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WEAKLY MIXING PROPERTIES OF SEMIGROUPS
OF LINEAR OPERATORS

By Fumio Hiarl

Introduction.

The concepts of strong and weak mixing play an important role in the
theory of measure-preserving transformations. The strongly mixing condition
was connected with the mean ergodic theorem by Blum and Hanson [3], Brunel
and Keane [4], and Hanson and Pledger [7], and was generalized to transforma-
tions in infinite measure spaces by Krengel and Sucheston [17]. The strongly
mixing properties of linear operators of L,-spaces have been investigated by Lin
[187, Akcoglu and Sucheston [1, 2], Sato [21], and Fong and Sucheston [6]. On
the other hand, the weakly mixing properties have been generalized to linear
operators on general Banach spaces in connection with the mean ergodic theorem
by Jones [11, 12, 13], Nagel [20], and Jones and Lin [14].

Let T be a linear operator on a Banach space E. A typical condition mean-
ing strong mixing of T is stated as follows: for each x E, T"x converges weakly.
A corresponding condition of weak mixing is as follows: for each x=E, there
exists a subsequence {n,} of density 1 such that T™#x converges weakly.

In this paper, we shall consider the weakly mixing properties of discrete
cyclic semigroups and one parameter semigroups of linear operators on Banach
spaces. §1 contains some preliminaries concerning upper and lower densities.
In §2 we shall present results concerning the weakly mixing properties of semi-
groups on Banach spaces. We shall introduce several conditions meaning the
weakly mixing properties and including the conditions given in [11], [137, [14],
and [20]. Among those conditions, we shall obtain a number of implications.
In §3 we shall give further results for operator convergence of weak mixing
type. In §4 we shall consider semigroups of positive linear operators on AL-
spaces and strengthen theorems in § 3.

The author would like to express his hearty thanks to Professor H. Umegaki
for his constant encouragement and valuable suggestions.

§1. Preliminaries.

Let J be a subset of the positive integers Z*={1, 2, -}, and let |J| denote
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WEAKLY MIXING PROPERTIES OF SEMIGROUPS 377

the cardinality of J. The upper density ud(J) and the lower density ld(J) are
defined by
ud(J)=lim sup n™*| JN\{L, -+, n} |,
n=->00

ld()=liminfn™* [ JA{L, -, n},

and if ud(J)=1d(J), the density d(J) by the common limit. Moreover we define
the uniform upper density udy«(J) and the uniform lower density ld«(]) by

udy(J)=lim sup [sup n™* [\ {;+1, =, y+n} [,
ld()=lim inf [inf 2" [JA {5+, o, g +nd [T,

and if ud«(J)=Id«(]), the uniform density d«(J) by the common limit.

Let A be a Lebesgue measurable subset of the positive real numbers R*=
(0, ), and let | A| denote the Lebesgue measure of A. We define the upper
density UD(A), the lower density LD(A), the umiform upper density UDy(A), and
the uniform lower density LDy(A) by

UD(A)=lim sup t~| AN(0, 111,

LD(A)=lim inf 1] AN(0, £]1,
UDx(A)=lim sup [sup ¢~ [ AN(r, r+t11],
LDy(A)=lim inf [inf | AN(r, 7+1]1].

If UD(A)=LD(A), we define the density D(A) by the common limit, and also if
UD.(A)=LDy(A), the uniform density D«(A) by the common limit. Throughout
this paper, subsets of R* are always assumed to be Lebesgue measurable.

The formulas 0=lde())=1d()Sud(J)Sude()=1, ld(J)=1—ud(Z*\J) and
ld«(J)=1—ud«(Z*\J) are immediately verified. Note that there is a JCZ* such
that ud(J)=0 but ud«(J)=1. The same formulas hold for densities in R*.

The following lemma is well known and easily proved (cf. [13], [24, p. 407]).

LEMMA L1. (1°) Let {J:} be a sequence of subsets of Z* with d(J,)=1.
Then there exists a JCTZ* with d(J)=1 such that J\ ], 1s fimte for every k.

(2°) Let (a,) be a bounded sequence of real numbers. Then limn™! ﬁ la;|=0
n—o0 1=1
of and only 1f there exists a JCZ* with d(J)=1 such that a, —0asne ], n — co.
In the same way, we have the following :

LeMMA 1.2, (1°) Let {Ax} be a sequence of subsets of R* with D(A,)=1.
Then there exists an ACR* with D(A)=1 such that A\A, 1s bounded for every k.
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(2°) Let ¢ be a Lebesgue measurable and bounded real function on R*. Then
ltiqg i"S:|¢(8)|dS=0 if and only if there exists an ACR* with D(A)=1 such that
() — 0 as te A, t — oo.
LEMMA 13. Let ACRY and 0>0 be given and let
J={neZ*: | An((n—1)d, ndl|>0}.
Then ud(J)=UD(A), ld(]J)=LD(A), ud«(J)=UD«(A), and lds«(]J)=LDx(A).

Proof. 1If j6<r<(j+1)d and nd<t<(n+1)d where j=0 and n=1, then we
have

FYHAN(r, v+ =mo) | AN(jo, (j+n+2)d]|
=)ol Jn{j+1, -, j+n+2}|
=nLIIN{j+1, -, jn} | +2].

Thus the desired inequalities are obvious. Q.E.D.

The following lemma is a slight extension of Jones [11, Lemma 3], and we
shall give the proof only substituting the uniform upper density for the upper
density in Jones’ proof.

LEMMA 14. Let J, K be subsets of Z*+ with ud(J)=1, ud«(K)>0. Then there
exists an infinite subset {p;} of J such that any fimte subset of {p;} is translated
infinitely often in K, i.e., for each n,

{pll R) pn} _l_{k}: {p1+k; Tty Pn+k} CK
Sfor infimitely many k.

Proof. Let udx(K)=a>0. Choose an integer N so large that N '<a/3 and
NHNEZANNAL, - ,N} | <a/3. Let K,={ksK: k+pK} for peJN{1, -+, N},
and K,=K\ U K,. If keK,, then we have

PEINL, = N}
[KN{k+L, -, BN =HZN\DNAL, -+, N}
Thus it follows that
[Kon{k+1, o, BENMI=1H[ZN\ )N, -, NHL, k20.
If mN<n=(m-+1)N, then we have
n Ko {k+1, -+, ktn}|

m-+1
m

=

INTHNTZAN\DNAL, -+, NHI, k=0,

Hence we obtain ud«(K,)<2a/3. Since
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PEINT,+r N}

there exists a p,e /{1, -+, N} such that {0, p;} +K*'CK and ud«(K')>0 where
K'=K,,. Now substituting K* for K and J\{l, ---, p,} for J in the above argu-
ment, we get {0, p.} +K2CK* with p,<p,e J and ud«(K?)>0, and so {0, p,, p.}
+K*C K. Repeating indefinitely, we obtain a sequence p,<p,< :-- in J such that
{0, py, -+, Po} +K*CK where K™ is infinite with uds«(K™)>0. Q.E.D.

Let (@pr)n, 221 be a matrix of real numbers. We shall need the following
conditions :

(1.1) sup 33 Jans| <00,

(1.2) 711152 ‘:‘_, anr=1,

(1.3) 71er2 %,“K lanr|=0 for any KCZ* with d(K)=0,
1.4) LIE %‘,K lanx]=0 for any KCZ* with d«(K)=0.

Similarly, for a sequence {¢,} of Lebesgue measurable real functions on R*,
we shall need the following conditions :

15) SE,PS: |gn(D)]dt<co,
16 tim [ "ga(0dt=1,
. 132153 |¢a()]dt=0 for any BCR* with D(B)=0,
(18) is |ga()]dt=0 for any BCR* with Dy(B)=0.

For example, in connection with abelian ergodic theorem, a sequence {¢,} defined
by ¢.()=Ae %! with 2, | 0 satisfies the above (1.5)-(1.7).

§2. Semigroups on Banach spaces (1).

Let E be a real or complex Banach space with the dual space E*, and denote
by L(E) the space of all bounded linear operators on E. We shall first establish
several conditions corresponding to weak mixing of discrete cyclic semigroups
in L(E). Let Te £(E). For each xeFE, we consider the following conditions :

(1), there exisis a JCZ* with d(J)=1 such that T"x converges weakly to 0
as nef, n—co;

(i), for each matrix (a,,) with (1.1) and (1.4), g}lankT’fx converges strongly
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to 0 as n— oo

(iii); for each matrix (an) with (1.1) and (1.3), ;i_,‘l an: Tk x converges strongly
to 0 as n— oo}

(iv), for each KCZ* with ld«(K)>0, the averages
IKN{j+1, -, j+n}|™? > T*x

REKNF+1, j+n}

converge strongly to 0 as n— oo uniformly with respect to j=0;
(V). for each KCZ* wunth ld(K)>0, the averages

le{]-) ) n}l—l Z Tkx

kEKN(L, 1}

converge strongly to 0 as n— co;

. . hd _
(vi), lim sup n™* 2151 [KT*x, x*31=0;
=7+

n— |r*ls1
Jjz0
(vii), for each x*€E*,

lim n-lk”g [(Tkx, x¥5|=0;

N0

(viii), the weak closure of {T"x: neZ*} contains 0.

Over these conditions, we present the following :

THEOREM 2.1. Let Te L£(E) and assume that sup {|T"|: n€Z*} <co. Then,
for each x<E, the following statements (1°) and (2°) hold :

1) (@), = (i), = (i), > (V) & (v), & (vi), & (vii), 2 (viii)..

(2°) If the weak closure of {T"x: neZ*} 1s metrizable in the weak topology
(n particular, if {T"x: neZ*} is weakly sequentially compact), then all the con-
ditions (i),-(viii), are equivalent.

We shall next consider the case of one parameter semigroups in L(E). Let
{T(t): t=R*} be a strongly measurable and uniformly bounded semigroup in
L(E). For each xeE, we consider the following conditions :

(I); there exists an ACR* with D(A)=1 such that T(t)x converges weakly to
0as teA, t— o0,

(D), for each sequence {¢,} with (1.5) and (1.8), S:an(s)T(s)xds converges
strongly to 0 as n— oo

(), for each sequence {¢,} with (1.5) and (1.7), S:gzin(s)T(s)x ds converges

strongly to 0 as n— oo}
(AV), for each BCR* with LD«(B)>0, the averages
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| BA(r, r+1]] S T(s)x ds

BN(T. T+t

converge strongly to 0 as t— oo uniformly with respect to r=0;
(V) for each BCR* with LD(B)>0, the averages

1BAO, 17, Toxds
BN(0,t]
converge strongly to 0 as t — oo
V1), lim sup rlS’”|<T(s)x, X ds=0;

Lo le*ls1
r20

(VII), for each x*<E*,

tim £ |KT(5)%, x%)|ds=0;
(VIII), the weak closure of {T(t)x: teR*} contains O.
Over these conditions, we present the following :

THEOREM 2.2. Let {T(t): teR*} be a strongly measurable and uniformly
bounded semigroup wn L(E). Then, for each x€E, the following statements (1°)
and (2°) hold :

1) @O,>JD, e JI), V), & (V), © (VD), & (VID), > (VIID), .

(2°) If the weak closure of {T(t)x: t=r} 1s metrizable in the weak topology
for some r>0 (in particular, 1f {T(t)x: t=r} is weakly sequentially compact for
some r>0), then all the conditions (I),~(VIIL), are equivalent.

We note that some parts of the above theorems have been already proved
as stated in Remarks (1)-(3) below.

REMARKS. (1) Jones [11] called T< L(E) weakly mixing at x if the condi-
tion (i), holds. The implication (i); = (v), is the main result in [11]. The equi-
valence of (i), and (vii), was given in [13] under the assumption of {T"x:neZ"}
being weakly sequentially compact.

(2) If xeE satisfies the condition (viii), or (VIII),, then x is called to be a
Slight vector (cf. [10, p. 22]). Applying the deLeeuw-Glicksberg theory [5], Jung-
henn [15] presented the equivalence of (I);, (VII), and (VIII), for a one parameter
weakly almost periodic equicontinuous semigroup of class C, acting on a locally
convex linear topological space.

(3) Jones and Lin [14] proved the equivalence of (v),, (vi); and (vii);, and
also improved the result in [11] without the use of the combinatorial machinery
of [117.

(4) The conditions (ii); and (iii), are considered to be the weakly mixing
versions of the condition given in [6, 2].

(5) In Theorem 2.2, if the weak closure of {7T(f)x: t=»} is metrizable [or
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resp., compact] in the weak topology for some »>0, then so is the weak closure
of {T(t)x: t=s} for every s>0.

In the remainder of this section, we shall give the proof of Theorem 2.2.
Since Theorem 2.1 can be proved analogously and more easily, we shall omit the
details for it.

LEMMA 2.3. If X 1s a weakly compact and strongly separable subset of E,
then X 1s metrizable in the weak topology.

Proof. Take a sequence {y,} which is dense in X—X={x—y: x, yeX}.
For each n, choose a yfE* such that ||y}|=1 and <{y,, y}>=|y./, and define

d(x, )= 527" [G—p, ¥, xyeX.

Then it is easy to see that d is a metric on X whose topology is weaker than
the weak topology. Thus these topologies on X are identical. Q.E.D.
Proof of Theorem 2.2. (I); > (II);. Let (II); be false. Then there exists a

S:gz&n(s)T(s)x ds

Taking max (¢,, 0) or max (—¢,, 0) instead of ¢,, we may assume that every
¢, is nonnegative. Let M=sup {|T(?)|: t€R*}. In view of (1.8), we can choose
a subsequence {¢,} of {¢,} and a sequence », <t <r,<f,< --- such that

sequence {¢,} with (1.5) and (1.8) such that |§e>0 for all n.

n & B
@1 So Gals)ds+ Stn¢n(s)ds< PR
(2.2) a1 > a1,
Then it follows from (2.1) that Slngbn(s)T(s)x ds|=e/2 for all n. For each n,

choosing an x} e E* with ||x}||=1 such that

S:"Sbn(S) Re (T(s)x, x}>ds= %

we define
B,={s: s&(ry, t»], ReT(s)x, x¥>=p},

where 0<f3 <e/(4 supS:gbn(s)ds). Then we have
5=, ¢ Re(T(5)x, x> ds
3k
+S(Tn‘tn]\3n¢,,(s> Re (T(s)x, x5 ds

=M, gu(ds+8] ga0)ds,
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so that SB da(s)ds=e/(4 M| x|) for all n. Thus, putting B= (?IB,,, we obtain

UD4«(B)>0 by (1.8). Now suppose that (I); holds, and let ACR* be a set taken
in (I);. Since T({)x is strongly continuous in R*(cf. [9, p. 305]) and hence uni-
formly strongly continuous in {=1, there exists a >0 such that |7T(u)x—T(v)x|
<B/@2M) for u, v=1, |lu—v|<d. Define

J={n: [An((n—1)3, no]| >0},
K={n: |BN{(n—1)d, nol|>0}.

Then it follows from Lemma 1.3 that d(J)=D(A)=1 and ud«(K)=UDx(B)>0.
By Lemma 1.4, there exists a sequence {p;}CJ with 1+071<p,<p,< --+ such
that any finite subset of {p;} is translated infinitely often in K. Taking u,=p0
—s;€ A where 0=s,<4, since T(u,)x — 0 (weakly), we can choose aj, -*+, ay=0

with % a=1 such that | 3 eT(w)xl<B/2M). In view of (22), if we take a

sufficiently large & with {p,+k, -+, py-+k} CK, then it follows that there exists
some n, for which (p;+k)0—t;€B,, where 0=t,<J, I=Si=N. Thus we obtain

IIlé a,T(v;+ko)x||ZpB by the definition of B,, where v;=p,0—t,.. On the other

hand, since u,, v;=1 and |u;—v;]| <d, we have

| £ a Tk =M S @ T(w)xl

<M{| 2 aTGxl+ 1 2 a(Tw)—Twl) <,

which is a contradiction.

The implication (II), = (III); is trivial.

I, > (V). Let BCR* with LD(B)>0 and ¢, 1 oo be given. We may
assume that |BN(0, ¢t,]]>0 for all n. Define a sequence {¢,} by ¢@.(s)=
| BN, t,]]17* if s&e BN(0, t,], and ¢,(s)=0 otherwise. Then {¢,} satisfies (1.5)
and (1.7). Therefore (III); implies that

S‘:qs,,(s)T(s)x ds=|BA(0, t,]| -IS (o) ds

BN(0,¢

converges strongly to 0 as n — co.
(V), > (VII),. Let (VII), be false. Then there exist x*<E* with |x*|=1,
¢>0 and ¢, T oo such that

tn-l&‘)“ IKT(s)x, ¥y |ds=e, n=1.
Putting
¢
— . *k >
B {5. KT (s)x, x*>| = 2 },
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we have

€

. >1,
2M || x|

ta 1 BN, tall= n

so that UD(B)>0. Thus, replacing x* by —x* or ix* or —ix*(i=+/—1) if neces-
sary, we obtain UD(B’)>0 where

B'= {s : Re {T(s)x, x*)= %}

Let 0<B<UD(B’) and 0<6<ef/(4 M| x|)), and let C=B'Ug)1(k, k+6]. Then, for
teR* with *|B'N(0, t]|> B, we have

S Re (T(s)x, x*>ds
CN(o, t1

=

Re T (s)x, x*>ds

SB’H(O, 6

Re (T(s)x, x*)ds

S(C’\B’)ﬂ(o: t]

3

21BN, tJI—Mix[ot

T
= (-5~ Mizls):
=(=2-—Mixi2)Icn, 4.

Since LD(C)>0, this shows that (V), fails to hold.

(VID, > (VI),. We first assume that sup {||T(®)): t€R*}<1. Let K=
{x*eE*: |x*|=1} which is a compact Hausdorff space in the weak* topology.
Since T(H*KCK and T(t)* is continuous on K for all t R*, we can define a
one parameter semigroup {7'(f): t€R*} of Markov operators on C(X), the Banach
space of all continuous functions on X with the supremum norm, by (7(£)f)(x*)
=AT@)*x*), x*K, feC(K). Note that T'(¢)is continuous in the weak operator
topology and hence in the strong operator topology (cf. [9, p. 306]). Let f(x*)
=|<{x, x*>|. Then, for p=C(K)* such that T(t)*,u:/.c for all teR*, we have

Sy =CT@, w={ KTOx 2 ldux),  s=R*.
Hence, by Fubini’'s theorem, we have

<, =] (00176, 243 1ds)dpten),
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so that {f, x>=0 by (VII),. This shows that f is contained in the closed subs-
pace spanned by zeUM(I—T(L‘))C(K), and hence t"S:T(s)f ds converges strongly

to 0 as ¢t — oo, Thus we have

sup z-lg:” (T (s)x, x*|ds

[Ead <3
rel

t"S:HT(s)f ds

———sup‘
720

20| 701 ds)H

=sup
rz0

= t-IS:T(S)f ds||—= 0.

For the case when sup {|T(#)|: t€R*} <oo, we define an equivalent norm on E
by
llxll=max {||xl, sup [T(£)x|}.
teERT

Since sup{||T(t)ll: t€R*} =1, the desired conclusion follows from the first case.
(VI); > (IV),. This implication is obtained from the following :

]T(s)x ds

sup | BA(r, r+£]] S
720 BN,y T+t

= sup [BNA(r, rH]l“S:” [KT(s)x, x*)1ds

=(inf 7 B(r, r+0)7 sup 77 KT (9, 2 ]ds.
5 !

(IV); > (V). Let (V), be false. Then there exist BCR* with f=LD(B)>0,
¢>0 and ¢, ] oo such that

T(s)x ds||=¢| B0, t,]1, n=1.

lSBﬂ(O,tn]

Since liminf ¢,7'|BN\(0, t,]|=8, we may assume that ¢,7*|BN(Q, ¢,]J1=8/2 for
n->c0

all n. Let 0<3<eB/(2Mx||) and C=B Uk\:Jl(k, k+0]. Then we have LD,(C)>0

and

T(s)x ds

SCO(O,tn]

>

T(s)xds

T(s)x ds

S(C\B)ﬂ(o, tnl

SBFI(O,tn]
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Ze|BN0, ta]| =M | x||dtn

z(izﬁ— — M| x]d)t,

=(-5F- M%) CA©, 111,

which contradicts (IV),.
(VID), > (VIID),. Let x¥, -, x¥=E* and ¢>0 be given. Then (VII), implies
that

lim rlS: él KT (S)x, x5 |ds=0.

t—oo

Thus there exists an seR* such that é} [<T(s)x, x¥>| <e. This shows that

(VII), holds. Consequently the statement (1°) is proved.

To prove the statement (2°), let X be the weak closure of {T(¢$)x: t=r}
where >0, and assume X to be metrizable in the weak topology. We need
only show that (VIII); > (I),. Let (VII), hold. Then there exists a sequence
{t,} CR* such that T(t,)x — 0 (weakly). Assuming that sup {|T(})]: teR*} <1,
we define a one parameter semigroup {T(¢): t€R*} on C(K) as in the proof of
(VID), > (VD). Let f(x*)=|<{x, x*>|. Since T'(t,)f — 0 (weakly) in C(X), it follows
that {f, up=0 for every p=C(K)* satisfying T(t)*u=p, teR*. Hence we see
as before that (VI), hold, so that (VII), holds. By the assumption, there exists
a sequence {x¥} CE* such that x, — 0 (weakly) in X if and only if <(x,, x}>—0

for all k. Since t“‘SZI(T(s)x, x¥>|ds— 0 for each k, using Lemma 1.2, we con-

clude that (I); holds. Finally, if {T()x: t=r} is weakly sequentially compact,
i.e.,, X is weakly compact, then it follows from Lemma 2.3 that X is metrizable
in the weak topology. Thus (2°) is proved. Q.E.D.

§3. Semigroups on Banach spaces (2).

As before, let E be a Banach space. For Te._£(E), we consider the follow-
ing conditions:

(1), there exists a Qe L(E) such that for each x€E, T"x converges weakly
to Qx as neJ, n— oo for some JCZ* (dependent on x) with d(J)=1;
(i), there exists a Qe L(E) such that for each matrix (an,) with (1.1), (1.2)

and (1.4), g}l o, TF converges in the strong operator topology to Q as n— o ;
(iii), there exists a Q€ L(E) such that for each matrix (a,,) with (1.1), (1.2)

and (1.3), kz‘,l an T converges wn the strong operator topology to Q as n— oo}
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(iv), there exists a Qe L(E) such that for each KCTZ* with d«(K)>0, the
averages
IKN{j+1, =, jtnp ! > T*

kEKNI+1, - J+n}

converge n the strong operator topology to Q as n— oo uniformly with respect to
7=0;

(V)y there exists a Q€ L(E) such that for each KCZ* with [d(K)>0, the
averages

|[Kn{L, =, n} |7t >3 Tk

REKN{1, 1}

converge in the strong operator topology to Q as n— co;
(vi), there exists a Qe L(E) such that

lim sup 1! 3 [T —Q)x, £*5] =0

n-w jlztlis1 k=7+1
720
for all x€E;
(vii), there exists a Q< L(E) such that

lim n-! z I(T*—Q)x, x*)| =0

-0

for all x€E and x*<E*;
(viil), the closure of {T™: neZ*} n the weak operator topology contains a

Qe L(E) such that TQ=Q.

Let {T(t): t=R*} be a strongly measurable and uniformly bounded semi-
group in L(E). For a Lebesgue integrable real function ¢ on R*, the integral

[Tsware £(E) is defined by (S:qi(t)T(t)dt)x:S:gb(t)T(t)x dt for x€E. In par-
ticular, for a bounded set ACR™, the integral SAT(t)dte L(E) is defined. We

then consider the following conditions :

(1), there exists a Q€ L(E) such that for each x<E, T()x converges weakly
to Qx as t€ A, t— oo for some ACR" (dependent on x) with D(A)=1;

(A1), there exists a Qe L(E) such that for each sequence {¢,} with (1.5), (1.6)

and (1.8), S:gz&n(s)T(s)ds converges in the strong operator topology to Q as n— oco;
(M), there exists a Q&€ L(E) such that for each sequence {¢,} with (1.5), (1.6)
and (1.7), S:qﬁn(s)T(s)ds converges in the strong operator topology to Q as n— oo;
(IV), there exists a Qe L(E) such that for each BCR* with LD«(B)>0, the

averages

1BAG, a1 TG ds

JBO(T. T+t]
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converge in the sitrong operator topology to Q as t— oo uniformly with respect to
r=0;

(V) there exists a Q= L(E) such that for each BCR* with LD(B)>0, the
averages

1BAG, A1 T as
BN(0,t]
converge 1n the strong operator topology to Q as t— oo;
(VD), there exists a Q= L(E) such that

lim sup t-lg'“ (T (s)—Q)x, x*5|ds=0
t—o0 Il‘l;:‘zllo§l T
for all x€E;
(VID), there exists a Q= L(E) such that

tim {1 (T(9)=Q)x, 2% 1ds=0

for all x€E and x*€E*;
(VIII), the closure of {T(t): te R*} wn the weak operalor topology contains a
Qe L(E) such that TH)Q=Q for all teR*.

We now obtain the following :

THEOREM 3.1. Let T L(E) and assume that sup {|T"|: ne€Z*} <oco. Then
the followwng statements (1°) and (2°) hold :

(1°) (). = (i), = (iii)e = (V) © (V), & (i), & (vii), 2 (Vi)

(2°) If for every x€E, the weak closure of {T"x: neZ*} 1s metrizable in
the weak topology (in particular, 1f {T": neZ*} is weakly almost periodic, 1. e.,
relahwely compact wn the weak operator topology), then all the conditions (i),~(viii),
are equivalent.

THEOREM 3.2. Let {T(¢): teR*} be a strongly measurable and uniformly
bounded semuigroup in L(E). Then the followwng statements (1°) and (2°) hold:

(17 @0, = (D, 2 (D), > (IV), & (V), & (VI), & (VID), 2 (VIID,.

(2°) If for every x€E, the weak closure of {T(Dx: t=r} 1s metrizable in
the weak topology for some r>0 (in particular, 1f {T(f): t=r} 15 weakly almost
periodic for some v>0), then all the conditions (1),-(VII), are equivalent.

Theorems 3.1 and 3.2 are proved immediately from Theorems 2.1 and 2.2,
respectively. Indeed, let {7(¢): tR*} be as above. If one of the conditions
(1),~(VII), holds with Q= £(E), then Q is contained in the closure of {T(¢): t€R*}
in the weak operator topology and T()Q=Q for all {€R*. Thus, applying
Theorem 2.2 with x—Qx for each x€E, we can prove Theorem 3.2 immediately.

REMARKS. (1) If E is separable, then the conditions (i), and (I), may be
replaced by the following (i’), and (I’),, respectively :
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(i), there exists a JCZ* with d(J)=1 such that T" converges n the weak
operator topology to a Qe L(E) as ne J, n — oo,

(I"), there exists an ACR* with D(A)=1 such that T(t) converges in the weak
operator topology to a Qe L(E) as t€ A, t — co.

(2) Nagel [20, §2] called {T":neZ"} extremely ergodicif T satisfies (viii),,
and showed that the conditions such as (i), (v),, (vii), and (viii), are equivalent
under the assumption of {T": n=Z*} being metrizable and relatively compact
in the weak operator topology. However the metrizability assumption is redun-
dant for the equivalence of (v),, (vii),, (viii), (and also (i’), if E is separable), as
is stated in Theorem 3.1.

(3) An operator Qe £(E) as in (viii), [or (VIII),] is unique and it satisfies
Q*=Q and QT=Q [or resp., QT(H)=Q for all teR*].

(4) If every separable subspace of E has a separable dual, then the metriza-
bility hypotheses in (2°) of Theorems 3.1 and 3.2 hold. According to Stegall [22],
this is the case if and only if E* has the Radon-Nikodym property.

In the remainder of this section, we shall present some additional results
concerning operator convergence of weak mixing type.

THEOREM 3.3. Let {T(t): tR*} be as wn Theorem 3.2, and let rER*. Then
{T(t): teR*} satisfies the condition (VII), if and only if the followwng two con-
ditions hold :

1) if Tr)x=x, then T(H)x=x for all teR™,

(2) T(r) satisfies the condition (vii),, 1. e., there exists a Q€ L(E) such that

lim n™t 33 [T (kA= Q)x, x%]=0
for all x€ E and x*€ E*.

Proof. Assume that {7T(¢): tR"} satisfies (VII),. To show (1), let T(r)x=x.
Since

)16~ Q) 3% ds
=) 2 [ T T (=D =), x%)1ds
=) 35 [ T 6=, x> 1ds

= ([T =@, x1ds,  x*eE¥, nzl,

we have |[{(T(s)—Q)x, x*>|=0 on (0, r] for all x*<E*  Hence it follows that
T(s)x=Qx for 0<s=r, so that T()x=x for all t€ R*. To show (2), let ¢>0 be
given. There exists a ¢ with 0<d<r such that |T(u)x—T(v)x| <e for u, v=vr,
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|u—v|<d. Then, for each x*€E* with ||x*|<1, since
[(T(kr)—Q)x, x*}|
S (T (kr+s)—Q)x, x*y|+e, 0=5<4, k=1,

we have

w71 3 (T (kr)—Q)x, x|

<oy | "I(T = Q)x, ¥ 1dste, 1.
Thus we have

lim sup 7t 35 [((T(kr)—Q)x, x| =,

which shows (2).

Conversely, assume that (1) and (2) hold. Let Qe=_r(E) be taken in (2).
Then it follows from (1) that T()Q=Q for all te R*. For each x*=E* and
nr<t=(n+1)r, we have

2 [ KT@=0x x1ds

kE+DT

[(T(s)—Q)x, x*>|ds

(
kT

=y 3 [Tk —Q)x, T(o#x%>1ds

=t 3 [T —Q), T ds.
Putting
Ga(s)=n" 3 (T k)= Q, T(Fx%1,  nzl,
since {@,} is uniformly bounded and ¢,(s) — 0 on (0, ], we obtain
tim 1] [T ©)= @)z, 2 ds=tim (' gu(s)ds=0

by Lebesgue’s convergence theorem. Q.E.D.

THEOREM 3.4. Let {T(t): teR} be a strongly measurable and uniformly
bounded group in L(E). Then {T(t): te R*} satisfies the condition (VII), 1f and
only 1f {T(—1): teR*} does.

Proof. Assume that {T(¢): t€R*} satisfies (VII),. Then it satisfies also
(VI), by Theorem 3.2. Thus, for each x¥fe E* with |x¥|=1, we have
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T (== Q)x, a1 ds
= K= T =9~ Q)x, 11 1ds
= 1T =@, T(—tya1ds

< sup ' [K(T(©=Q)x, x*)1ds —>0
lz*sM 0
as t— oo, where M=sup {|T(?)|: t€R}. Therefore {T(—1t): t€R*} satisfies
(VI),. The converse is analogous. Q.E.D.
Also for discrete semigroups or groups in .L(E), we can obtain the results
analogous to Theorems 3.3 and 3.4 in the same way.

§4. Semigroups on AL-spaces.

In this section, let £ be an AL-space, i.e.,, E=L,(2, u), the Banach space of
(equivalence classes of) integrable functions on a measure space (2, &, p). Let
L.(E) be the set of all positive operators in L(E). The following Theorems
4.1 and 4.2 have been shown in [8, §3] for E=L,(#2, ) over a o-finite measure
space (2, F, p). However these theorems are valid over a general measure
space (2, 7, p). Indeed, for each x<E, there exists a set 2, on which g is
o-finite and such that xeL,(2,, p) and TL,(2,, p)CL,(2, ) Cor T()L(2,, 1)
CL,(£2,, p) for all te R*].

THEOREM 4.1. Let Te L£.(E) and assume that sup {|T"| :neZ*} <oco. Then
the following conditions are equivalent :
(a) for each x=E, the averages n"kZi)lT"x converge strongly as n— oo;

(b) for each x€E, the closed convex hull of {T"x:neZ*} contains an x,€E
such that Tx,=x,;
(¢) {T": neZ*} 1s weakly almost periodic.

THEOREM 4.2. Let {T(t): teR*} be a strongly measurable and umiformly
bounded semigroup in L.(E). Then the following conditions are equivalent :
(a) for each x=E, the averages t"S:T(s)x ds converge strongly as t — oo ;

(b) for each x€E, the closed convex hull of {T(t)x:t=R*} contains an x,€E
such that T(t)x,=x, for all t=R*;
(¢) {T(t): t=r} 1s weakly almost periodic for each r>0.

Combining Theorems 3.1 and 3.2 with Theorems 4.1 and 4.2 respectively, we
have the following :
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THEOREM 4.3. Let Te £, (E) be as in Theorem 4.1. Then all the conditions
(1),-(viii), are equivalent.

THEOREM 4.4. Let {T(t): te R*}C L (E) be as in Theorem 4.2. Then all the
conditions (1),=(VIII), are equivalent.
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