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ON PARALLEL CONFORMAL CONNECTIONS
By Rapu Rosca

Introduction. Riemannian manifolds endowed with a parallel conformal
connection V,. have been defined by the present author in [1]. In this paper
one studies in the first section a type of such manifolds for which the principal
field X associated with V, . is parallel. In this case X is an wnfinitesimal homo-
thety of the volume element of M, and is an invariant section of the cannonical
form in the set of 2-frames ©*M,). If M. is of even dimension 2m, then the
connection V, . defines on M. a conformal symplectic form ¢ and the dual field
of the principal l-form a (« is the dual form of X with respect to the metric of
M,) with respect to ¢ is a Killing field. Finally it is shown that M, is of con-
stant scalar curvature and is Ricci flat in the direction of X. In the second
section, making use of some notions introduced by K. Yano and S. Ishihara in
[5] and by J. Klein in [7] one studies different properties of the tangent bundle
manifold TM.. Thus the complete lift ¢° of ¢, on TM, is a homogenous form
of degree 1 and is also conformal symplectic. If V is the canonical field on TM,,
then the Lie bracket [V, X] is an wnfinitesumal automorphism of ¢°. Further some
properties involving the canonical symplectic form £ on TM, (2 is a Finslerian
form) and a second conformal symplectic form @, which is homogenous of degree
2, are discussed. In the last section one considers a regular mechanical system
(in the sense of J. Klein [8]), M={M,, T, =} such that the kinetic energy T is
homogenous of degree 2 and the dynamical system Z associated with M is a
spray on M,.

1. M, manifold. Let M be an n-dimensional C*-Riemannian manifold and
let ©(M) be the bundle of orthonormal frames of M. If ©=©(M) is such a frame,
let {e;}, {0’} and wj=4},@’, 1, k, =1, ---, n, be the vectorial and dual basis and
the connection forms associated with © respectively. Then the line element dp
(pe M), the connection equations and the structure equations (E. Cartan) are
respectively

(L.1) dp=w'@e,,
(1.2) Ve, =wiQe, ,
(1.3) drho'=2"+w* AN},
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14) dNwy=2} ol o,

where Q' and 2} are the torsion and the curvature 2-forms respectively.
A connection V such that

(1.5) a)}L,ZZ‘kcul——ticu" N l‘LEC“’(M)

has been called in [1], a parallel conformal connection, and denoted by Ve If
T,(M) is the tangent space at p= M we shall call

(1.6) X=tie. To(M)

the principal field (p.f.) associated with V., and if 4 is the canonical isomor-
phisme (with respect the metric of M) the Pfaffian

(%)) I X=a=tw"

is the principal Pfafian (p. P.) associated with V...
So by 1.3 and 1.5 we readly get

(1.8) dAo'=Q+a o',

Assume now that X is parallel, that is,

1.9 VX=0.
By using 1.2 and 1.5 we obtain from 1.9
(1.10) dt;=t,a—tw*; t*=| X|*.
Taking account of 1.7 one finds instantly
(1.10") 12=const.
Next exterior differentiation of (1.10) gives
(L.11) 2'=0
and so by an easy argument follows
(1.12) dAa=0.

Hence if the p.f. X is parallel then the connection V, . is necessarily torsion-
less and the p.P. a is closed. In the following the manifolds under considera-
tion will be of even dimension (n=2m) and structured by V,. connection with
parallel principal field. Such manifolds will be denoted by M..

We have shown in [1] that if M is of even dimension (n=2m) then the
connection V, . defines on M a conformal symplectic structure CSp(m; R). Thus
if we consider the almost symplectic form
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(1.13) @:601sz+ e _|_w2m~1/\w2m ,
then by
(1.14) dAw'=alot,

one gets at once
(1.15) dNp=2aNp.

Thus we see that 2« is the co-vector of Lee of the structure CSp(m; R). Let
now p,: Z-— —1z¢ be the isomorphism defined by ¢. An easy calculation gives

(1.16) yw_l(a):Xa:_‘tz%‘i”tlez_‘ ot lam-10am

and X, will be called the associated field of X. Taking the star operator * of «
one has

(1.17) 2= 2 (=1 W'\ - AGN - AP™

(the “roof” indicates the missing terms).

Making use of 1.10 and 1.13 one finds from (1.17) da=div X=—t?*=const. and
so X is an infinitesimal homothety of the volume element of M.

Put now p,(X)=a, and call a, the associated 1-form of a. Denoting by %
the symplectic adjoint operator [2] one has

a

(1.18) *aa:?a:—m/{(im"w) .

Making use of (1.12) and (1.15) we readly see that da,=0, that is div X,=0.
On the other hand Z(Z9=T,(M,) being any vector field, we derive from
(1.2), (1.5) and (1.10)

(1.19) Vze.=t,Z—7'X; V. covariant derivative.

Now with the aid of (1.17) and since <X, X,>=0, one finds by a straight-
forward calculation

(1.20) NzXa, Z5+ Nz Xq, Z>=0,

where Z and Z’ are arbitrary vector fields. The above relation proves that X,
is a Killing vector field, So the equation

(1.21) Lxe=0; Lz=izd \+dNiz: Lie derivative

together with (1.18) are in accordance (if M is campact) with Bochner’s theorem.
Further by using (1.19) and taking account of (1.11) one finds

(1.22) L3, X=0.
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Denote like usual by Rj, the Riemann curvature tensor, that is, Q2i=
(1/2)Ri,w* Aw'. By (1.4), (1.5) and (1.10) one finds

Rl =t"—ti—1;
(1.23) Rl,=—t:t,
Ry =0; k+1#5+1.

From the above expressions we derive the components of the Ricci tensor
as follows

Rii=(n—2)(t"—1),
le: "“(71'—2)1‘,;fk .

(1.24)

From 1.24 and taking account of (1.10) one quickly finds that the scalar cur-
vature of M is constant, that is

(1.25) R=(n—1)n—2)t%.

Next denote by Ric (X) the Ricci curvature in the direction X.
In consequence of (1.24) and (1.7) a short calculation gives

(1.26) Ric (X)=0.

Hence the manifold M is Ricct flat in the direction X.

On the other hand referring to (1.5) and (1.10) one finds that both ' and wj
are wvariant by X; that is Lyw'=0, L yw,=0.

Therefore one may say that X is an wnvariant section for the canonical form
o' ®e,+ Izk}w}:®e{‘ of the set of 2-frames ©%*M,) (frames of second order).

Finally coming back to the structure CSp(m; R) defined by (1.14) we have

(1.26) xp=—p(X)=—aa=— o't tw'— -+ Ftm 0" .
By (1.20) and (1.14) a short computation gives
(1.27) dNa,=aNa,+2t% .

Since ¢* is constant, this equation proves as is known [3] that X is a con-
formal symplectic infinilessmal transformation of ¢. From the preceding discus-
sion we may state the

THEOREM. Let M, be a Riemanman manifold of even dimension 2m structured
by a Y, connection with principal field X and let X, and 7 be the associated
field of X and the volume element of M, respectively. Then-

@) the connection V,. defines on M, a conformal symplectic structure
CSp(m; R)=(p, 2a) having (up to a constant factor) the dual form of X as co-
vector of Lee,



PARALLEL CONFORMAL CONNECTIONS 5

(i) the field X has the following properties: it 1s an nfinitesumal homothety
of 75, it 1s an wmvarant section of the canomical form of the set of 2-frames
OXM,), 1t is a conformal symplectic wmfimtesimal transformation of CSp(m; R);

(iii) the field X, has the following properties 1t 1s an wnfimtesumal automor-
phasm of n, 1t 1s a Killing field;

(iv) M, 1s of constant scalar curvature and 1s Ricci flat wn the direction of X.

2. Tangent bundle manifold TM,.. M, being of constant scalar curvature,
is as is known (#=3) endowed with a conformal flat structure. Therefore ref-
erring to (1.14) we may get

@.1) a=—df/f; fEC™(M.)

and call f the integrating factor associated with V,. Denote by TA/, the
tangent bundle manifold having M, as basis and by V(v%) the canonical field (the
field of Liouville) on TM,. Thus we may consider the set B¥*={w', dv'} as a
co-vectorial basis of TM..

Denote (like usual) by d, and 1, the vertical differentiation and the vertical
derwation operators respectively taken with respect to B* (d, is an antiderivation

of degree 1 of A(TM) and 1, is a derivation of degree 0 of A(TM) [4]).
Put

2.2) I=fveC(TM,),
where
2.3) V= é—;(vi)z .
One has
(2.4) dvl:fzi}v‘w’zle ANTM,)

and by (2.1) and (1.14) we get
2.5) ANdI= 2 dv' AN*=28 .

Clearly 2 is an exact symplectic form which will be called the canonical
symplectic form on TM.,.

In addition we shall call | and A the Liouville function and the Liouville form
respectively on TM,.

If ¢: AMM)— C(TM) is the operator of K. Yano and S. Ishihara [3] one
has (with respect to B*)

(2.6) a= 2 t;v"

1

and so
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@7 d(ta)=a,

If 0, denotes the Pfaffian derivativ with respect w*, then according to [5].
complete lift a° of a is defined by

2.8) at=(0t,, t,); 0=, .
With the help of (1.10) one finds

(2.9) a’=(a)a—(t*//)A+B,

where

(2.10) ,Bzgtidvl .

One obtains
2.11) dya’=0; j,a‘=a=1,8
and so by (2.7) and remarking that a®=d(ta), one checks (d Ad,+d,dA)a)=0. On
the other hand since
(2.12) 1,(ca)=0
one checks [i,, d]=d,.
The complete lift X¢ of X is as is known

t

a%) =X+(a) X" —12V

2.13) Xe= (

where X'“-*(?) and V are the vertical lift of X and the canonical field respec-
tively. Referring to (2.4) and (2.5) we find at once
(2.14) 'L.VQ:/Z, 1xVQ:fC(, lx.Q:“f‘B.

On the other hand taking account of (2.5), exterior differentiation of (2.10)
gives

(2.15) ANB=aAnB+12/f2.
Now making use of (2.15) we derive from (2.14) the following equations
(2.16) Ly2=0, Lyv2=0, LyQ=—120.

These equations assert that Q is homogenous of rank 1 [7] and that X¥ and
X are an infinitesimal automorphism and an infinitesimal homothety of 2 respec-

tively.
Further by (2.13) and (2.14) we get

2.17) ixcR=(a)fa—fB—1t?2
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=1

and therefore
(2.18) Lxl=a’Nfa—2t02 .

But «af being exact (as «) we quickly obtain

(2.19) AN (L xc2)=0

and this proves that 2 is a relatwely wnvariant 2-form of X°[6].

Next making use of the vertical derivation operator i, one finds 1,2=0, and
so by virtue of the definition given in [7] one may say that £ is a Finslerian
form.

According to [5] the complete lift ¢¢ of ¢ (with respect to B*) is expressed
by

(2.20) et =dv' Aw*+ -+ +dV*" T A o AdVE o F P T AT
By virtue of (1.14) a short calculation gives
(2.21) dANp*=aNg®

and so ¢° defines on TM, a conformal symplectic structure CSp(2m; R).
From 2.20 we obtain

(2.22) yt=—0w'+ 00— - =M@ IR T,
Thus

(2.23) Lypt=¢°

that is, ¢° is homogenous of degree 1.
If we put

(2.24) 1yt =—hdv'+ Hhdv — - Flym o dVP=—Bo=—po(X) .

we obtain

(2.25) L=,

and one checks (iyd,+dyiv)Be=1,B0-
Exterior differentiation of (2.24) gives

(2.26) AN Ba=aN B,+1%0°
and from (2.24) and (2.25) we find
(227) —[V,Ba:/gzz’

that is, B, is homogenous of degree 1.
From (2.20) we also have
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(2.28) L =1y p=—0g .

Now by (2.23), (2.27) and (2.28) we infer
(2.29) Uy, xp°= Lyt x @ —ig Lyg®=0.

Clearly 1,y, x;2=0, and so referring to 2.21 we finally may write

(2.30) Loy, xp°=0

that is, the Lie bracket [V, X1 is an wnfinitestmal automorphism of ¢°.
Consider now the almost symplectic form

(2.31) O=(a)ani+2)e NX(TM,).

By 2.4 and 2.5 exterior differentiation of © gives

(2.32) d/\@-——(—g——a)/\@

and so O defines a second conformal structure on 7M., having —a as co-

vector of Lee.
One has

(2.33) d@=an?, 1,60=0

and with the help of (2.11) and (2.32), one checks d,0=[i,, d,]6.

Now making use of 2.16 we derive from 2.31 and 2.32
2

2.34) 1£,0=20, L£y0=—1£6, LpO= fa 0.

Hence O is homogenous of degree 2, X is an infinitesimal homothety of @
and XV is an infinitesimal conformal transformation of .
We may formulate the preceding results as follows:

THEOREM. Let TM, be the tangent bundle manifold having as basis the
manmifold M, of section 1. Let V, 2, 2 and ¢ be the canonical field on TM,, the
Liwouville form, the symplectic canonical form and the operator which assigns to
1-forms on M, functions on TM, respectwely. Then.

(i) 2 1s a Finslerian form, X 1s an wnfimtestmal homothety of £, the vertical
lift XV of X s an wfimtesimal automorphisme of Q, and £ 1s a relatively in-
varwant form of the complete lift X¢ of X;

(ii) the complete lift ¢° of the conformal symplectic form ¢ on M, is a con-
formal symplectic form on TM, and the Lie bracket [V, X7 is an wnfinitesimal
automorphism of ¢°;

(iii) the form O@=C(a)aAA+2) 1s homogenous of degree 2 and defines a second

c
—a as co-vector of Lee and X

conformal symplectic structure on TM, having

18 an nfimitesumal homothety of ©.
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Note. Let Sy (M) be the cross section determined on TM, by the associated
vector field X, of X. In consequence of (1.22) (that is the Lie derivate of X
with respect to X, vanishes) and of the theorem stated in [5] one may say that
X° is tangent to the cross-section Sy (M.).

3. Regular mechanical system #={M,, T, =} on mTM,. Consider now on
TM, the mechanical system H={M,, T, =}, [8] such that the kinetic energy T
and semi-basic 1-form z be defined respectively by

3.1) T=|

and

(32) r=la.
Referring to (2.6), one has

(3.3) dNdyT=2

and so according to ]J. Klein’s definition, equation 3.3 proves that the system H
is regular. (it has as fundamental form the symplectic canonical form of TM,).
On the other hand a short calculation gives

(34) V(r)=2T,

Hence T is homogenous of degree 2.
If Z is the dynamical system associated with M it is as is known [4] well

defined by
3.5) 122=d(T—V(T))+=x.

Since T is homogenous of degree 2, the following theorem of A. Lichnerowicz
[9] holds: the form

(3.6) Q—dT—rm)Ndte 2 (TM,)XR)
7]

is an integral relation of wnvariance for Z+§{'

Further one has

(3.6) dyJI=ANa, 1,11=0
and

dv
3.7 d/\IZ:—;—/\H,

and so the equation d, /I =[1,, dAJIl is verified.
By 3.6 and 3.7 a short computation gives
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3.8) Lyll=211.

Hence /I is homogenous of degree 2 as the Kkinetic energy 7. This fact
proves according to a known Proposition [3] that the dynamical system Z is a
spray on M,.

Thus we have the

THEOREM. Let TM, be the tangent bundle manifold discussed in section 2.
Consider on TM, the mechanical system M={M, T, z} whose kinetic energy is
the Lwwuville function | on TM,, and whose semi-basic 1-form s the product by
L of the principal 1-form on M,. Then:

(1) M 1s regular and has as fundamental form the canonical symplectic form
on TM,,

(i) the Finetic energy T 1s homogenous of degree 2 and the dynamical system
associated with M 1s a spray on M..
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