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CERTAIN INTEGRAL EQUALITY AND INEQUALITY

FOR HYPERSURFACES OF Sn(R)

BY TOMINOSUKE OTSUKI

§ 0. Introduction.

We have the following well known isoperimetric inequality for any simply
connected domain Ω in the sphere S2(R) of radius R with smooth boundary dΩ :

Let Λ=area(β) and L=length(9β), then

and the equality is true if and only if Ω is a geodesic circular disk.
We can prove this inequality by a method of the integral geometry in which

for any integer k and positive real number r, the set of points y of S2(R) such
that the spherical circle with center at y and of radius r intersects dΩ at k
points are used effectively. In the present paper, the author will try to get
analogous results to this fact in a higher dimensional sphere Sn(R) by means of
the same way.

In § 1, we state some preliminary facts. In § 2, we shall obtain an integral
equality for oriented hypersurfaces (Theorem 1). Then, in § 3, we shall have an
equality on the volumes of a convex domain and the r-neighborhood Ωr of
ί2((3 5)). Finally, in §§4 and 5, combining the results in §§2 and 3 and using
the Fenchel-Borsuk's theorem:

For any closed curve C in a Euclidean space, \c\k(s)\ds^2π, where k(s) is

the curvature of C and s denotes the arclength of C, we shall obtain a kind of
isoperimetric inequality for a convex domain in S3(R) (Theorem 3).

§ 1. Preliminaries.

Let Sn(R) be the standard n-sphere in Rn+1 of radius R and with its centor
at the origin, and Ω a domain in Sn(R) with smooth boundary dΩ^M71'1 (=M).
Let Φ={ξ\ξtΞTxS

n(R), XΪΞM, |f| = l} and π: Φ ->M be the projection of the
sphere bundle (Φ, M, π). For a positive real number r>0, let ψr be the
mapping ψr : Φ -* Sn (R) with ψr(ξ)=expxrξ, where exp* denotes the exponen-
tial mapping of Sn(R) at x=π(ζ).
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238 TOMINOSUKE OTSUKI

Let (x, elf -", en-ι, en, en+1) be a moving orthonormal frame of Rn+1 such
that

elf e2, "-, βn-x —

and the orientation of (eu e2, •••, en-lf en, en+1) coincides with the canonical one
of Rn+1. Then, we have

(1.1)

and

(1.2)

dx= Σ ωβeβ,
β-l

dea— 'an n R d>a n + U

α = l , 2, -, n - l ,
n-l \ n-l

den—— Σ (Oβnββ, den+1=— Σ
β = l JX. p —1

where

(1.3) Aaβ=Aβa, a, β=l, 2, —, n - l ,

are the components of the 2nd fundamental form of M in Sn(R) for the unit
normal vector en with-respect to (x, e1} e2, •••, en-i)

n

Setting y—φr{ζ), ξ^Φ, π(ξ)=x and ξ= Σ ftβt, we have easily

3'=J

γ n-l

y^cos— Σ ωαβα

γ n γ n-l

^ - Σ Dξxex—sin-=- Σ f«ω«βn + 1
ii 1 = 1 /I α=l

(1.4)

and

(1.5)

where D denotes the covariant differentiation Sn(i?) with respect to its Rieman-
nian connection.

Now, when cos-^-^0 and si , noticing that cos-^-£α—ξasin-^ en+1,-^-^0 and sin-^-=^0, noticing that cos-^-£α—ξasin-^

a=l, 2, •••, n—1, and *ΣDξιeι are all orthogonal to en+1 cos-^-+f sin-ζ-, we

obtain by a straightforward calculation
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A (cos-~£ 2 -f 2 sm-^en+1^ A •••

Λ (cos-^-βn-!—f n-i sin-^-en+1) Λ Σ ££ * β* Λ (cos-^-0n+1+sin-^-

( ^ \ 7 i - 2

cos—J Dζn(e1Λe2Λ—Λen+1).

We denote the volume element of Sn(R) by dVs> Then from the above
equalities we have

γ / γ \n-2

(1. 6) ψ*dVs=R$in-τr(cos—) ω1Aω2A- Aωn-1ADξn,

in which we may replace Dξn by dξn.

Then, when cos-^-=0, (1.4) and (1.5) turn into
K

(1.40) y=eRξ, e=sin-^- = ± l

and

(1.5o) dy=e\RΣ;Dξtet- 11 ξaωaen+\.
I t=i u=i J

For ξ<Ξφ with fn^0, substituting Dξn= — -^-^ΣξaDξa into the above equality,

we get

(1.5oθ dy=

Noticing ea—-^-ζaen, a—I, 2, -•-, n — 1, and en+1 are all orthogonal to ξ, we

obtain

Hence we have in this case

(l.βo) φ*dV8=en+1-l-Rn
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The induced Riemannian metric on M from Rn+1 is written as

(1.7) dsM*=Σ1ωaωa

and we define a natural Riemannian metric on Φ by

(1. 8) dsφ

2 : = Σ 1 ω α ω Λ + Σ DξιDζι.
a = l τ=l

Then, their volume elements dVM and dVφ are clearly given by

(1.9) dVM=ω1Λ Λωn-1

and

(1.10) dF0=α>1Λ Λωn_1Λ Σ (-l)n~ιζιDξ1A-ADξιA "ADξn.
1 = 1

We can easily prove that the following is a differential (n—l)-form on Φ :

(1.11) dμn^l = ±(-l)n'ιζιDξ1A"ΆDξxA"ΆDξn,

whose restriction on the unit (n—l)-sphere π~\x) of TxS
n(R), xeM, is its

volume element. We have

dVφ=dVMΛdμn-1.

We can also easily prove that

(1.12) dμn-M-l)n-J4-DξiΛ''>ΛDζJ-1ΛDζJ+1Λ ''ΛDξn

at f e φ with fj ^O, by using Σ f i £ t = l and Σ f ι ^ f i = 0 , and so especially

(1.13) dVφ=-^-ω1Λ-Λωn-1ΛDξ1Λ ~ΛDξn-1

at f with ξnΦ0.

§ 2. An integral equality for hypersurfaces Sn (R).

In the following, we suppose that 0<r<πR. For any point y^Sn(R), we

denote the (n—l)-sphere on Sn(R) of geodesic radius r(0<r<γR) or πR—

with its centor at y or —3;, by Fΐ'^y). We can easily see that

v\υ^Ty Sn (R\ \v\=r}
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and

φrKy)= {tangent unit vectorsξ at x^Fn

r'\y) f\ M

such that y=exp x rξ}.

Now, when CΌS-TΓ^O, from (1.5) we have

(2.1) Dξn=O,

n-l

Σί

a, a=l, 2, •••, n — 1 ,

along ψrKy)>

Hence, the induced Riemannian metric on φϊ\y) frorr£(l. 8) on Φ can be written
as

which implies the following equality

(2.2) voi (φΛy) )= (i+-^i- cot2 1 voi (FrKy) Γ\ M).

On the other hand, we consider a differential (n—2)-form in Φ of the
from as

a=i
"-1 λaDξ^- ADξa/\- ADξn_u

where λa will be determined so that

(2.3) dVφ=φ*(dVs)Λθn-2

By means of (1.6), where ξnφ0, the right-hand side of this equality becomes

-r-ω1

n-l

α=i

Λ t (-ϊf-1λβDξιA-ADξβA-ADξn.1

γ \n-2 \ n-l

i / ς i

Comparing this with (1.13), we see that it is sufficient to take λa as
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where ξnξnφl.

Thus we define Θn_2 by

8 :(2.4)

where ξnξn<l.

Let ί y: ψr\y) —>Φ be the inclusion map. Then, by (2.1) we have

(2.5) t ΐ θ n . t = ί | "

and especially

(2.50 tfθn-2=

where f^.j^O.

Next, we observe the volume element of F^'^y) Π M. On F?"^^) Π M, we
obtain from (2.1)

71-1 71-2 / \ 71-1
2 = Σ o)aωa= Σ ω α ω α +( — — Σ

a=l α=i \ ς B _ i ct=l

71-2 /

= Σ l^αδ
α,6=i\

and

where fn_!^0. Hence, the volume element of Fn

r~\y)Γ\M is given by

(2.6) dVFn-hy)OM= £—^-^ωi Λ Λωn-2,
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where ξn^φO. In general, we have

(2.60

where ξβφQ, and

Since we have

(2.7) dvφ-Hy>

hence

(2.8) dVφ-hy)=(l+~cot>j^y2~1 /pjg

and

(2.80 iί Vr'(n=(l+4 of y e f ' (»iΛ-Λ(i)».,,

where ζn-i^O. From (2.5) and (2.8), we obtain

(2.9) c*θn-* 1

R sin-D-(cos -D~ ) (1 + ̂ 2 1

1

Finally, we consider the case cos-rr=0, i e. r=—^—. From (1. 50) we have

, Z)f«=O, i = l , 2, - , π,

(2. 1.) { ,,-χ

1 Σ,ζaωa=0 along ^'( j-).

We take a differential (n—2)-form in Φ of the form

^ - 2 = Σ (—ΐ)a~1λaω1A'"Aωa-.iAωa+1A"'Aωn-i,

where λa will be determined so that

(2.30) dVφ=ψ*(dVs)AΨn-2.
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By means of (1.60), at ξ with ξnφθ, the right-hand side of this equality
becomes

'" /\ωn.1

Comparing this equality with (1.13), we see that it is sufficient to take λa as

a R^a-ζnξn)'

when ζnξn<l- Thus, we define Ψn_2 by

(2.10) Ψn_2: =- * "Σ (-D-^fα^Λ-

where f n ? Λ < l . In this case, from (2. l0) we see that

(2.70) ^^- I c 2 / )= = ^^- 1 (2/)nii f

through an isometry. We can also use the formula (2. β;/) and obtain

(2 90) < ? y ._ I = - ^J^r^tV^,

Making use of these formulas and noticing that these hold good for oriented
hypersurfaces in Sn(R) in general, we obtain the following

THEOREM 1. Let Mn~1=M(ZSn(R) be a smooth oriented hypersurface and
0<r<πR. Then, we have the following integral equality.

( 2 n )

where cn-i is the volume of the unit (n—1)-sphere.

Proof. From (1.10), we see that

ί dVφ=vo\(Φ)=cn.1'Vθ\(M).
JΦ
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We prove the case rΦπR/2. By means of (2.3), (2.8) and (2.7), the left-
hand side of the above equality can be also computed as follows:

cos-^r

from which we obtain immediately (2.11).

For the case r=πR/2, we can prove it analogously by (2. 30) and (2.90).
q. e. d.

§3. An integral equality for a convex domain in S3(R).

We say a domain Ω in Sn(R) convex if Ω contains no pair of points y and
— y of Sn(R) and for any two points p and g of fl it contains the minimum
geodesic segment of Sn(R) joining p and q.

If Ω(ZSn(R) is convex, it must be contained in a half ^-sphere of Sn(R).
We see this fact easily by considering a contacting great (n — l)-sphere of Sn(R)
to dΩ. Hence we have

(3.1) V=γol(Ω)^^R\

In the following, we suppose that Ω is convex and has smooth boundary
M=dΩ. For r>0, we set

(3.2) Ωr={x\xtΞSn(R), άiSsncR^x, Ω)<r), 7r=vol(£?r).

In this case, M must be diffeomorphic to an in—l)-sphere. Furthermore, we
suppose 0<r^πR/2. Using the notation in §§1, 2 and taking notice of that for
the orthonormal frame (x, elf •••, en, en+1), i e M , en directs inward of Ω at x
and en+1=(l/R)x, we see that Ωr—Ω is the set of points y written as

(3.3) y=
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Hence, we have

dy= ΣJjβαCOS-^ + i e ^ Σ 1 ^ ^ ) s in—

dt.

If we choose especially elf •••, en-\ in the principal directions of M at x,
then we can put Aaβ=kaδaβ> Denoting the normal exponential map of M in
Sn(R) by exp x, we induce a volume element of the normal bundle NM from
dVs through exp 1 . From the above computation, we have

71-1 / f

(exp L)u.-t)ύ?Vr

β=— Π (cos-5-+
«=i \ K

hence

o JiW α=i

S r r r/ /• \Λ-I ίi-i
j (cos^) + Σ RMσn(klt •-, *„_,)

0 JΛf LV /t / m=l

C O S D
where σm(ulf •••, wn_i) denotes the fundamental symmetric polynomial of order
m in ulf u2 ~, un-χ. Thus, we have

(3.4) l ^ y

) ( β i )
n-l Cr / I \n-m-l / f \m f

ΣRm\ (cos—) (βin-p-) dtλ σ^ku- kn.ύdVM.
m=l Jo \ K / \ K / Jiί

For the 2nd fundamental form / / = Σ iα3ΰ)«ω3, we set

where y4=(AQ,(3). Especially, we have

Σ
n — 1 a=i

7 1 1

Σ ka=H (mean curvature).
i



CERTAIN INTEGRAL EQUALITY 247

Using these Pm(A), we can rewrite (3.4) as

(3.5) Vr=V+

n-1 / γi—1\ Cr / f \n-m-l / / \ m

Now, we compute the right-hand side of (3.4) in more exact form for the
case n—3. Since we have

(3.4) becomes in this case

JM

On the other hand, denoting the Gaussian curvature of M by K, we have easily

Hence, by means of the Gauss-Bonnet theorem we obtain

since M is homeomorphic to S2. Substituting this into the above equality,
we obtain

(3.6) F r =F+i?cos-^s in-

sin2-^-ί HdVM.
K JM
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§ 4. An isoperimetric inequality for a convex domain in S3 (R).

First of all, we investigate the integral in (2.11):

(4.1)

For any point x^F" 1{y)Γ\M and a frame (x, ely e2, •••, e n, £n +i) as in § 1,

we have

(4.2) f =
r
R

(4.3) ξi=<ξ,et>= ^ , yt=<y,et>, i=l,2,-,n
Rsm-—-

and

(4.4) yn+i=<y, en+1}=R cos-^-.

Along F Γ ^ Π M , <3;, Λ:>=^2COS-^- implies

<y, Έo)aea}= Σ, ya

On the other hand, restricting the moving frame (x, elf e2, •••, en+1),
Fn

r-
ι(y)Γ\M, to the one such that eu —, β n - ί ^ W W Γ l M ) , we have

(4.5) ωn_!=0,

and hence

(4.6) yi=y2=... = yn_2=0

and

Using these relations, dy—Q implies

(4.7) dyn-i=ynωn-hn, dyn=- — yn-λωn-hn,

T

(4.8) yn-l(Oa,n-l + ynO)an = CO$— - O)a, β = l, •-, n ~ 2 .

From (4.5) and the structure equation we obtain
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π-2

a=i

hence we can put

(4.9) ft)α,n-i= UΈBabωb, Bab=Bba.

5 α 6 are the components of the 2nd fundamental form of Fn

r~\y)Γ\M with
respect to the normal unit vector en-x. By (4.4) and (4.7), we can put

T T

(4.10) yn.1—R sin-^cosfl, ;yw=J? s in-^sin#.

Substituting these into (4. 7) and (4. 8), we get

(4.11) ωn-lfn=-dθ,

(4.12) cosθ Bab+$mθΆab=-^cot~'δab,

a, 6=1, 2, -", n-2.

From the equality:

(4.13) ^ - ^ Σ Λ - M ^ α along Fr\y)Γ\M
α=l

and (4.11), we can put

(4.14) A>-i,α=-Vβ α0,

where 7 denotes the covariant derivation of Fn

r~\y) Γ\ M.

Now, we suppose n=3 in the following. Then, F%y) Π M is composed of
curves in general. Setting ω1=ds, (4.11) and (4.13) imply

(4.15) 0=-ί,4 1 2 ί/s+const . .

We have also

dVFltyϊc\M _ ds ds dθ
( ' } V l f f ~ V l s i 2 ^

In this case, (4.12) becomes

1 r
Bn cos Θ+An sin θ— — cot-yr-,

K K

from which we get
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Along the curve Fl(y)Γ\M, we have

—r-= Bne2+A11eB—-—e4as K

and hence its curvature as a curve in R* is

(4.17)

Using k(s), the right-hand side of the above expression of cos# can be written as

(Oδ) c o s * = ™ ^
Then, we have the following theorem which will be proved in § 5.

THEOREM 2. Let ΩdS3(R) be convex and for dΩ=M its normal curvature
A with respect to the inner normal unit vector satisfy Ao^A^Ax. Then, suppos-
ing 0<r<πR/2, for cos# given by (4.18) there exists a constant CQ depending
only on Ao, Ax and r such that l/co$Θ^C0k(s).

Now, for a domain Ω in S3(R), let ri(re) be the supremum (infinimum) of
radius of 3-disk included in (containing) Ω. Then, we have

THEOREM 3. Let Ω be a convex domain of S3(R) with a smooth boundary
dΩ=M. Let H be the mean curvature of M. Then, for a fixed number r (rt^r
^re) we have

(4.19) R cos -^- sin -^- (-^- tan -^- - ί) area (M)

^ ) + i ? s i n ^ f HdVM.

Proof. Since Ω is convex, we have easily re^πR/2. Therefore, we can
utilize Theorem 2 for the domain Ω. For a general point y<^S3(R), let n(y) be
the number of the components of Fl(y) Γ\ M. Let C be one of them. For the

curvature k(s) of C as a curve in R*, we have k{s)ds>2π by the Fenchel-
J o

Borsuk theorem, where L=length(C). It is clear that the set of general points
y is open and dense in SS(R), and the function n(y) is lower semi-continuous.
Therefore, the set of y with n(y)=m is measurable with respect to the 3-
dimensional measure of S3(R) for any integer m. Setting

Fm : =vo\({y\yeiS3(R), n(y)=m}),
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we obtain from Theorem 1 with n—3

i?2sm2-^ 4τr.area(M)=ί (f 9

i.e.

(4. 20) ^ r - sin2-^- area(M)^F1+2F2+3F,+....

On the other hand, we see easily that

Ωr : ={*UeS 8(fl), dis58CjB)U β)<r}

= {3/|n(3/)>0, );eS3(i?)} (except a set of measure 0)

and

(4.21) Vr

From (4. 20) and (4.21), we have

and furthermore using (3. 6) we obtain

2R2 r rr
-7^- sin2-^- area(M)^7 r=vol(i2)+i? cos-^-sin-^- area(M)

C o JV K K

which is equivalent to (4.19). q. e. d.

§ 5. Proof of Theorem 2.

According to the formula (4.18), we have

2
11

v I n 1 r

K K
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and setting An=A, Bn=B=u for simplicity we consider the following function
of u

(5.D /(«): = ^ Λ ' + I ' + " {ΎcotJR+A*JΛ2-Fcot2ΊΓ+u2 }•

Since Ω is convex, Aλl^0 everywhere on M=dΩ. We shall try to find an upper
bound of f(u) for u^O.

First of all, we write the right-hand side of (5.1) as

i 1 r u , V^Jrcot^+ M

We can easily see that the function — is decreasing,

Λ2 i_ t2_I_j_ 2
Ί D 2 C O l 7-j " | W

a n d — . Λo are increasing for w^O. Hence we have
VA2+u2

VA2+u2

and

A ~ VA2+u2"

Thus, we obtain

(5.2) / ( « ) < - -. '

for M ^

The function h {A) of A has the properties as follows:

lim h{A)=\im h{A)=+oo

and

h\A) 1

KA)
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hence

h'{A)<0 for

for

Let us suppose from the convexity of Ω that

(5.3)

Setting

we have

(5.4)

that is

(5.5)

max (A (Ao), h (A,) )= -ί-,

~

In the following, we shall show that C in (5.4) can be replaced with a more
sharper constant Co. Setting

(5.6)

we write /(M) as

(5.7) f(u)= j ^ cot

First of all, since we have

/ίOO=-

we obtain easily the following:
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1 / /14 R2 A2 \ 1-J-/?2/42

i) when A<±, / i ( " ) ^ / i ( ^ V l - ^ ) = 2AR f θ r

ii) when ^ 4 ^ ^ - , /ι(w) is monotone increasing and so

/ I ( M ) < l i m / 1 ( M ) = 1 for w^
W-»+oo

Second, we have

/ ί ( M ) = U

r \ 2 r \
X-! ^ r ( l - c o t 2 - ^ j + ̂ τcot 2 — - —

Hence we have the following:

a) Case 0 < r ^ — R, f2(u) is monotone increasing and so

f2(u)< lim /2(w)=l for w^O,

and

b) Case -rR<r^ — R, from the equation

A c o t_L

we obtain ^4= , — - , and so

VT / I /2-i4»Λ (tan«4-l)

, ' t a n 2 ^ — 1

V f0Γ M=°'
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ii) when Λ^ ~-> Λ(w) is monotone decreasing and so

K

Λ2R2

On the other hand, we compare the separating values

for w^O.

V~2 and

R
for ^4Γwith respect to /2(w) and fλ(u) respectively. We see easily that

i for \R<r<^R,

1 £

= Ί Γ
 for r=

i for f
From the above arguments, we define the following functions hι(A), ι=l,

2, 3, as follows:

1) Case

for 0<y4<—,

for A^—

2) Case jR<^

C° sin 7?

for

for 0<^<-^-,

1 _ . VT

Sln
R tan2-£--l

/I
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AR2

for -
V2"

R — 1

3) Case jR<£

1+A2R2

h{A):=<

2AR*
sin- R

for

for 0<A<
V2"

^ - 1

V2" _1_
R

for ^

For each cases, we obtain from (5. 7)

(5.8) f(u)^hiU) for ŵ O.

Furthermore, we can prove easily that

1) Case 0 < r ^ — R, hx{A) takes its minimum value at

<i
and it is monotone decreasing in [0, Af] and increasing in [_Af} oo)

2) Case —R<r^ — R, h2(A) takes its minimum value at

Λ *
<

and it is monotone decreasing in [0, Af] and increasing in [_Af, oo)
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3) Case -^-R<r^-rRf hz(A) has the same property as h2(A).

Thus, making use of these functions ht(A), z=l, 2, 3, for these three cases,
we set

1
max {ht(A0), hι(A1)} = -~-.

Then we have

It is clear that this Co is more sharper than C for our purpose.
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