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ON PARALLEL CONFORMAL CONNECTIONS

BY RADU ROSCA

Introduction. Riemannian manifolds endowed with a parallel conformal
connection V .̂c have been defined by the present author in [1]. In this paper
one studies in the first section a type of such manifolds for which the principal
field X associated with l p c is parallel. In this case X is an infinitesimal homo-
thety of the volume element of Mc and is an invariant section of the cannonical
form in the set of 2-frames O2(MC). If Mc is of even dimension 2 m, then the
connection l p x defines on Mc a conformal symplectic form φ and the dual field
of the principal 1-form a (a is the dual form of X with respect to the metric of
Mc) with respect to φ is a Killing field. Finally it is shown that Mc is of con-
stant scalar curvature and is Ricci flat in the direction of X. In the second
section, making use of some notions introduced by K. Yano and S. Ishihara in
[5] and by J. Klein in [7] one studies different properties of the tangent bundle
manifold TMC. Thus the complete lift φc of φ, on TMC is a homogenous form
of degree 1 and is also conformal symplectic. If V is the canonical field on TMcr

then the Lie bracket [V, X~] is an infinitesimal automorphism of φc. Further some
properties involving the canonical symplectic form Ω on TMC (Ω is a Finslenan
form) and a second conformal symplectic form Θ, which is homogenous of degree
2, are discussed. In the last section one considers a regular mechanical system
(in the sense of J. Klein [8]), 3ί= {Mc, T, π) such that the kinetic energy T is
homogenous of degree 2 and the dynamical system Z associated with 3t is a
spray on Mc.

1. Mc manifold. Let M be an n-dimensional C°°-Riemannian manifold and
let O(M) be the bundle of orthonormal frames of M. If O^O(M) is such a frame,
let {βi}, {a/} and ω\=SljO)3', i, k, j = l, •••, n, be the vectorial and dual basis and
the connection forms associated with O respectively. Then the line element dp
(p£M), the connection equations and the structure equations (E. Cartan) are
respectively

(1.1) dp=ωι®e%,

(1.2) let=ωk

t®ek,

(1.3) d/\ω%=Ωx+ωk/\ω\,
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(1.4) dΛωl=Ωι

k+ωiΛω),

where Ωι and Ωi are the torsion and the curvature 2-forms respectively.
A connection 7 such that

(1.5) ωt

k=tkω
%-tiω

k; tι^C°°(M)

has been called in [1], a parallel conformal connection, and denoted by 7P.C. If
TP(M) is the tangent space at p^M we shall call

(1.6) Z - Σ t e e T p ( M )

the principal field (p. f.) associated with 7C.P and if 3 is the canonical isomor-
phisme (with respect the metric of M) the Pfaffian

(1.7) JX=a=ΣUωt

is the principal Pfajfian {p. P.) associated with 7P.C.
So by 1.3 and 1.5 we readly get

(1.8) d/\ωι=Ωι+a/\ω\

Assume now that X is parallel, that is,

(1.9) 7 Z = 0 .

By using 1.2 and 1.5 we obtain from 1.9

(1.10) dn=Ua-t*ω%\ t2=\\X\\\

Taking account of 1.7 one finds instantly

(1.100 ί2=const.

Next exterior differentiation of (1.10) gives

(1.11) Ωι=0

and so by an easy argument follows

(1.12) dΛa=0.

Hence if the p.f. X is parallel then the connection VPmC is necessarily torsion-
less and the p. P. a is closed. In the following the manifolds under considera-
tion will be of even dimension (n=2 m) and structured by 7P>C connection with
parallel principal field. Such manifolds will be denoted by Mc.

We have shown in [1] that if M is of even dimension (w=2 m) then the
connection lpx defines on M a conformal symplectic structure CSp(m; R). Thus
if we consider the almost symplectic form
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(1.13)

then by

(1.14)

one gets at once

(1.15)

φ~ωιΛω2Jr ••• Jrωzm~ιΛω2m

dΛωι=aΛωι,

dΛφ—2aΛφ .

Thus we see that 2a is the co-vector of Lee of the structure CSp(m; R). Let
now μψ\ Z~* — ιzφ be the isomorphism defined by φ. An easy calculation gives

(1.16) μφ-Kcx)=Xa=-tie1 + t1e2 + t2m^e2m

and Xa will be called the associated field of X. Taking the star operator * of a
one has

(1.17) * α = Σ ( - l Γ V Λ ••• Λά)ιΛ - Λω2m

(the "roof" indicates the missing terms).
Making use of 1.10 and 1.13 one finds from (1.17) δa=άiv X= — t2=const. and

so X is an infinitesimal homothety of the volume element of M.

Put now μψ{X)—aa and call aa the associated 1-form of a. Denoting by ^
the symplectic adjoint operator [2] one has

(1.18) *a
a
 = Va=

 ( m
^

1 }
, W

w
» .

Making use of (1.12) and (1.15) we readly see that δaa—0, that is d i v Z α = 0 .
On the other hand Z{Zl)^Tp{M^ being any vector field, we derive from

(1.2), (1.5) and (1.10)

(1.19) lzei=tlZ—ZlX\ V z : covariant derivative.

Now with the aid of (1.17) and since (X, Xa}=0, one finds by a straight-
forward calculation

(1.20) (izxa, z'y-Y<iz,xa, z>-o,

where Z and Z' are arbitrary vector fields. The above relation proves that Xa

is a Killing vector field, So the equation

(1*21) χxa=:0; Xz=izdΛ+dΛiz: Lie derivative

together with (1.18) are in accordance (if M is campact) with Bochner's theorem.
Further by using (1.19) and taking account of (1.11) one finds

(1.22) -£χaX^
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Denote like usual by R)kι the Riemann curvature tensor, that is, Ω)~
(l/2)R)kιω

k/\ω\ By (1.4), (1.5) and (1.10) one finds

(1.23) Rϊu=-tktt

Rϊjt=0; k

From the above expressions we derive the components of the Ricci tensor
as follows

«.24, *..=(»-W-e.
Rtk = -(n-2)titk.

From 1.24 and taking account of (1.10) one quickly finds that the scalar cur-
vature of M is constant, that is

(1.25) R=(n-l)(n-2)t2.

Next denote by Ric (X) the Ricci curvature in the direction X.
In consequence of (1.24) and (1.7) a short calculation gives

(1.26) Ric(Z)=0.

Hence the manifold M is Ricci flat in the direction X.
On the other hand referring to (1.5) and (1.10) one finds that both ωι and ω\

are invariant by X\ that is Xxω
ι=0, Sxω\=Q.

Therefore one may say that X is an invariant section for the canonical form
ωι&eι

Jr Σ ω\®el of the set of 2-frames O\MC) (frames of second order).

Finally coming back to the structure CSpim R) defined by (1.14) we have

(1.26) ιx<p=-μa(X)=-aa=-t2ω
1-}-t1ω

2 + t2n-1ω
2

By (1.20) and (1.14) a short computation gives

(1.27) dΛaa=aΛaa+2t2φ.

2n

Since t2 is constant, this equation proves as is known [3] that X is a con-
formal symplectic infinitesimal transformation of φ. From the preceding discus-
sion we may state the

THEOREM. Let Mc be a Riemanman manifold of even dimension 2m structured
by a 1 px connection with principal field X and let Xa and η be the associated
field of X and the volume element of Mc respectively. Then

(i) the connection Vp.c defines on Mc a conformal symplectic structure
CSp(m; R)—{φ, 2a) having {up to a constant factor) the dual form of X as co-
vector of Lee,
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(ii) the field X has the following properties: it is an infinitesimal homothety
of η, it is an invariant section of the canonical form of the set of 2-frames
O2(MC), it is a conformal symplectic infinitesimal transformation of CSp(m; R);

(iii) the field Xa has the following properties it is an infinitesimal automor-
phism of η, it is a Killing field;

(iv) Mc is of constant scalar curvature and is Ricci flat in the direction of X.

2. Tangent bundle manifold TMC. Mc, being of constant scalar curvature,
is as is known (n^3) endowed with a conformal flat structure. Therefore ref-
erring to (1.14) we may get

(2.1) a=-df/f)f<ΞC-(Me)

and call / the integrating factor associated with 7P.C. Denote by TMC the
tangent bundle manifold having Mc as basis and by V(vι) the canonical field (the
field of Liouville) on TMC. Thus we may consider the set B*={ωι, dv1} as a
co-vectorial basis of TMe.

Denote (like usual) by dΌ and ιυ the vertical differentiation and the vertical
derivation operators respectively taken with respect to 5* (dυ is an antiderivation
of degree 1 ofΛ(TAf) and ι0 is a derivation of degree 0 of Λ(TM) [4]).

Put

(2.2) l=fv^C~{TMc),

where

(2.3) i;=|ΣW.

One has

(2.4) dvl=fΣvιωι=Λ(Ξ ΛKTMC)

and by (2.1) and (1.14) we get

(2.5) dΛdυl=fΣ,dvιΛωι=Ω.

Clearly Ω is an exact symplectic form which will be called the canonical
symplectic form on TMC.

In addition we shall call / and λ the Liouville function and the Liouville form
respectively on TMC.

If c: AKM) -> C°°(TM) is the operator of K. Yano and S. Ishihara [3] one
has (with respect to B*)

(2.6) ca

and so
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(2.7) dάa)=a,

If dτ denotes the Pfaffian derivativ with respect ω\ then according to [5],
complete lift ac of a is defined by

(2.8) ae=(βtlf ί θ ; 3=Σι>'3» •

With the help of (1.10) one finds

(2.9) ae=(ta)a-(t*/f)λ+β,

where

(2.10) β^Σtidv1.

One obtains

(2.11) dυa
c=0; iυa

c=a=ivβ

and so by (2.7) and remarking that ac=d(ca), one checks (dΛdv+dvdA)(ca)—0. On
the other hand since

(2.12) ιv(ca)=0

one checks [iΌf d~]=dυ.
The complete lift Xc of X is as is known

(2.13) Xc= (I1) =X+(ca)Xv-t2V

where Xv— ( J and F are the vertical lift of X and the canonical field respec-

tively. Referring to (2.4) and (2.5) we find at once

(2.14) ivΩ=λ, ιxvΩ=fa, ιxΩ=-fβ.

On the other hand taking account of (2.5), exterior differentiation of (2.10)
gives

(2.15) dΛβ^aΛβ + t

Now making use of (2.15) we derive from (2.14) the following equations

(2.16) XVΩ^Ω, ΛxvΩ=0, XxΩ=--fΏ.

These equations assert that Ω is homogenous of rank 1 [7] and that Xv and
X are an infinitesimal automorphism and an infinitesimal homothety of Ω respec-
tively.

Further by (2.13) and (2.14) we get

(2.17) iXcΩ=(ca)fa-fβ-t2λ
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and therefore

(2.18) XχcΩ=ac/\fa-2t2Ω.

But ac being exact (as a) we quickly obtain

(2.19) dΛUχcΩ)=0

and this proves that Ω is a relatively invariant 2-form of Z c [6] .
Next making use of the vertical derivation operator iυ one finds ιυΩ~0, and

so by virtue of the definition given in [7] one may say that Ω is a Finslenan
form.

According to [5] the complete lift φc of φ (with respect to B*) is expressed

by

(2.20) φc—dv1Aω2Jr ••• -\-dv2m x Aω2mJ\-ω1 Adv2Jr

By virtue of (1.14) a short calculation gives

(2.21) dAφc=aAφc

and so φc defines on TMC a conformal symplectic structure CSp(2m R).
From 2.20 we obtain

/cy O Q \ * c 2 1 I 1 2 2771 2771 —1 I 2771 — 1 2771

Thus

(2.23) Xvφ
c=φc

that is, φc is homogenous of degree 1.
If we put

we obtain

(2.25) ιυβa=aa

and one checks (ivdv+dυιv)βa~ιυβa.

Exterior differentiation of (2.24) gives

(2.26) dAβa^ccAβa-^r t2pc

and from (2.24) and (2.25) we find

(2.27) Xvβa^βa,

that is, βa is homogenous of degree 1.
From (2.20) we also have
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(2.28) iχψc=iχφ=-aa.

Now by (2.23), (2.27) and (2.28) we infer

(2.29) ιίV, χ,φc=XvCχφc-iχ^vφc=O.

Clearly ιίV, Xja=0, and so referring to 2.21 we finally may write

(2.30) -Cιv.xiφe=0

that is, the Lie bracket [_V, X~] is an infinitesimal automorphism of ψ°.
Consider now the almost symplectic form

(2.31) Θ=(ca)(af\λ+Ω)tΞ /\\TMC).

By 2.4 and 2.5 exterior differentiation of Θ gives

(2.32) dΛθ=(—-a)Λθ
V ca /ca

ac

and so θ defines a second conformal structure on TMC having a as co-

vector of Lee.

One has
(2.33) dΌθ=aΛΩ, ιυθ=0

and with the help of (2.11) and (2.32), one checks dvΘ=[iυ, dv~]Θ.

Now making use of 2.16 we derive from 2.31 and 2.32

(2.34) ΛVΘ=2Θ, ΛxΘ=-t2θ, J 7 X F 0 = — 0 .
ca

Hence θ is homogenous of degree 2, X is an infinitesimal homothety of Θ
and Xv is an infinitesimal conformal transformation of Θ.

We may formulate the preceding results as follows:

THEOREM. Let TMC be the tangent bundle manifold having as basis the
manifold Mc of section 1. Let V, λ, Ω and c be the canonical field on TMC, the
Liouville form, the symplectic canonical form and the operator which assigns to
1-forms on Mc functions on TMC respectively. Then.

(i) Ω is a Finslenan form, X is an infinitesimal homothety of Ω, the vertical
lift Xv of X is an infinitesimal automorphisme of Ω, and Ω is a relatively in-
variant form of the complete lift Xc of X;

(ii) the complete lift φc of the conformal symplectic form ψ on Mc is a con-
formal symplectic form on TMC and the Lie bracket [_Vy X~\ is an infinitesimal
automorphism of φc

(iii) the form Θ—(ca)(a/\λ+Ω) is homogenous of degree 2 and defines a second

ac

conformal symplectic structure on TMC having a as co-vector of Lee and X
ca

is an infinitesimal homothety of Θ.
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Note. Let Sχa(Mc) be the cross section determined on TMC by the associated
vector field Xa of X. In consequence of (1.22) (that is the Lie derivate of X
with respect to Xa vanishes) and of the theorem stated in [5] one may say that
Xc is tangent to the cross-section Sχa(Mc).

3. Regular mechanical system M— {Mc, T, π) on mTMc. Consider now on
TMC the mechanical system M—{MC1 T, π}, [8] such that the kinetic energy T
and semi-basic 1-form π be defined respectively by

(3.1) T=l

and

(3.2) π=la.

Referring to (2.6), one has

(3.3)

and so according to J. Klein's definition, equation 3.3 proves that the system 3i
is regular, (it has as fundamental form the symplectic canonical form of TMC).

On the other hand a short calculation gives

(3.4) 7(T)=2T,

Hence T is homogenous of degree 2.
If Z is the dynamical system associated with 3ί it is as is known [4] well

defined by

(3.5) ιzΩ=d{T-V(T))+π.

Since T is homogenous of degree 2, the following theorem of A. Lichnerowicz
[9] holds: the form

(3.6) Ω-(dT-π)Λdt£ΞλX(TMc)xR)

is an integral relation of invanance for Z-\--^-.
ot

Further one has

(3.6)

and

(3.7)

and so the equation dυΠ—Uυ, d/\]Π is verified.
By 3.6 and 3.7 a short computation gives
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(3.8) XVΠ=2Π.

Hence Π is homogenous of degree 2 as the kinetic energy T. This fact

proves according to a known Proposition [3] that the dynamical system Z is a

spray on Mc.

Thus we have the

THEOREM. Let TMC be the tangent bundle manifold discussed in section 2,

Consider on TMC the mechanical system 3ί~ {Mc, T, π} whose kinetic energy is

the Lwuville function I on TMC, and whose semi-basic 1-form is the product by

I of the principal 1-form on Mc. Then:

(i) 31 is regular and has as fundamental form the canonical symplectic form

on TMcy

(ii) the kinetic energy T is homogenous of degree 2 and the dynamical system

associated with 31 is a spray on Mc.
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