R. ROSCAKODAI MATH. J.2 (1979), 1-10

ON PARALLEL CONFORMAL CONNECTIONS

BY RADU ROSCA

Riemannian manifolds endowed with a parallel conformal Introduction. connection $\nabla_{p,c}$ have been defined by the present author in [1]. In this paper one studies in the first section a type of such manifolds for which the principal field X associated with $\nabla_{p,c}$ is parallel. In this case X is an infinitesimal homothety of the volume element of M_c and is an invariant section of the cannonical form in the set of 2-frames $\mathcal{O}^2(M_c)$. If M_c is of even dimension 2 m, then the connection $\nabla_{p,c}$ defines on M_c a conformal symplectic form φ and the dual field of the principal l-form α (α is the dual form of X with respect to the metric of M_c) with respect to φ is a Killing field. Finally it is shown that M_c is of constant scalar curvature and is *Ricci flat* in the direction of X. In the second section, making use of some notions introduced by K. Yano and S. Ishihara in [5] and by J. Klein in [7] one studies different properties of the tangent bundle manifold TM_c . Thus the complete lift φ^c of φ , on TM_c is a homogenous form of degree 1 and is also conformal symplectic. If V is the canonical field on TM_c , then the Lie bracket [V, X] is an infinitesimal automorphism of φ^c . Further some properties involving the canonical symplectic form Ω on TM_c (Ω is a Finslerian *form*) and a second conformal symplectic form Θ , which is homogenous of degree 2, are discussed. In the last section one considers a regular mechanical system (in the sense of J. Klein [8]), $\mathcal{M} = \{M_c, T, \pi\}$ such that the *kinetic energy* T is homogenous of degree 2 and the dynamical system Z associated with \mathcal{M} is a spray on M_c .

1. M_c manifold. Let M be an *n*-dimensional C^{∞} -Riemannian manifold and let $\mathcal{O}(M)$ be the bundle of orthonormal frames of M. If $\mathcal{O} \in \mathcal{O}(M)$ is such a frame, let $\{e_i\}$, $\{\omega^i\}$ and $\omega_k^i = \mathcal{J}_{kj}^* \omega^j$, $i, k, j=1, \cdots, n$, be the vectorial and dual basis and the connection forms associated with \mathcal{O} respectively. Then the line element dp $(p \in M)$, the connection equations and the structure equations (E. Cartan) are respectively

$$(1.1) dp = \boldsymbol{\omega}^{i} \otimes \boldsymbol{e}_{i}$$

(1.2)
$$\nabla e_i = \omega_i^k \otimes e_k$$

$$(1.3) d \wedge \omega^i = \Omega^i + \omega^k \wedge \omega_k^i,$$

Received December 8, 1976

(1.4)
$$d \wedge \omega_k^i = \Omega_k^i + \omega_k^j \wedge \omega_j^i,$$

where Ω^i and Ω^i_k are the *torsion* and the *curvature 2-forms* respectively. A connection ∇ such that

(1.5)
$$\omega_k^i = t_k \omega^i - t_i \omega^k; \ t_i \in C^{\infty}(M)$$

has been called in [1], a *parallel conformal connection*, and denoted by $\nabla_{p.c}$. If $T_p(M)$ is the tangent space at $p \in M$ we shall call

$$(1.6) X = \sum_{i} t_i e_i \in T_p(M)$$

the principal field (p. f.) associated with $\nabla_{c.p}$ and if \mathcal{J} is the canonical isomorphisme (with respect the metric of M) the Pfaffian

(1.7)
$$\mathcal{J}X = \alpha = \sum t_i \omega$$

is the principal Pfaffian (p. P.) associated with $\nabla_{p.e.}$ So by 1.3 and 1.5 we readly get

$$(1.8) d \wedge \omega^i = \Omega^i + \alpha \wedge \omega^i.$$

Assume now that X is *parallel*, that is,

(1.9)
$$\nabla X = 0$$
.

By using 1.2 and 1.5 we obtain from 1.9

(1.10)
$$dt_i = t_i \alpha - t^2 \omega^i; \ t^2 = ||X||^2.$$

Taking account of 1.7 one finds instantly

$$(1.10')$$
 $t^2 = \text{const.}$

Next exterior differentiation of (1.10) gives

and so by an easy argument follows

$$(1.12) d \wedge \alpha = 0.$$

Hence if the *p.f.* X is parallel then the connection $\nabla_{p,c}$ is necessarily *torsion*less and the *p.P.* α is *closed*. In the following the manifolds under consideration will be of even dimension (n=2m) and structured by $\nabla_{p,c}$ connection with parallel principal field. Such manifolds will be denoted by M_{c} .

We have shown in [1] that if M is of even dimension (n=2m) then the connection $\nabla_{p,c}$ defines on M a conformal symplectic structure CSp(m; R). Thus if we consider the almost symplectic form

(1.13)
$$\varphi = \omega^1 \wedge \omega^2 + \dots + \omega^{2m-1} \wedge \omega^{2m},$$

then by

$$(1.14) d \wedge \omega^i = \alpha \wedge \omega^i,$$

one gets at once

$$(1.15) d \wedge \varphi = 2\alpha \wedge \varphi \,.$$

Thus we see that 2α is the *co-vector of Lee* of the structure CSp(m; R). Let now $\mu_{\varphi}: Z \to -\iota_{Z}\varphi$ be the isomorphism defined by φ . An easy calculation gives

(1.16)
$$\mu_{\varphi}^{-1}(\alpha) = X_a = -t_2 e_1 + t_1 e_2 - \dots + t_{2m-1} e_{2m}$$

and X_a will be called the associated field of X. Taking the star operator * of α one has

(1.17)
$$*\alpha = \sum_{i} (-1)^{i-1} \omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{2m}$$

(the "roof" indicates the missing terms).

Making use of 1.10 and 1.13 one finds from (1.17) $\delta \alpha = \text{div } X = -t^2 = \text{const.}$ and so X is an *infinitesimal homothety* of the volume element of M.

Put now $\mu_{\varphi}(X) = \alpha_a$ and call α_a the associated 1-form of α . Denoting by \simeq the symplectic adjoint operator [2] one has

(1.18)
$$*\alpha_a = \widetilde{}_{*} \alpha = \frac{\alpha}{(m-1)!} \lambda(\lambda^{m-1} \varphi).$$

Making use of (1.12) and (1.15) we readly see that $\delta \alpha_a = 0$, that is div $X_a = 0$. On the other hand $Z(Z^i) \in T_p(M_c)$ being any vector field, we derive from (1.2), (1.5) and (1.10)

(1.19)
$$\nabla_z e_i = t_i Z - Z^i X; \ \nabla_Z$$
: covariant derivative.

Now with the aid of (1.17) and since $\langle X, X_a \rangle = 0$, one finds by a straightforward calculation

(1.20)
$$\langle \nabla_Z X_a, Z' \rangle + \langle \nabla_{Z'} X_a, Z \rangle = 0$$
,

where Z and Z' are arbitrary vector fields. The above relation proves that X_a is a Killing vector field. So the equation

(1.21)
$$\mathcal{L}_{X_{a}} = 0; \ \mathcal{L}_{Z} = i_{Z} d \wedge + d \wedge i_{Z}:$$
 Lie derivative

together with (1.18) are in accordance (if M is campact) with Bochner's theorem. Further by using (1.19) and taking account of (1.11) one finds

$$(1.22) \qquad \qquad \qquad \mathcal{L}_{X_a} X = 0.$$

Denote like usual by R'_{jkl} the Riemann curvature tensor, that is, $\Omega'_{jkl} = (1/2)R'_{jkl}\omega^k \wedge \omega^1$. By (1.4), (1.5) and (1.10) one finds

(1.23)

$$\begin{array}{l}
R_{iik}^{k} = t^{2} - t_{i}^{2} - t_{k}^{2} \\
R_{iil}^{k} = -t_{k} t_{l} \\
R_{ijl}^{k} = 0; \quad k \neq i \neq j \neq l.
\end{array}$$

From the above expressions we derive the components of the Ricci tensor as follows

(1.24)
$$R_{ii} = (n-2)(t^2 - t_i^2),$$
$$R_{ik} = -(n-2)t_i t_k.$$

From 1.24 and taking account of (1.10) one quickly finds that the scalar curvature of M is constant, that is

(1.25)
$$R = (n-1)(n-2)t^2$$
.

Next denote by Ric(X) the *Ricci curvature* in the direction X. In consequence of (1.24) and (1.7) a short calculation gives

(1.26)
$$\operatorname{Ric}(X) = 0$$
.

Hence the manifold M is *Ricci flat* in the direction X.

On the other hand referring to (1.5) and (1.10) one finds that both ω^i and ω_k^i are *invariant* by X; that is $\mathcal{L}_X \omega^i = 0$, $\mathcal{L}_X \omega_k^i = 0$.

Therefore one may say that X is an *invariant section* for the canonical form $\omega^i \otimes e_i + \sum_{i,b} \omega_k^i \otimes e_i^k$ of the set of 2-frames $\mathcal{O}^2(M_c)$ (frames of second order).

Finally coming back to the structure CSp(m; R) defined by (1.14) we have

(1.26)
$$\iota_X \varphi = -\mu_{c}(X) = -\alpha_a = -t_2 \omega^1 + t_1 \omega^2 - \dots + t_{2m-1} \omega^{2m}.$$

By (1.20) and (1.14) a short computation gives

$$(1.27) d \wedge \alpha_a = \alpha \wedge \alpha_a + 2t^2 \varphi \,.$$

Since t^2 is constant, this equation proves as is known [3] that X is a conformal symplectic infinitesimal transformation of φ . From the preceding discussion we may state the

THEOREM. Let M_c be a Riemannian manifold of even dimension 2m structured by a $\nabla_{p,c}$ connection with principal field X and let X_a and η be the associated field of X and the volume element of M_c respectively. Then \cdot

(i) the connection $\nabla_{p,c}$ defines on M_c a conformal symplectic structure $CSp(m; R) = (\varphi, 2\alpha)$ having (up to a constant factor) the dual form of X as covector of Lee,

(ii) the field X has the following properties: it is an infinitesimal homothety of η , it is an invariant section of the canonical form of the set of 2-frames $\mathcal{O}^2(M_c)$, it is a conformal symplectic infinitesimal transformation of CSp(m; R);

(iii) the field X_a has the following properties it is an infinitesimal automorphism of η , it is a Killing field;

(iv) M_c is of constant scalar curvature and is Ricci flat in the direction of X.

2. Tangent bundle manifold TM_c . M_c , being of constant scalar curvature, is as is known $(n \ge 3)$ endowed with a conformal flat structure. Therefore referring to (1.14) we may get

(2.1)
$$\alpha = -df/f; f \in C^{\infty}(M_c)$$

and call f the integrating factor associated with $\nabla_{p.c.}$. Denote by TM_c the tangent bundle manifold having M_c as basis and by $V(v^i)$ the canonical field (the field of Liouville) on TM_c . Thus we may consider the set $B^* = \{\omega^i, dv^i\}$ as a co-vectorial basis of TM_c .

Denote (like usual) by d_v and ι_v the vertical differentiation and the vertical derivation operators respectively taken with respect to B^* (d_v is an antiderivation of degree 1 of $\wedge(TM)$ and ι_v is a derivation of degree 0 of $\wedge(TM)$ [4]).

Put

$$l=fv\in C^{\infty}(TM_c),$$

where

(2.3)
$$v = \frac{1}{2} \sum_{i} (v^{i})^{2}.$$

One has

$$(2.4) d_v l = f \sum_{i} v^i \omega^i = \lambda \in \wedge^1(TM_c)$$

and by (2.1) and (1.14) we get

$$d \wedge d_v l = f \sum_i dv^i \wedge \omega^i = \Omega .$$

Clearly Ω is an exact symplectic form which will be called the *canonical* symplectic form on TM_c .

In addition we shall call l and λ the Liouville function and the Liouville form respectively on TM_c .

If $\iota: \wedge^{1}(M) \to C^{\infty}(TM)$ is the operator of K. Yano and S. Ishihara [3] one has (with respect to B^{*})

(2.6)
$$\iota \alpha = \sum_{i} t_i v^i$$

and so

$$(2.7) d_v(\iota\alpha) = \alpha ,$$

If ∂_i denotes the Pfaffian derivativ with respect ω^i , then according to [5]. *complete lift* α^c of α is defined by

(2.8)
$$\alpha^{c} = (\partial t_{i}, t_{i}); \ \partial = \sum v^{i} \partial_{i}.$$

With the help of (1.10) one finds

(2.9)
$$\alpha^{c} = (\iota \alpha) \alpha - (t^{2}/f) \lambda + \beta,$$

where

$$(2.10) \qquad \qquad \beta = \sum_{i} t_i dv^i$$

One obtains

$$(2.11) d_v \alpha^c = 0; \ i_v \alpha^c = \alpha = i_v \beta$$

and so by (2.7) and remarking that $\alpha^c = d(\iota\alpha)$, one checks $(d \wedge d_v + d_v d \wedge)(\iota\alpha) = 0$. On the other hand since

$$(2.12) \iota_v(\iota\alpha) = 0$$

one checks $[i_v, d] = d_v$.

The complete lift X^c of X is as is known

(2.13)
$$X^{c} = \begin{pmatrix} t_{i} \\ \partial_{t_{i}} \end{pmatrix} = X + (\iota \alpha) X^{V} - t^{2} V$$

where $X^{v} = \begin{pmatrix} 0 \\ t_{i} \end{pmatrix}$ and V are the vertical lift of X and the canonical field respectively. Referring to (2.4) and (2.5) we find at once

(2.14)
$$i_V \Omega = \lambda$$
, $\iota_X v \Omega = f \alpha$, $\iota_X \Omega = -f \beta$.

On the other hand taking account of (2.5), exterior differentiation of (2.10) gives

$$(2.15) d \wedge \beta = \alpha \wedge \beta + t^2 / f \Omega .$$

Now making use of (2.15) we derive from (2.14) the following equations

(2.16)
$$\mathcal{L}_{V}\Omega=\Omega$$
, $\mathcal{L}_{X}v\Omega=0$, $\mathcal{L}_{X}\Omega=-t^{2}\Omega$.

These equations assert that Ω is homogenous of rank 1 [7] and that X^{ν} and X are an *infinitesimal automorphism* and an *infinitesimal homothety* of Ω respectively.

Further by (2.13) and (2.14) we get

(2.17)
$$i_{Xc}\Omega = (\iota\alpha)f\alpha - f\beta - t^{2}\lambda$$

6

and therefore

(2.18)
$$\mathcal{L}_{X^c} \Omega = \alpha^c \wedge f \alpha - 2t^2 \Omega \,.$$

But α^c being exact (as α) we quickly obtain

$$(2.19) d \wedge (\mathcal{L}_{X^c} \Omega) = 0$$

and this proves that Ω is a relatively invariant 2-form of $X^{\circ}[6]$.

Next making use of the vertical derivation operator i_v one finds $\iota_v \Omega = 0$, and so by virtue of the definition given in [7] one may say that Ω is a *Finslerian* form.

According to [5] the complete lift φ^c of φ (with respect to $B^*)$ is expressed by

$$(2.20) \qquad \varphi^{c} = dv^{1} \wedge \omega^{2} + \dots + dv^{2m-1} \wedge \omega^{2m} + \omega^{1} \wedge dv^{2} + \dots + \omega^{2m-1} \wedge dv^{2m} + \omega^{2m-1} \wedge dv^{2m-1} \wedge dv^{2m$$

By virtue of (1.14) a short calculation gives

$$(2.21) d \wedge \varphi^c = \alpha \wedge \varphi^c$$

and so φ^c defines on TM_c a conformal symplectic structure CSp(2m; R). From 2.20 we obtain

(2.22)
$$i_V \varphi^c = -v^2 \omega^1 + v^1 \omega^2 - \dots - v^{2m} \omega^{2m-1} + v^{2m-1} \omega^{2m}.$$

Thus

$$(2.23) \qquad \qquad \mathcal{L}_{\nu}\varphi^{c} = \varphi^{c}$$

that is, φ^c is homogenous of degree 1. If we put

(2.24)
$$\iota_X \varphi^c = -t_2 dv^1 + t_1 dv^2 - \dots + t_{2m-1} dv^{2m} = -\beta_a = -\mu_{cc}(X) ,$$

we obtain

and one checks $(i_v d_v + d_v \iota_v)\beta_a = \iota_v \beta_a$. Exterior differentiation of (2.24) gives

$$(2.26) d \wedge \beta_a = \alpha \wedge \beta_a + t^2 \varphi^c$$

and from (2.24) and (2.25) we find

$$(2.27) \qquad \qquad \mathcal{L}_{V}\beta_{a} = \beta_{a},$$

that is, β_a is homogenous of degree 1. From (2.20) we also have

Now by (2.23), (2.27) and (2.28) we infer

(2.29)
$$\iota_{[V, X]}\varphi^{c} = \mathcal{L}_{V}\iota_{X}\varphi^{c} - i_{X}\mathcal{L}_{V}\varphi^{c} = 0.$$

Clearly $\iota_{V, X} = 0$, and so referring to 2.21 we finally may write

$$\mathcal{L}_{[V, X]}\varphi^{c}=0$$

that is, the Lie bracket [V, X] is an *infinitesimal automorphism* of φ^{c} . Consider now the almost symplectic form

(2.31)
$$\Theta = (\iota \alpha)(\alpha \wedge \lambda + \Omega) \in \wedge^2(TM_c)$$

By 2.4 and 2.5 exterior differentiation of Θ gives

(2.32)
$$d \wedge \Theta = \left(\frac{\alpha^c}{\iota \alpha} - \alpha\right) \wedge \Theta$$

and so Θ defines a second conformal structure on TM_c having $\frac{\alpha^c}{\iota \alpha} - \alpha$ as co-

vector of Lee.

One has

$$(2.33) d_v \Theta = \alpha \wedge \Omega , \iota_v \Theta = 0$$

and with the help of (2.11) and (2.32), one checks $d_v \Theta = [i_v, d_v] \Theta$. Now making use of 2.16 we derive from 2.31 and 2.32

(2.34)
$$\mathcal{L}_{V}\Theta = 2\Theta$$
, $\mathcal{L}_{X}\Theta = -t^{2}\Theta$, $\mathcal{L}_{X}v\Theta = \frac{t^{2}}{\iota\alpha}\Theta$

Hence Θ is homogenous of degree 2, X is an infinitesimal homothety of Θ and X^{v} is an infinitesimal conformal transformation of Θ .

We may formulate the preceding results as follows:

THEOREM. Let TM_c be the tangent bundle manifold having as basis the manifold M_c of section 1. Let V, λ, Ω and c be the canonical field on TM_c , the Liouville form, the symplectic canonical form and the operator which assigns to 1-forms on M_c functions on TM_c respectively. Then.

(i) Ω is a Finslerian form, X is an infinitesimal homothety of Ω , the vertical lift X^{v} of X is an infinitesimal automorphisme of Ω , and Ω is a relatively invariant form of the complete lift X^{c} of X;

(ii) the complete lift φ^c of the conformal symplectic form φ on M_c is a conformal symplectic form on TM_c and the Lie bracket [V, X] is an infinitesimal automorphism of φ^c ;

(iii) the form $\Theta = (\iota \alpha)(\alpha \wedge \lambda + \Omega)$ is homogenous of degree 2 and defines a second conformal symplectic structure on TM_c having $\frac{\alpha^c}{\iota \alpha} - \alpha$ as co-vector of Lee and X is an infinitesimal homothety of Θ .

Note. Let $S_{X_a}(M_c)$ be the cross section determined on TM_c by the associated vector field X_a of X. In consequence of (1.22) (that is the Lie derivate of X with respect to X_a vanishes) and of the theorem stated in [5] one may say that X^c is tangent to the cross-section $S_{X_a}(M_c)$.

3. Regular mechanical system $\mathcal{M} = \{M_c, T, \pi\}$ on mTM_c . Consider now on TM_c the mechanical system $\mathcal{M} = \{M_c, T, \pi\}$, [8] such that the *kinetic energy* T and *semi-basic* 1-form π be defined respectively by

$$(3.1)$$
 $T = l$

and

$$\pi = l\alpha$$

Referring to (2.6), one has

$$(3.3) d \wedge d_V T = \Omega$$

and so according to J. Klein's definition, equation 3.3 proves that the system \mathcal{M} is *regular*. (it has as fundamental form the symplectic canonical form of TM_c).

On the other hand a short calculation gives

$$(3.4)$$
 $V(T)=2T$,

Hence T is homogenous of degree 2.

If Z is the dynamical system associated with \mathcal{M} it is as is known [4] well defined by

(3.5)
$$\iota_Z \Omega = d(T - V(T)) + \pi .$$

Since T is homogenous of degree 2, the following theorem of A. Lichnerowicz [9] holds: the form

(3.6)
$$\Omega - (dT - \pi) \wedge dt \in \lambda^2((TM_c) \times R)$$

is an integral relation of invariance for $Z + \frac{\partial}{\partial t}$.

Further one has

$$(3.6) d_v \Pi = \lambda \wedge \alpha , \iota_v \Pi = 0$$

and

$$(3.7) d \wedge \Pi = \frac{dv}{v} \wedge \Pi,$$

and so the equation $d_v \Pi = [i_v, d \land] \Pi$ is verified.

By 3.6 and 3.7 a short computation gives

 $\mathcal{L}_{\mathbf{V}}\Pi = 2\Pi.$

Hence Π is homogenous of degree 2 as the kinetic energy T. This fact proves according to a known Proposition [3] that the dynamical system Z is a *spray* on M_c .

Thus we have the

THEOREM. Let TM_c be the tangent bundle manifold discussed in section 2. Consider on TM_c the mechanical system $\mathcal{M} = \{M_c, T, \pi\}$ whose kinetic energy is the Liouville function l on TM_c , and whose semi-basic 1-form is the product by l of the principal 1-form on M_c . Then:

(i) $\mathcal M$ is regular and has as fundamental form the canonical symplectic form on $TM_{\rm c},$

(ii) the kinetic energy T is homogenous of degree 2 and the dynamical system associated with \mathcal{M} is a spray on M_c .

References

- [1] ROSCA, R., Connexions conformes plates parallèles, C.R. Acad. Sc. Paris, t. 281, Série A, 1975, pp. 699-701.
- [2] LIBERMANN, P., Sur le problème d'équivalence de certaines structures infinitéstimales. Ann. Mat. Para. Appl., 36 (1954) 27-120.
- [3] LEFEBVRE, J., Propriétés des algébres d'automorphismes de certaines structures presque symplectiques. C.R. Acad. Sc. Paris, t. 266, 1965, Serie A, 354, pp. 354-356.
- [4] GODBILLON, C., Géométrie différentielle et mécanique analytique Hermann, Paris, 1969.
- [5] YANO, K. AND S. ISHIHARA, Tangent and cotangent bundles, differential geometry, M. Dekker, Inc., N.Y. 1973.
- [6] ABRAHAM, R., Foundations of Mechanics. W.A. Benjamin Inc, 1967.
- [7] KLEIN J. AND A. Voutier, Formes extérieures génératrices de sprays. Ann. Inst. Fourier, Grenoble, 18, 1 (1968) pp. 241-268.
- [8] KLEIN, J., Espaces variationnels et mécanique. Ann. Inst. Fourier 12, 1962, pp. 1-124.
- [9] LICHNEROWICZ, A., Les relations intégrales d'invariance et leurs applications à la dynamique. Bull. Sc. Math. 70, 1946, pp. 82-95.

FACULTE DES SCIENCES ET TECHNIQUES SFAX, TUNISIE

10