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CERTAIN INTEGRAL EQUALITY AND INEQUALITY
FOR HYPERSURFACES OF S"(R)

By ToOMINOSUKE OTSUKI

§0. Introduction.

We have the following well known isoperimetric inequality for any simply
connected domain 2 in the sphere S?(R) of radius R with smooth boundary 9% :

Let A=area() and L=length(92), then
1
2 =
L 2A(47c Iz )

and the equality is true if and only if £ is a geodesic circular disk.

We can prove this inequality by a method of the integral geometry in which
for any integer k and positive real number 7, the set of points y of S*(R) such
that the spherical circle with center at y and of radius r intersects 02 at &
points are used effectively. In the present paper, the author will try to get
analogous results to this fact in a higher dimensional sphere S”(R) by means of
the same way.

In §1, we state some preliminary facts. In §2, we shall obtain an integral
equality for oriented hypersurfaces (Theorem 1). Then, in §3, we shall have an
equality on the volumes of a convex domain and the #-neighborhood £, of
£2((3-5)). Finally, in §§4 and 5, combining the results in §§2 and 3 and using
the Fenchel-Borsuk’s theorem :

For any closed curve C in a Euclidean space, fclk(s)]d s=2r, where k(s) is

the curvature of C and s denotes the arclength of C, we shall obtain a kind of
isoperimetric inequality for a convex domain in S*(R) (Theorem 3).

§1. Preliminaries.

Let S"(R) be the standard n-sphere in R™*! of radius R and with its centor
at the origin, and 2 a domain in S*(R) with smooth boundary 0Q2=M""* (=M).
Let @={|¢sT,S*(R), x€M, |¢|=1} and 7: @ — M be the projection of the
sphere bundle (9, M, z). For a positive real number >0, let ¢, be the
mapping ¢,: @ — S*(R) with ¢,.(&)=exp,ré, where exp, denotes the exponen-
tial mapping of S™(R) at x=n(&).
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238 TOMINOSUKE OTSUKI

Let (x, ey, ***, €n_1, €5, €n41) be a moving orthonormal frame of R™*! such
that

1
XEM, ey, ey, €1 €T M, en+1:7x

and the orientation of (e,, e,, **, €n-1, €n, €n41) coincides with the canonical one
of R**!, Then, we have

n—1
dx= ;‘31 wgség,
gt 1
(1.1) de,= ﬁgl WaplptDan en_‘Te_wa Cn+1s
a:l; 2) ) 71"'1,
n=1 1 n-1
den=—- ﬁ2=1 W3y €8, denH:? & wseg
and
W= —W3a,
(1.2) [
Oan=—Wpa= 2, Aaﬂwﬂ;
4=1
where
(1.3) Aaﬁ:Aﬁa, a, ‘B:]., 2, sy n-—l,

are the components of the 2nd fundamental form of M in S*(R) for the unit
normal vector e, with respect to (x, ey, s, -+, €n_1).

Setting y=¢. (), £€@, n (§)=x and &= é &,e,, we have easily

r .
1.4) y--l’?(e,,+1 cos—ﬁ—l—és in T)

and

r nl . r .7 nst
(1.5) dy=cos 53 (é)lwaea—l—R sin b3 12=1 D&, e,—sin 53 Eléawaenﬂ

n-1 r . . r &
= glwa(cos ﬁ—ea—{-‘a sin -Fe,Hl)—I-R sm73— El Dé;e,,

where D denotes the covariant differentiation S™(R) with respect to its Rieman-

nian connection.

Now, when cos 7’%« #0 and sin _}% =0, noticing that cos —]%—ea—e;fa sin %enﬂ,

a=1, 2, -, n—1, and 3 D&,e, are all orthogonal to e,mcos%—{—ésin%, we

7
obtain by a straightforward calculation
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r .r r LT
(cosfel—&'1 sm?e,m) A (cos,—]?—ez—é2 smfe,m) VANEED

A (cos%en_l—{-‘n_l sin%e,”l) A ; D&, e, N (cos—;;—enﬂ-{—sin%é)

¥ \n-2
= <c057) D&, (exNey/N\--Nepyt).

We denote the volume element of S®™(R) by dVs. Then from the above
equalities we have

¥

-2
I (cos%)n W AW N AW, NDE,,

(1.6) $*dVs=Rsin

in which we may replace D§, by d§,.

Then, when cos—}é—zO, (1.4) and (1.5) turn into

(1. 4y) y=¢RE, ezsin%:il
and

n n-1
(L.5) dy=e{R 3 Déiei— B bavatnnr).

For £€@ with &,+0, substituting DE,L:—% > &.DE, into the above equality,

«

we get

_1

c a en) - § $a®a en+1}.

(1.5,) dy=s{R %) D{"a(ea

Noticing ea—%éaen, a=1,2, -, n—1, and e,,, are all orthogonal to & we
n

obtain

(el—é& en> AN (en-l— éfn_l en>/\en+1/\f

1
=——e N "Neg/Neny1.

&n

Hence we have in this case

(L6)  otd Vszenﬂgizen-lDsm-nADsn_l/\; fuv,  e=sin
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The induced Riemannian metric on M from R"*! is written as
n-1
1.7) AdSiu’= 2 WaWeq
a=1

and we define a natural Riemannian metric on @ by

1

(1.8) dse*: = 3 wewat 3 DE,DE,.

a=1
Then, their volume elements dVy and dV, are clearly given by
(1.9) dVy=w; N\ ANwy_1
and
1.10) Vo=@ A AwpiA i}l(—l)”"&Dél/\---/\l%t/\'--/\Dén.
We can easily prove that the following is a differential (n—1)-form on @ :

(1.11) dptnss = 33 (~1" EDEN - ADEN N Dy,

whose restriction on the unit (n—1)-sphere 7 %(x) of T,S*(R), x€M, is its
volume element. We have

de:d VM/\d/,ln_l.

We can also easily prove that

(1.12) dptns= (=13 DEN = ADE, 1A DEjoa A A D
J
at £€@ with &;#0, by using > §,£,=1 and X &,D§,=0, and so especially

(1. 13) dVQ:_El—wl/\'“/\wn—l/\D'El/\”'/\Dgn—l

at & with &,+0.

§2. An integral equality for hypersurfaces S*(R).

In the following, we suppose that 0<r<zxR. For any point yeS"(R), we
denote the (n—1)-sphere on S™(R) of geodesic radius 7(0<r< %R) or tR—
1'(—727—R§r<7rR) with its centor at y or —y, by Fri(y). We can easily see that

Fr{(y)={exp,vlve T, S*(R), |v|=1}
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and
¢7'(y)={tangent unit vectors & at xeF? (y) "\ M
such that y=exp , r&}.
Now, when cos—% #+0, from (1.5) we have
DE 1 =1, 2 - n—1
a— R co R wa: a—= ) i ) n >
@D D§,=0,

n-1
;lfawazo along ¢ ().

Hence, the induced Riemannian metric on ¢;'(y) from (1.8) on @ can be written
as

n-1
2 WaWa,

a=1

(1—1— —5 cot? )
which implies the following equality
1 7 \n/2-1
~1 — . o n—1
@.2) vol (g7 (9)= (147 cot ) VoL (F37(3) N M).

On the other hand, we consider a differential (n—2)-form in @ of the
from as

O o= 2 (1 A DE N ADEA - ADEs,

where A, will be determined so that
(2. 3) de:(ﬁf(d VS)/\@n_z

By means of (1.6), where &,+0, the right-hand side of this equality becomes

LT n-2 1
—R s1nf<cosﬁ> gwlA “AWn_1 N 2 . D&,

A gl(—l)(g-lzﬁDsl/\-~/\D/§5/\~~/\D§n_l

=—Rs1n——<003w> -251 "Z:) Eada®i/\+ Ny s

Comparing this with (1.13), we see that it is sufficient to take 4, as
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_Ea
R sin%(cos{e—)n-z(l—& &) ’

a:

where £,&,+#1.

Thus we define ©,_, by

S 1 S a1
@A) Ouri= o e S DT DEA

R sin% (cos %) n =

N\
/\Dsa/\"'/\D‘En-l)
where £,&,<1.

Let ¢,: ¢7%(y)— @ be the inclusion map. Then, by (2.1) we have

1 1 au
=2 DI CS VoS
v\ 16,6, 4
(Rsin )

N
NWg/N\ -+ NWp -1

2.5) ty Ono=—

and especially
1

o (Rsint)"" &

Wi N\Wz Ny -3,

2.5 4 6n-s

where &,_,#0.

Next, we observe the volume element of F? () \YM. On F*'(y) \ M, we
obtain from (2.1)

> ana)

n-1 n-2
ds’= 2 Wawa= 2 wawa-l—(
a=1 a=1 'Sn 1 a=1

n-2 1
—a,;:l(aab"l‘mfagb)wawb
and
l—'éngn
det a a aSa— ’

( b+ gn lén -1 E Sb) gn I'En 1 azlg 5 én—lgn—-l

where &,_,#0. Hence, the volume element of F? '(y) N\ M is given by
'\/1_ nen

(2.6) dV-igynn= -—Awl/\"'/\wn—27

§n-1
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where &,_,#0. In general, we have

(2.6) dVFﬁ“(y)nM:(—l)""l’ﬁyl_E—%gﬁ.

a)l/\"'/\wﬁ-l/\wﬁ-fl/\"’/\wn_l,
where £3#0, and

1 n-1
T =Pl o N a-1
ViEE §1< ) Eqw N Nw

/\a)a+1/\"'/\(l)n-].

(2.6") dVen-tonn=

Since we have
n/2-1
(2. 7) dV¢, J(J)—<l+~C0t2 ) ’ dVF"f—1<y)|".M,v

hence

S =Drregmn

1

nEn

¥ \n/2-1
2.8)  dV, 1<y)—~<1+4cot2 ) Vit

NOag-1 NWgy1 N\ Ny -y

and
nie-14/1—E, &, "
(2 8/) dV¢, l(y)—<l+7C0t2 R) 57;51 < WO\ AWy -z,
where &,_,#0. From (2.5) and (2.8), we obtain
1
2.9 (5 Opy=—
R sin—; (co:, ) (1—|—R2tan *)
1
-———dV,
VI,

Finally, we consider the case cos—;feA:O, i.e. rzfzﬁ. From (1.5,) we have

D§;=0, 1=1,2, -, n

2.1, n-1
.10 {6,5:‘15““’“:0 along  ¢; ().

We take a differential (n—2)-form in @ of the form
wn—z: nz:j(—Da_lZawl/\"'/\wa—l/\wa+1/\"'/\wn—1,

where A, will be determined so that

(2.30) dVe=¢dVs)AYus
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By means of (1.6,), at & with &,+0, the right-hand side of this equality
becomes

1

n

n-1 n-1
R* Y DEN--ANDE, 1N az:)l&wa/\ ﬁa (=1P 1 250, A\ -e
/\wﬂ_l/\w‘9+1/\"‘/\a)n_1

:<_1)n-1Rn—1 —fl’ niiSaZawl/\"'/\wn—l/\D§1/\"'/\D§n—1

n a=
Comparing this equality with (1.13), we see that it is sufficient to take 2, as

1= (_l)n_léa
“ Rn—l(]-_‘fnén),

when £,£,<1. Thus, we define &, _, by

1 n-1
2.10 L S Y RS
@1 R, &(THT e

NOq 1 NWay1 /N Ny 1,
where £,£,<1. In this case, from (2.1,) we see that
(2.70) dVyziop=dVe-tnn

through an isometry. We can also use the formula (2.6”) and obtain

1

2.9, 1 PR
%) 7 R*IVIZEE,

d V¢:1(y) .
Making use of these formulas and noticing that these hold good for oriented
hypersurfaces in S™(R) in general, we obtain the following

THEOREM 1. Let M"'=MCS*(R) be a smooth oriented hypersurface and
0<r<zR. Then, we have the following integral equality :

@.11) [ (0 Vi) d Vs

Frtani /1=, &,

=(Rsin )"+ cumy vol (),

where c,_y 1S the volume of the umit (n—1)-sphere.

Proof. From (1.10), we see that

Swdvmzvol(@):c,,_1~vol (M),
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We prove the case r#rmxR/2. By means of (2.3), (2.8) and (2.7), the left-
hand side of the above equality can be also computed as follows :

o dVs
Swde_ SS"(R) Rsi _7’_} r n—2(l—}—R2 can? T n/2-1 Sgﬁ;l(y) .
Sin R CcOs R ’ n R

1
e d Voigy

'\/l_gn En

L 1
:w Ssnm)(gpg—l(ymy VI—E.E, d Vpg—x(y)m[)d Vs,

from which we obtain immediately (2.11).

For the case »=mR/2, we can prove it analogously by (2.3;) and (2.9,).
q.e.d.

§3. An integral equality for a convex domain in S*(R).

We say a domain 2 in S™(R) convex if £ contains no pair of points y and
—y of S®(R) and for any two points p and ¢ of £ it contains the minimum
geodesic segment of S™(R) joining p and q.

If 2 S*(R) is convex, it must be contained in a half n-sphere of S™(R).
We see this fact easily by considering a contacting great (n—1)-sphere of S™(R)
to 0£2. Hence we have

3.1) V=vol (2)= iz"—Rn.

In the following, we suppose that £ is convex and has smooth boundary
M=02. For r>0, we set

(3.2) Q.= {x|x€S"(R), dis snr(x, )<r}, V,=vol(2,).

In this case, M must be diffeomorphic to an (n—1)-sphere. Furthermore, we
suppose 0<r»=mR/2. Using the notation in §§1, 2 and taking notice of that for
the orthonormal frame (x, ey, -, €4, €241), XEM, e, directs inward of 2 at x
and e,,,=(1/R)x, we see that 2,— is the set of points y written as

4 .t
3.3) y—R(e,,“cos-R——en sm?), 0=t<r.
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Hence, we have

dy= :Z:{ea cos%-{-R (;2‘114“@) sin %}wa
(e,,HSm t +e, cos ;e)dt.

If we choose especially ey, -+, ¢,_; in the principal directions of M at x,
then we can put Ass=Fka0q. Denoting the normal exponential map of M in
S*(R) by exp*, we induce a volume element of the normal bundle NM from
d Vs through exp*. From the above computation, we have

(expt)&,—nd H(oos—+k R sin—- )wl/\ “Aw,_Ndt,

hence
-1

vev=l, 0

1

(cos the Rsin—= )dVMdt

R

:S: SM{(COS‘;;— " l-l‘ nE R™ gy (kg ) byey)

. (cos%)n_mq(sin%)m}d Vu dt,

where o,(u;, -+, #,_;) denotes the fundamental symmetric polynomial of order
m in Uy, Uy+-, Un-1. Lhus, we have

(3.4) V.=Vt S(:(cos%)n—ldﬁstVM

-+ 2 R”‘S (cos%)n_m_l(sin—;;)mdbSMam(k;, 0 ko) d Vg

For the 2nd fundamental form I/= %Aaﬂwawﬂ, we set
n—I1
det(I, ,+ud)=1+ Z( ) ™ Pu(A),
where A=(Aga3). Especially, we have

n-1
I Zlka:H (mean curvature).
=

Pid)=—1
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Using these P,(A), we can rewrite (3.4) as

(3.5) V,= V—]—SI(COS%)n—Idi-SMdVM

B o ) ) o] v

Now, we compute the right-hand side of (3.4) in more exact form for the
case n=3. Since we have

"costboqr= L 7 sinl "cos—tsint ar= L ginz 7
SO cos* dt= 2 (R €os—5-sin— +r), So €os—5-sin— dit= o sin® 5,
SrsinzLdl—i(—RcosLsinL—l-r)
0 R~ 2 R R ’

(3.4) becomes in this case

_ 1 e 2 ginz I
V,=V+ 2(r+Rcos Tsin R)SMdVM—I-R sin® 1 SMHdVM

+ —;_R2<7’_‘RCOS"%SiH%)SMkaZdVM’

On the other hand, denoting the Gaussian curvature of M by K, we have easily

1
K=k1 k2+§2—'

Hence, by means of the Gauss-Bonnet theorem we obtain

Sﬂkl kyd V= SMKd VM—%SMd V=21 X(M)—%Sﬂ{d Ve
=47r—7%—2SMdVM,

since M is homeomorphic to S% Substituting this into the above equality,
we obtain

r . r r .7
(3.6) V,=V+R cosfsmeMd VM+2nR2(r—R cosfsmﬁ—)

.
+ R*sin’ T, SMHdVM.
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§4. An isoperimetric inequality for a convex domain in S®(R).

First of all, we investigate the integral in (2.11):

1
= dVFﬁ‘Ry)nM-

(4.1) SF¢-1<ymM7T——?S—n

For any point x€F? ' (y)\M and a frame (x, ey, e, ***, €,, €,4;) a8 in §1,
we have

1 7
“.2) §=— (y—x cos——),

. R

RsmhR—
(4.3) &=, 31>:)LF, y:=<y, e, 1=1,2, -, n
R sin—p-

and
4.4) =3, enid=R o5 -,

Along F2 () N\ M, {y, x>=R* cos‘;?— implies

<y; za) waea>: % yawa:O-

On the other hand, restricting the moving frame (x, e;, €5 **, €ps1), XE
Fr=(y) N\ M, to the one such that e,, -+, e,_.€ T (F*'(y) \ M), we have

4.5) w,_1=0,

and hence

(4.6) V1= Y= = Y =0
and

r
V=Yn-1€n-1tYnent+R cos—ﬁe,m.

Using these relations, d y=0 implies

(4‘7) dyn-lz_ynwn—l,ny dyn:_yn-lwn-l,n;
s
4.8 yn-lwa,n-l‘{‘ynwan:cos—R—'wa,: a=1, -, n—2.

From (4.5) and the structure equation we obtain
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2

e
aZ_) On-1,a ANw,=0,

1

hence we can put
n-—-2
4.9 Wa,n-1— 021 Baywy, Bapy=DBsa.

B,, are the components of the 2nd fundamental form of F?'(y) N\ M with
respect to the normal unit vector e,_;. By (4.4) and (4.7), we can put

. LT
(4.10) Yn-1=R sm?cos a, y.=R sin—-sin f.
Substituting these into (4.7) and (4.8), we get
(4. 11) wn—l,n:_'dﬁy
. 1
(4.12) cos 0+ By,--sin 0-Aa,,=7cot% Ban,

a, b=1, 2, -, n—2.

From the equality :
4.13) Onan= 2 Anryewe  along FI(p) N M

and (4.11), we can put
(4. 14) An—l,a:_veaﬁr
where V denotes the covariant derivation of F77!(y) N M.

Now, we suppose n=3 in the following. Then, FXy) N\ M is composed of
curves in general. Setting w,=ds, (4.11) and (4.13) imply

(4. 15) = —SAIZ ds+const. .

We have also

dVF%(ymM_ ds _ds do
V1=E,E,  «/I—sin® cos@  Apcosf’

In this case, (4.12) becomes

(4.16)

. 1
Biicos @+ A, sin b= N3 cot—;—,

from which we get

cos 0= 1 { By r

r 1
T B R0+ A At Bt g ot
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Along the curve Fi(y) N\ M, we have

de,

1
ds =Bue,tAne,——4

R

€y
and hence its curvature as a curve in R* is

= \/3112‘1‘14112‘[“% .

@.17) B(s)= '%

Using k(s), the right-hand side of the above expression of cosf can be written as

1 1

(4.18) cos = A1 BE

o {Bn cos%%—An\/szz sinz%—l}.
R

Then, we have the following theorem which will be proved in §5.

THEOREM 2. Let 2C S*(R) be convex and for 02=M its normal curvature
A with respect to the inner normal unit vector satisfy A <A=<A,. Then, suppos-
ing 0<v<mR/2, for cos@ given by (4.18) there exists a constant C, depending
only on A, Ay and r such that 1/cos §=C,k(s).

Now, for a domain 2 in S*(R), let r;(r.) be the supremum (infinimum) of
radius of 3-disk included in (containing) £. Then, we have

THEOREM 3. Let 2 be a convex domain of S*(R) with a smooth boundary
02=M. Let H be the mean curvature of M. Then, for a fixed number r (r.<r
<7.) we have

(4.19)  Rcos—sin—( 2R

,
7 7 \C tan~R~—l) area(M)

2 . L ] L 2 a1 2_7_
= vol (2)+27R*(r—R cos T sin )+ Resin® T SMHdVM.

Proof. Since £ is convex, we have easily r,<mR/2. Therefore, we can
utilize Theorem 2 for the domain 2. For a general point y=S*(R), let n(y) be
the number of the components of FXy) N\ M. Let C be one of them. For the

L
curvature k(s) of C as a curve in R* we havej k(s)ds=2z by the Fenchel-
0

Borsuk theorem, where L=length(C). It is clear that the set of general points
y is open and dense in S*(R), and the function n(y) is lower semi-continuous.
Therefore, the set of y with n(y)=m is measurable with respect to the 3-
dimensional measure of S*(R) for any integer m. Setting

Fn i =vol({ylyeS*(R), n(y)=m}),
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we obtain from Theorem 1 with n=3

2 gin? .4z :S S dVrrann
R?sin 7 Az -area (M) SW)( Fg<y>nM\/‘1-——5;§)dVS(y)

= C05S3<R) (SFz(y)anFg(y)ﬂM (s)ds) dVs (y)

222G, , 1) AV ()=22C,(Fit 2P+ 3F4--),

S3(R

i.e.

RZ

- sin?—- - area(M)=F,+2F,+3F,+---.
Co R

(4. 20)
On the other hand, we see easily that
2, ={x|x€S*(R), dis ssm (x, D) <7}

={y|n(y)>0, yeS*(R)} (except a set of measure 0)

and
4.21) V,=vol(Q,)=F,+F,+F;+---.
From (4.20) and (4.21), we have
2
2R -sinZL-area(M)——VT:F2+2F3—I—3F4~I—---20,
C, R
and furthermore using (3.6) we obtain
2R* L7 ro.r
. . >V, = ~ gin— -
C. sin®—- - area (M)=V,=vol(2)+R cos R Sinp area (M)
2 — _r_ 3 I_ 2 a3 ZL
+2zR (r R cos I sin R)+R sin® SMHdVM,
which is equivalent to (4.19). q.e.d.

§5. Proof of Theorem 2.
According to the formula (4.18), we have

1

k(s)cos = \/Anz—l-an'l‘% "A+B.t
11 11

1
X {Bu—ﬁ— cot% +A11\/A112+an_% cotz—}%}
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and setting A;;=A, B;;=B=u for simplicity we consider the following function
of u

— 1,
ar
R? 7
G.1)  fw: :—W{%cotﬁ-lr/l\/fl?—%cotz—;——l—uz 3

Since £ is convex, A;;=0 everywhere on M=02. We shall try to find an upper
bound of f(u) for u=0.

First of all, we write the right-hand side of (5.1) as

\/A2+731—2+u2 {icoti . A\/AZ—%cotZ%—l—uz }
Virw R VR VT V== '

Flw)=

\/AH-%—HL?
VAR u?

u

is decreasing, —«/Az—i——uz

We can easily see that the function

\/AZ—%cotz%—f—uz

and N e are increasing for ©=0. Hence we have
U
2 ]- 2 2 l
A +prtu A +pr u
i —— S S iy ]_
1< v A4t A 0= VAP <
and

x/Az—%cotz-I% \/AZ—%cotz%—l—uz
<
A

S <1 =0.
= VAT for u=0

Thus, we obtain

Ary
(5.2) Fw)< \/—AR— (=

r .
cotF—I—A) C=h(A).
The function & (A) of A has the properties as follows :

lim i (A)=lim h(A)=+4oco
A-+0 A-+too
and

h'(A) 1
h(A)

1 7
UM S
A(A+Fcot 1) (AL (4= ot )
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hence

1 7 \1/3
/ - —_
h'(A)<0 for 0<A< 13 (cot R) ,

1 ¥ \1/3
7 — _ _
h'(A)>0 for 7 (cot R) <A.

Let us suppose from the convexity of 2 that

(5.3) 0<)A<SA<ZA,.
Setting max (h (A,), h(Al))z-é—,
we have
5.4) FOSIOERS
that is
1
(5.5) v >Ck(s). q.e.d.

In the following, we shall show that C in (5.4) can be replaced with a more
sharper constant C,. Setting

fi(u) Zﬁglz‘lz-l-%-l-uz,

1
fau): ZW\/AZ+%+MZ\/AZ_—I%—ZCOtZ{Q—+uZ ,

(5. 6)

we write f(u) as

6.7 Fu)= - cot L £, )+ Af (w).

First of all, since we have

() — 1 i _i
fl(u)— (A2+u2)2 A2+_R}_2+u2 {A2(A2—1— R2)+(A2 R2>u2}’

we obtain easily the following :
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. 1
i) when A<f’ fl(u)§f1<f4 1— R?AZ

—zAz 2 N2
1+F )= I—ZfRA for u=0;

. 1 . . .
ii) when A=--, fi(u) is monotone increasing and so

filw)< Ii}rn filw)=1 for u=0.

Second, we have

u

falw)= i I X
(A2+u2)2\/A2+FZ»+u2 x/A?—Fcoﬁ%w

X {—%:(l—cotz{e—) —l—% cot? %—%(1—&?—;—) uz}.

Hence we have the following :
a) Case 0<r§£R, f»(u) is monotone increasing and so
L)< lim fu(w=1  for u=0,
and

b) Case £R<r<£R, from the equation

4 =2
j_qi — 2L _2_ ZL_
D (l cot R)—I— Rl cot R =0,

V2

we Obtain A:—_..;_"—‘, and SO
R\/tanz%—l
- 2—A*R*(tan*5—1
R /tan* 5 —1 tan’ 5 — 1
N R R
1
= 5 for u=0,

Sin 'ﬁ
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ii) when A= , f:(u) is monotone decreasing and so

V2
r
R\/tanz—}?——l

VARTL | AR —cot* Ty
f()=1.0)= VEE for u=0.

On the other hand, we compare the separating values ﬁ—\/zﬁ__: and
R J tanz% —1

% for ATwith respect to f,(u) and f;(u) respectively. We see easily that

T

1 fio
>7 for ZR<7’< 3 R,
’—'\/,—ZT :’%‘ for 7":7_;‘}?,
R\/tanz%——l
1 b T
— — <
< R for 3 R<r= 5 R.

From the above arguments, we define the following functions #£,(A4), 1=1,
2, 3, as follows:

1) Case 0<r=ZR,

1+ A% R? 7 ) 1
TAF-COt?+A for O<A<T,
h(A) = . .
’
_— . >_~ .
7 Ot p +A for A= 7
2) Case %R<r§%R,
1+ A2 R? r A 1
“gape Otpt g for 0<dA<H,
sin =5~
R
R R sin 2r R R,\/ 9 7 1
ha(A) 1 = R R
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VAR x/AZRZ—cotzL

7 R
RORT AR
r
R\/tanz—R——l
3) Case —3—R<r 2
1+ A?R? r A
Toare YR T o OsAs o —=——
Sin—p- R«/tan ——1
1+ A2 R? tL+ \/AZR2+1\/A2R2—cot2 N
24R* 'R AR?
hy(A) : = )
§A<—R~)
Rx/tan 1
1 \/AZ}??—Hx/A?]’E’?—cot2 1 1
Wcotf—k ARt for 7§A.

For each cases, we obtain from (5.7)
(5.8) F)=h;(A) for u=0.

Furthermore, we can prove easily that

1) Case 0<r= R h,(A) takes its minimum value at

4
1 1
Af=m e < R

-
Rx/ZtanT-l-l

and it is monotone decreasing in [0, A¥] and increasing in [A¥, o0);

2) Case ZR<r< 3 R hy(A) takes its minimum value at

and it is monotone decreasing in [0, A¥] and increasing in [A¥, c0);
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3) Case %R<r§£R, h;(A) has the same property as h,(A).

Thus, making use of these functions #,(A), 1=1, 2, 3, for these three cases,
we set

1
max {ht(AO)J hz(Al)}:?
0
Then we have
f(u)<hz(z4)§ci for A,<AZA,.
0

It is clear that this C, is more sharper than C for our purpose.
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