ON ODD TWO-DIMENSIONAL ICOSAHEDRAL GALOIS REPRESENTATIONS WITH SQUARE FREE CONDUCTOR

By Hajime Nakazato

Introduction

Let \boldsymbol{Q} be an algebraic closure of the rational number field \boldsymbol{Q}, and let G be the Galois group $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$. In [2], Deligne and Serre proved that the Mellin transform of a normalized new form of weight 1 with character is the Artin L function of a continuous two-dimensional representation of G. The purpose of this paper is to investigate such representations of G.

Let

$$
\rho: G \longrightarrow \mathrm{GL}(2, \boldsymbol{C})
$$

be a two-dimensional continuous complex linear representation of G, and let

$$
\varepsilon=\operatorname{det}(\rho): G \longrightarrow \mathrm{GL}(1, \boldsymbol{C})=\boldsymbol{C}^{\times} .
$$

Let $c \in G$ be a "complex conjugate", or Frobenius at infinity. We say that ρ is odd if $\varepsilon(c)=-1$. Let N be the (Artin) conductor of ρ. The conductor of ε divides N (cf. [4]). Let χ be a character of a group $H ; \chi: H \rightarrow \boldsymbol{C}^{\times}$. Then we say that χ has order n if the image of χ has order n, and we denote it by; ord $(\chi)=n$.

Let $\tilde{\rho}$ be the projective representation of G attached to the linear representation ρ of G;

The image of $\tilde{\rho}$ is a finite subgroup of $\operatorname{PGL}(2, \boldsymbol{C})$. Hence it is one of the followings;

1) cyclic groups,
2) dihedral groups,
3) the alternating groups A_{4}, A_{5}, and the symmetric group S_{4}.

We say that ρ is of type A_{4} (resp. S_{4}, A_{5}) if $\tilde{\rho}(G) \cong A_{4}\left(\right.$ resp. $\left.S_{4}, A_{5}\right)$ (cf. [6]), and that ρ is icosahedral if it is of type A_{5}.

Received July 17, 1979

Our main result is the following theorem.
Theorem I. Let ρ be an odd continuous two-dimensional linear representation of G with conductor N. Suppose that ρ is of type A_{5}, and that N is square free. Then the order of the image of ρ is 240, 720, 1200 or 3600.

Remark. In $\S 8$ of [6], Serre has remarked that if N is a prime then the order of the image of ρ is 240 . See Remark 1 in $\S 2$ and Proposition in $\S 3$. Moreover we see that if N is a product of two distinct primes then the order of the image of ρ is 240,720 or 1200 . See Remark 2 in $\S 2$.

§ 1. Local theory

Let $N=\prod_{p} p^{m(p)}$, and let $I_{p} \subset G$ be an inertia subgroup of a prime p.
Lemma 1. Suppose that $m(p)=1$. Then ρ is tamely ramified at p. Moreover there exists a one-dimensional representation $\psi \neq \imath d$ of I_{p} such that $\left.\rho\right|_{I_{p}}$ is 2 somorphic to the representation $\psi \oplus$ id of I_{p}. We have :

Proof. Let $D_{p} \supset I_{p}$ be the decomposition group of the place v of $\overline{\boldsymbol{Q}}$ such that I_{p} is the inertia group of v. We identify D_{p} with the Galois group $\operatorname{Gal}\left(\overline{\boldsymbol{Q}}_{p} / \boldsymbol{Q}_{p}\right)$ of an algebraic closure $\overline{\boldsymbol{Q}}_{p}$ of the p-adic number field \boldsymbol{Q}_{p}. Let $K \subset \overline{\boldsymbol{Q}}_{p}$ be the fixed field of $\operatorname{Ker}\left(\left.\rho\right|_{D_{p}}\right)$. Then we have $\operatorname{Gal}\left(K / \boldsymbol{Q}_{p}\right) \cong \rho\left(D_{p}\right)$. Let $H=\operatorname{Gal}\left(K / \boldsymbol{Q}_{p}\right)$, and let $\rho^{\prime}: H \rightarrow \mathrm{GL}(2, \boldsymbol{C})$ be the representation of H induced by $\left.\rho\right|_{D_{p}}$. Let V be a representation space of ρ^{\prime}, and let $G_{\imath}(i \geqq 0)$ be the corresponding ramification groups (G_{0} being the inertia group) in H. By the formula of Artin conductor, we have

$$
m(p)=\sum_{i=0}^{\infty} \frac{\left|G_{2}\right|}{\left|G_{0}\right|} \operatorname{codim}\left(V^{G_{i}}\right)
$$

(cf. [4], [5]). If ρ is not tamely ramified at p. Then we have: $G_{1} \neq\{2 d\}$. Since ρ^{\prime} is a faithfull representation, we have: $\left(\operatorname{codim}\left(V^{G_{0}}\right) \geqq\right) \operatorname{codim}\left(V^{G_{1}}\right) \geqq 1$. Hence

$$
\begin{aligned}
m(p) & =\sum_{\imath=0}^{\infty} \frac{\left|G_{i}\right|}{\left|G_{0}\right|} \operatorname{codim}\left(V^{G_{i}}\right) \\
& \geqq \frac{\left|G_{0}\right|}{\left|G_{0}\right|} \operatorname{codim}\left(V^{G_{0}}\right)+\frac{\left|G_{1}\right|}{\left|G_{0}\right|} \operatorname{codim}\left(V^{G_{1}}\right) \\
& \geqq 1+\frac{\left|G_{1}\right|}{\left|G_{0}\right|} .
\end{aligned}
$$

So we have: $m(p) \geqq 2$. This contradicts the assumption that $m(p)=1$. The first assertion is proved.

Since ρ is tamely ramified at $p, \rho\left(I_{p}\right)$ is a cyclic group. Hence there exist one-dimensional representations ψ_{1} and ψ_{2} of I_{p} such that $\left.\rho\right|_{I_{p}}$ is isomorphic to $\psi_{1} \oplus \psi_{2}$. Considering the conductors of $\left.\rho\right|_{I_{p}}$ and $\psi_{1} \oplus \psi_{2}$, we have:

$$
\psi_{1}=i d \text { and } \psi_{2} \neq i d, \text { or } \psi_{1} \neq \imath d \text { and } \psi_{2}=\imath d
$$

Therefore $\left.\rho\right|_{I_{p}}$ is isomorphic to $\psi \oplus \imath d$ with $\psi \neq \imath d$. The proof is completed.
Remark. Let N be square free. Then by Lemma 1 the conductor of $\tilde{\rho}$ (see $\S 6$ of [6]) is N and the conductor of ε is N.

§ 2. The order of ε

Theorem II. Let ρ be an odd continuous two-dimensional representation of G with conductor N, and put $\varepsilon=\operatorname{det}(\rho)$. Suppose that N is square free. Then we have the followings.
i) The order of ε is 6 , if ρ is of type A_{4}.
ii) The order of ε is 2, 4, 6 or 12 , if ρ is of type S_{4}.
iii) The order of ε is $2,6,10$ or 30 , if ρ is of type A_{5}.

Remark 1. If N is a prime. Then the followings were obtained in Theorem 7 of [6].
i) There exists no representation of type A_{4}.
ii) The order of ε is 2 or 4 , if ρ is of type S_{4}.
iii) The order of ε is 2 , if ρ is of type A_{5}.

Remark 2. Suppose that N is a product of two distinct primes. Then we have the followings.
i) The order of ε is 6 , if ρ is of type A_{4}.
ii) The order of ε is $2,4,6$ or 12 , if ρ is of type S_{4}.
iii) The order of ε is 2,6 or 10 , if ρ is of type A_{5}.

To obtain Theorem II, we use the following lemma.
Lemma 2. The Galois group G is generated, in the sense of topological groups by all conjugates of inertra subgroups of all primes.

Proof. Let G^{\prime} be the subgroup of G generated by all conjugates of inertia subgroups of all primes. Then the fixed field of G^{\prime} is unramified over \boldsymbol{Q}. Hence we have: $G=G^{\prime}$, by Minkowski's Theorem (cf. [1], Chap. 2, Sec. 6, Problem 4, p. 129).

Proof of Theorem II. Let $n_{p}=\operatorname{ord}\left(\left.\varepsilon\right|_{I_{p}}\right)$ for each prime $p \mid N$, and let $n=\operatorname{ord}(\varepsilon)$. Then n is even since ρ is odd. Let ζ be a primitive n-th root of
unity. For a subset A of a group H, let $\langle A\rangle$ be the subgroup of H generated by A. By Lemma 2, we have

$$
\varepsilon(G)=\left\langle\varepsilon\left(I_{p}\right)\right| \text { all primes } p|N\rangle .
$$

So we have $\langle\zeta\rangle=\left\langle\zeta^{n / n_{p}}\right|$ all primes $p|N\rangle$. Hence there exist integers $a_{p}, p \mid N$, such that

$$
1=\sum_{p \not N} a_{p} \frac{n}{n_{p}} .
$$

Since $\varepsilon\left(I_{p}\right) \cong \tilde{\rho}\left(I_{p}\right), \varepsilon\left(I_{p}\right)$ is isomorphic to a cyclic subgroup of $\tilde{\rho}(G)$ for each $p \mid N$. For each $p \mid N, n_{p}$ is 2 or 3 (resp. 2, 3 or $4 ; 2,3$ or 5) if ρ is of type A_{4} (resp. $S_{4} ; A_{5}$. Hence there exist non-negative integers a, b and c such that $n=2^{a} 3^{b} 5^{c}$. Moreover noting that n is even, we have the followings.
i) $a=1,0 \leqq b \leqq 1, c=0$, if ρ is of type A_{4}.
ii) $1 \leqq a \leqq 2,0 \leqq b \leqq 1, c=0$, if ρ is of type S_{4}.
iii) $a=1,0 \leqq b \leqq 1,0 \leqq c \leqq 1$, if ρ is of type A_{5}.

Hence we have:
i) n is 2 or 6 , if ρ is of type A_{4}.
ii) n is $2,4,6$ or 12 , if ρ is of type S_{4}.
iii) n is $2,6,10$ or 30 , if ρ is of type A_{5}.

By the same reason as in the proof of Theorem 7, pp. 276-277, in $\S 8$ of [6], if ρ is of type A_{4} then n is 6 . The proof is completed.

§ 3. The proof of Theorem I

The following proposition and Theorem II imply Theorem I.
Proposition. Let ρ be an odd continuous two-dimensional linear representation of G, and let n be the order of $\operatorname{det}(\rho)$. Suppose that ρ is of type A_{5}. Then the order of the image of ρ is 120 n .

Proof. Let $H=\operatorname{Ker}\left(\rho(G) \xrightarrow{\text { det }} C^{\wedge}\right)$. Then $(\rho(G): H)=n$. Let Z be the subgroup of $\mathrm{GL}(2, C)$ consisting of all scalar matrices, and put $Z_{0}=\rho(G) \cap Z$. Then $\rho(G) / Z_{0} \cong A_{5}$. The subgroup H is a normal subgroup of $\rho(G)$. Hence from the following commutative diagram;

we see that $H / H \cap Z_{0}$ is a normal subgroup of A_{5}. Therefore we have $H / H \cap Z_{0}$ $\cong A_{5}$, since A_{5} is a simple group. By the definitions of H and Z_{0}, we have two cases;
a) $H \cap Z_{0}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$,
b) $H \cap Z_{0}=\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.

In the case a), we have $H \cong A_{5}$. Since H is a subgroup of $\operatorname{GL}(2, C)$. This contradicts the classification of finite subgroups of $\mathrm{GL}(2, \boldsymbol{C})$ (cf. $\S 26$ of [3]). Therefore the case a) does not occur.

In the case b), the order of H is 120 . Hence the order of $\rho(G)$ is $120 n$. The proof is completed.

Remark. In this proposition, we make no assumption on the conductor of ρ.

References

[1] Z.I. Borevich \& I.R. Shafarevich: Number Theory. Academic Press, New York and London, 1966.
[2] P. Deligne \& J-P. Serre: Formes modulaires de poids 1. Ann. sci. E.n.S. 7, 507-530 (1974).
[3] L. Dornhoff: Group Representation Theory, Part A, Marcel Dekker, Inc., New York, 1971.
[4] I. Martinet: Character theory and Artin L-functions, Proceedings of a conference at Durham, 1977.
[5] J-P. Serre: Corps locaux. Hermann, Paris, 1968.
[6] J-P. Serre: Modular forms of weight one and Galois representation. Proceedings of a conference at Durham, 1977.

Department of Mathematics, Tokyo Institute of Technology.

