*).

2) The second assertion of the lemma is trivial. It is not difficult to check
that indeed ρnιιn->pu weakly in L2(0, 7 * ; H). On the other hand since (pnun)'
—>(ρu)' weakly in L2(0, 7* H~2), the above argument of the first part yields:
PnUn-pu in L2(0, 7 * ; H'1).

3) We now prove the key assertion of the lemma, namely that un—u in
L2(0, 7* H). Indeed we have :

un— v), un — u)=(pnun — ρu, un — u)

Since pnun-pu->0 in L2(0, 7 * ; H~l) and weakly in L2(0, 7* ; 77) with un-u—0
weakly in L2(0, 7* HI), it is clear that un-+u in L2(0, 7* H).

LEMMA 5.3. Let θn be as in Lemma 5.1. Then there exists a subsequence
denoted again by θn such that:

1) θn — θ in the weak*-topology of L°°(0, 7* L°°(G)) and weakly in
L2(0, T*; H1) with 0<(l-η2y/2c^θ^a + ηΎJ2c on (0, T*)XG,

2) # n - # in L2(0, 7 * ; //),
3) θl-θ2 in L2(0, 7 * ; //).

Proof. The first assertion is trivial. Since:

o

with C independent of n and of δ, it follows from Lions [5] p. 68 that θn->θ
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in L2(0, Γ* H).
We have:

Hence: θ\-θ2 in L2(0, T* H).

LEMMA 5.4. Let {un, pn, θn) be as in Lemma 5.1. Then by taking subse-
quences we have :

1) pnun-λ'Un-*ρU'U in the distribution sense on (0, T*)XG,
2) pnθl-^pθ2 in the weak*-topology of L°°(0, Γ* L°°(G))
3) plθn-i&iviun-i)-*p2θάw(u) weakly in L2(0, T*; if),
4) pnθlun-i->pθ2u weakly in L2(0, T*; i/).

Proof. 1) Let 0 be a CS°(O, T CS°(G))-function, then:

{ T* ΓT*

(pnUn-l Un, φ)dtJr\ (pnUn, Un-o Jo

It follows from Lemma 5.2 that:

o (pnUn, Un-iφ)dt > J Q (pM,

i.e. pnUn-i'Un"* pu-u in the distribution sense on (0, T*)xG.
2) We have:

(Pnθl~pθ\ φ)^{θl-θ2, pnφ) + (pn-p, θ2φ) .

It is clear that θ2φ is in L2(0, T* H\). It now follows from Lemmas 5.2-5.3
that pnθϊ-*pθ2 i n the distribution sense on (0, T*)xG. On the other hand since
pnθl-*g in the weak*-topology of L°°(0, T*; L°°(G)), ^ = i o ^ 2 .

3) We now show that pnθ
2

nun^->pθ2u weakly in L2(0, T* H). First we
note that ρnθ

2

nun^-^h weakly in L2(0, T*; H). Let ̂  be as before. Then :

(pnθlUn-u φ) = (pnUn-i, θ\φ) .

From Lemma 5.2, pnun-i-*pu weakly in L2(0, T*; //) and from Lemma 5.3 we
have 02-»02 in L2(0, T*; H). Therefore: h=pθ2u.

4) It remains to show that ρ2

nθn-ιάiv {Un-^-* ρ2θ ά\v {u) weakly in
L2(0, Γ*; H). Let φ be as above and consider

(pi div(Mn-!), 0 ) - - Σ {wn-i,, ^

A rigorous justification of the computations may be done in exactly the same
way as in Lemma 2.2 (part 2).

Since ttn-i—w weakly in L2(0, Γ*; Z/1) and
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with C independent of n, it follows from the compensated compactness agrument
of Murat as applied by Lions in [5] p. 72 relation 1.64 that Un-^j-D^pl)-*
Uj-Djip2) in the distribution sense on (0, T*)xG. So:

.7 = 1

), φ)+(p2up Djφ)}=(p2divu, φ)

by applying Lemmas 5.2-5.3. On the other hand ρ\ div(wn-D—>g weakly in
L2(0, T*; H) and hence g=p2άivu.

Applying now Lemma 5.3 we get:

piθn^άiviun-i)—> p2άiv(u) θ weakly in L\0, T*; H).

LEMMA 5.5. Let θn be as in Lemma 5.1. Then there exists a subsequence
such that

θnι-χ!(θl) —> 21Θ weakly in L2(0, T* H).

Proof. We have:

It follows from Lemma 5.3 that θn-i-^θ'1 in L2(0, T* H). On the other hand:
H0nllL2co,r ;/ϊi)^C. Since Lemma 5.3 gives: ^2

n-^^2 in L2(0, T*; if), we get:
2J-+V(#2) weakly in L2(0, T* H). It is now easy to check that θήU^l)—
1{Θ2)^2ΊΘ weakly in L2(0, T* H).

LEMMA 5.6. Let un be as in Lemma 5.1. Then:

n, φ)dt—>^\Bu, φ)dt

for all φ in 0(0, T*; C\G)).

Proof. Let φ be a testing function on (0, T*)xG. We have to show that:

nk+Dkunj, φ(DjUnk+Dkun))dt — > ^ \ D j u k + D k u J , φ(DjUk+DkUj))dt.

Thus, it suffices to show that:

^ \ , φ)dt

for all φ in 0(0, T* O(G)).
We have:

(DjUnDkun, φ)=—(unφ, DjDkun)-(un, DkunDjφ).

In view of Lemma 5.2, it is clear that:

Mn, DkunDjφ)dt —+
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S T* ΓT*

(unDjDkun, φ) — > I (uDjDku, φ)dt.
1) From Lemma 5.2 we know that un-u-^0 in L2(0, T* H). By taking

subsequences, we have:

\\un(., t)-u{., Oil— 0 a.e. on (0, T*) as n — -foo.

Let S be the set of all t on (0, T*) such that

II"nC, t)-u(., t)\\->0 for all t on S .

Then mes(S)=T*. For ε>0 consider the sets:

En(ε)={t: t in 5 , ε^\{un{., t)-u(., t), φDjDk{un(., t)-u{., t)})\).

S e t S n ( e ) = 0 E p ( ε ) . T h e n c l e a r l y : ••• c S n + 1 ( ε ) c 5 n ( ε ) C ••• a n d l im m e s ( S n ( ε ) ) =

lim mes( 0 Ep(ε))=mes(S*) with
Π-*oo p = 7l

S*= Γ\Sn(e).
n=l

Suppose that (un(., t)—u{., t), φDjDk{un{., t)—u{., t)}) does not converge to 0
almost everywhere on 5, then for any η>0 there exists N(η) such that mes(Sn)
^η for all n^Nη. Hence:

un(., ί)-u{., t), φDjDk{un(., t)-u{., t)})\

on 5* for all n^Nv.
Since ||wn—U\\L2{Q,T* H^ = C, for almost all t there exists a subsequence (de-

pending on t) such that:

It follows that there exists tQ in 5* wi th :

(ί) ||M»(., ίo)-M( , ίo)lli

(ii) e ^ | ( M n ( . , ί o ) - M ( . , ί 0 ) , φDjDk{un(., to)-u(., to)})\.

From the Sobolev imbedding theorem, we have:

un(', to)—u(., to)—> g in H and weakly in H\.

Since t0 is in S* ^ = 0 . Thus, DjDk{un{., to)—u(., to)}~^0 weakly in i/"1.
From the compensated compactness argument of Murat as applied by Lions

in [5] p. 72 relation 1.56 (but now with time independent functions) we obtain

(ttn(., fo)-tt(., ί0), φDjDk{un(., to)-u(., t0)})—>0

which is a contradiction.
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Hence (un(., t)-u(., t), φD3Dk{un{., t)-u{., t)})—>0

a. e. on (0, T*) and thus,

, t)-u(., t), φDjDkun(., t)-u(., t))dt—>0.

The lemma is proved.

Proof of Theorem 1.1. Let un, on, θn be as in Lemma 5.1. Then from (5.1)

and from Lemma 5.2 it is clear that

ugτzάφ, p)dt=(p°, φ(., 0))

for all φ in L2(0, T* H1) with φr in L2(0, T*; # ) and φ{., T*)=0.
Again from (5.2) and Lemmas 5.2-5.3, we get:

ΓΓ* ΓT* ΓT*

I (/>w, κ ; ' ) ^ ί + \ {^u,Ίw)dtJr\ {άiv u, ά\v w)dt
Jo Jo Jo

, div(w ))—Γc^z/.Vu;, u)dt = [T (pf, w)dt

for all M; in L2(0, T* i/§) with w' in L2(0, T* H) and u;(., T*)=0.

Finally from (5.3) and Lemmas 5.4-5.6 we obtain:

u, φ)dt

)dt=(poθl φ{., 0))

for all φ in L2(0, T* H2) with φ' in L2(0, T* //) and 0(., T*)=0.

Hence {i/, io, ̂ } is a solution of (0.1)-(0.3) in the sense of Definition 4. The

theorem is proved.
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