H. NAKAZATO KODAI MATH. J. 3 (1980), 380–384

ON ODD TWO-DIMENSIONAL ICOSAHEDRAL GALOIS REPRESENTATIONS WITH SQUARE FREE CONDUCTOR

By HAJIME NAKAZATO

Introduction

Let Q be an algebraic closure of the rational number field Q, and let G be the Galois group $\operatorname{Gal}(\overline{Q}/Q)$. In [2], Deligne and Serre proved that the Mellin transform of a normalized new form of weight 1 with character is the Artin *L*function of a continuous two-dimensional representation of G. The purpose of this paper is to investigate such representations of G.

Let

$$\rho: G \longrightarrow \mathrm{GL}(2, \mathbb{C})$$

be a two-dimensional continuous complex linear representation of G, and let

$$\varepsilon = \det(\rho) : G \longrightarrow \operatorname{GL}(1, C) = C^{\times}.$$

Let $c \in G$ be a "complex conjugate", or Frobenius at infinity. We say that ρ is odd if $\varepsilon(c) = -1$. Let N be the (Artin) conductor of ρ . The conductor of ε divides N (cf. [4]). Let χ be a character of a group $H; \chi: H \rightarrow C^{\times}$. Then we say that χ has order n if the image of χ has order n, and we denote it by; ord (χ) = n.

Let $\tilde{\rho}$ be the projective representation of G attached to the linear representation ρ of G;

The image of $\tilde{\rho}$ is a finite subgroup of PGL(2,*C*). Hence it is one of the followings;

- 1) cyclic groups,
- 2) dihedral groups,

3) the alternating groups A_4 , A_5 , and the symmetric group S_4 .

We say that ρ is of type A_4 (resp. S_4 , A_5) if $\tilde{\rho}(G) \cong A_4$ (resp. S_4 , A_5) (cf. [6]), and that ρ is icosahedral if it is of type A_5 .

Received July 17, 1979

Our main result is the following theorem.

THEOREM I. Let ρ be an odd continuous two-dimensional linear representation of G with conductor N. Suppose that ρ is of type A_5 , and that N is square free. Then the order of the image of ρ is 240, 720, 1200 or 3600.

Remark. In §8 of [6], Serre has remarked that if N is a prime then the order of the image of ρ is 240. See Remark 1 in §2 and Proposition in §3. Moreover we see that if N is a product of two distinct primes then the order of the image of ρ is 240, 720 or 1200. See Remark 2 in §2.

§1. Local theory

Let $N=\prod_p p^{m(p)}$, and let $I_p \subset G$ be an inertia subgroup of a prime p.

LEMMA 1. Suppose that m(p)=1. Then ρ is tamely ramified at p. Moreover there exists a one-dimensional representation $\psi \neq id$ of I_p such that $\rho|_{I_p}$ is isomorphic to the representation $\psi \oplus id$ of I_p . We have:

Proof. Let $D_p \supset I_p$ be the decomposition group of the place v of \bar{Q} such that I_p is the inertia group of v. We identify D_p with the Galois group $\operatorname{Gal}(\bar{Q}_p/Q_p)$ of an algebraic closure \bar{Q}_p of the *p*-adic number field Q_p . Let $K \subset \bar{Q}_p$ be the fixed field of $\operatorname{Ker}(\rho|_{D_p})$. Then we have $\operatorname{Gal}(K/Q_p) \cong \rho(D_p)$. Let $H = \operatorname{Gal}(K/Q_p)$, and let $\rho': H \to \operatorname{GL}(2, \mathbb{C})$ be the representation of H induced by $\rho|_{D_p}$. Let V be a representation space of ρ' , and let G_i $(i \ge 0)$ be the corresponding ramification groups (G_0 being the inertia group) in H. By the formula of Artin conductor, we have

$$m(p) = \sum_{i=0}^{\infty} \frac{|G_i|}{|G_0|} \operatorname{codim}(V^{G_i})$$

(cf. [4], [5]). If ρ is not tamely ramified at p. Then we have: $G_1 \neq \{id\}$. Since ρ' is a faithfull representation, we have: $(\operatorname{codim}(V^{G_0}) \geq) \operatorname{codim}(V^{G_1}) \geq 1$. Hence

$$m(p) = \sum_{i=0}^{\infty} \frac{|G_i|}{|G_0|} \operatorname{codim} (V^{G_i})$$
$$\geq \frac{|G_0|}{|G_0|} \operatorname{codim} (V^{G_0}) + \frac{|G_1|}{|G_0|} \operatorname{codim} (V^{G_1})$$
$$\geq 1 + \frac{|G_1|}{|G_0|}.$$

HAJIME NAKAZATO

So we have: $m(p) \ge 2$. This contradicts the assumption that m(p)=1. The first assertion is proved.

Since ρ is tamely ramified at p, $\rho(I_p)$ is a cyclic group. Hence there exist one-dimensional representations ψ_1 and ψ_2 of I_p such that $\rho|_{I_p}$ is isomorphic to $\psi_1 \oplus \psi_2$. Considering the conductors of $\rho|_{I_p}$ and $\psi_1 \oplus \psi_2$, we have:

 $\psi_1 = id$ and $\psi_2 \neq id$, or $\psi_1 \neq id$ and $\psi_2 = id$.

Therefore $\rho|_{I_p}$ is isomorphic to $\psi \oplus id$ with $\psi \neq id$. The proof is completed.

Remark. Let N be square free. Then by Lemma 1 the conductor of $\tilde{\rho}$ (see §6 of [6]) is N and the conductor of ε is N.

§ 2. The order of ε

THEOREM II. Let ρ be an odd continuous two-dimensional representation of G with conductor N, and put $\varepsilon = \det(\rho)$. Suppose that N is square free. Then we have the followings.

- i) The order of ε is 6, if ρ is of type A_4 .
- ii) The order of ε is 2, 4, 6 or 12, if ρ is of type S_4 .
- iii) The order of ε is 2, 6, 10 or 30, if ρ is of type A_5 .

Remark 1. If N is a prime. Then the followings were obtained in Theorem 7 of [6].

- i) There exists no representation of type A_4 .
- ii) The order of ε is 2 or 4, if ρ is of type S_4 .
- iii) The order of ε is 2, if ρ is of type A_5 .

Remark 2. Suppose that N is a product of two distinct primes. Then we have the followings.

- i) The order of ε is 6, if ρ is of type A_4 .
- ii) The order of ε is 2, 4, 6 or 12, if ρ is of type S_4 .
- iii) The order of ε is 2, 6 or 10, if ρ is of type A_5 .

To obtain Theorem II, we use the following lemma.

LEMMA 2. The Galois group G is generated, in the sense of topological groups by all conjugates of inertia subgroups of all primes.

Proof. Let G' be the subgroup of G generated by all conjugates of inertia subgroups of all primes. Then the fixed field of G' is unramified over Q. Hence we have: G=G', by Minkowski's Theorem (cf. [1], Chap. 2, Sec. 6, Problem 4, p. 129).

Proof of Theorem II. Let $n_p = \operatorname{ord} (\varepsilon|_{I_p})$ for each prime p|N, and let $n = \operatorname{ord} (\varepsilon)$. Then n is even since ρ is odd. Let ζ be a primitive *n*-th root of

unity. For a subset A of a group H, let $\langle A \rangle$ be the subgroup of H generated by A. By Lemma 2, we have

$$\varepsilon(G) = \langle \varepsilon(I_p) | \text{ all primes } p | N \rangle.$$

So we have $\langle \zeta \rangle = \langle \zeta^{n/n_p} |$ all primes $p | N \rangle$. Hence there exist integers a_p , p | N, such that

$$1 = \sum_{p \mid N} a_p \frac{n}{n_p}.$$

Since $\varepsilon(I_p) \cong \tilde{\rho}(I_p)$, $\varepsilon(I_p)$ is isomorphic to a cyclic subgroup of $\tilde{\rho}(G)$ for each $p \mid N$. For each $p \mid N$, n_p is 2 or 3 (resp. 2, 3 or 4; 2, 3 or 5) if ρ is of type A_4 (resp. S_4 ; A_5). Hence there exist non-negative integers a, b and c such that $n=2^a3^b5^c$. Moreover noting that n is even, we have the followings.

i) $a=1, 0 \leq b \leq 1, c=0$, if ρ is of type A_4 .

ii) $1 \leq a \leq 2$, $0 \leq b \leq 1$, c=0, if ρ is of type S_4 .

iii) $a=1, 0 \leq b \leq 1, 0 \leq c \leq 1$, if ρ is of type A_5 .

Hence we have:

i) n is 2 or 6, if ρ is of type A_4 .

ii) n is 2, 4, 6 or 12, if ρ is of type S_4 .

iii) n is 2, 6, 10 or 30, if ρ is of type A_5 .

By the same reason as in the proof of Theorem 7, pp. 276-277, in §8 of [6], if ρ is of type A_4 then n is 6. The proof is completed.

§3. The proof of Theorem 1

The following proposition and Theorem II imply Theorem I.

PROPOSITION. Let ρ be an odd continuous two-dimensional linear representation of G, and let n be the order of det (ρ) . Suppose that ρ is of type A_5 . Then the order of the image of ρ is 120 n.

Proof. Let $H=\operatorname{Ker}(\rho(G) \longrightarrow \mathbb{C}^{\times})$. Then $(\rho(G): H)=n$. Let Z be the subgroup of $\operatorname{GL}(2,\mathbb{C})$ consisting of all scalar matrices, and put $Z_0=\rho(G)\cap Z$. Then $\rho(G)/Z_0\cong A_5$. The subgroup H is a normal subgroup of $\rho(G)$. Hence from the following commutative diagram;

$$\begin{array}{ccc} H & \longrightarrow & \rho(G) \\ \downarrow & & \downarrow \\ H/H \cap Z_0 & \longrightarrow & \rho(G)/Z_0 \cong A_5 \,, \end{array}$$

we see that $H/H \cap Z_0$ is a normal subgroup of A_5 . Therefore we have $H/H \cap Z_0 \cong A_5$, since A_5 is a simple group. By the definitions of H and Z_0 , we have two cases;

a)
$$H \cap Z_0 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
,
b) $H \cap Z_0 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.

In the case a), we have $H \cong A_5$. Since *H* is a subgroup of GL(2,C). This contradicts the classification of finite subgroups of GL(2,C) (cf. § 26 of [3]). Therefore the case a) does not occur.

In the case b), the order of H is 120. Hence the order of $\rho(G)$ is 120n. The proof is completed.

Remark. In this proposition, we make no assumption on the conductor of ρ .

References

- [1] Z.I. BOREVICH & I.R. SHAFAREVICH: Number Theory. Academic Press, New York and London, 1966.
- [2] P. DELIGNE & J-P. SERRE: Formes modulaires de poids 1. Ann. sci. E.N.S. 7, 507-530 (1974).
- [3] L. DORNHOFF: Group Representation Theory, Part A, Marcel Dekker, Inc., New York, 1971.
- [4] I. MARTINET: Character theory and Artin L-functions, Proceedings of a conference at Durham, 1977.
- [5] J-P. SERRE: Corps locaux. Hermann, Paris, 1968.
- [6] J-P. SERRE: Modular forms of weight one and Galois representation. Proceedings of a conference at Durham, 1977.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.

384