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CYCLIC COVERS OF NORMAL GRADED RINGS
MASATAKA TOMARI AND KEI-ICHI WATANABE

Abstract

We give a description of a graded cyclic cover of a normal graded ring in terms
of the Pinkham-Demazure description of normal graded rings R = R(X,D). With the
geometric description of CI(R), it is shown that our cyclic cover S possesses the
Pinkham-Demazure description S = R(Y,D) [Theorem 1.3], by which we obtain a
description of an index one cover [Corollary 1.7] of R. In §2, as an application of this
description, we give criteria for the normal graded singularities to be Kawamata log
terminal or to be log canonical. Further, in §3 we study the relations between cyclic
covers of the Kummer type and cyclic covers obtained by using Veronese subrings.
Our results extend S. Mori’s structure theorem regarding graded factorial domains.

Introduction

Cyclic covers of an algebraic variety have been found to be very important
and have been used in many works. However, it is not easy to determine the
properties of a cyclic cover explicitly in terms of given data. The aim of this
paper is to give a description of a cyclic cover of a normal graded ring in terms
of the Pinkham-Demazure description of normal graded rings, which uses a Weil
divisor with rational coefficients. Here, our approach is to give a natural grading
to our cyclic cover and find the Weil divisor with rational coefficients describing
the new ring.

Let R = ®>oRir be a normal graded ring that is a finitely generated algebra
over a field k. As a geometric representation for such R, the following theorem,
due to H. Pinkham in the two-dimensional case and M. Demazure in general, is
fundamental.

THEOREM (Pinkham and Demazure [1, 11]). Let the situation be as described
above. Let T be a homogeneous element of degree one of the quotient field Q(R)
of R. Then X is normal projective and there exists an ample Q-Cartier divisor D
on X = Proj(R) which satisfies the relations R, = H°(X,Ox(nD))T" for ne Z.
Further this D is uniquely determined by the choice of T.

With D and X as above, we denote R as R = R(X, D). In [20, 21], one of
the present authors studied the divisor class group of R, conditions for R to be
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Cohen-Macaulay or Gorenstein and conditions for rational singularity in terms
of the description given by the above theorem. Our interest in this paper is in
the cyclic cover S of R defined by a Q-Cartier homogeneous divisor Z(E) €
HDiv(R) ® Q of order r. Using the geometric description of CI(R), it can be
shown that our cyclic cover S is a normal graded ring. The Pinkham and
Demazure theorem implies that we can find a normal projective variety Y and
an ample Q-Cartier divisor D on Y which give the description S = R(Y, D).
Theorem 1.3 expresses Y and S in terms of X, D, and E € Div(X) ® Q. This
allows us to investigate S more effectively.

In §1, we discuss relations involving canonical modules of S and R [Theorem
1.5], and class groups of S and R [Section 1.8]. In particular we obtain a
description of an index one cover [Corollary 1.7.1], or canonical cover, of R.
In [19], J. Wahl described index one covers of certain 2-dimensional singularities,
considering the exceptional locus of resolution of the singularity. An advantage
of our approach is that it allows us to obtain ring theoretic information that is
more precise than that given by the resolution of singularity.

In §2 we give criteria for the normal graded singularities to be Kawamata
log terminal or to be log canonical in terms of Pinkham-Demazure’s construc-
tion using the calculation of &’ introduced in 1.7. Since log terminal and log
canonical singularities are determined by the properties of the index one cover,
our theory plays an essential role.

In §3 we study relations between the cyclic covers of the Kummer type,
S = R[X]/(X™ —v), and cyclic covers obtained from Veronese subrings. Our
results, Theorems 3.3, 3.4 and 3.6, extend S. Mori’s structure theorem regarding
graded factorial domains.

The invariant a(R) of a graded ring R defined in [5] plays an important role
in conditions for rational and related singularities. In this paper the integers a’,
which are related to a(R) with regard to their roles in various contexts, also play
an important role. Throughout this paper we assume that all rings and varieties
are defined over a field. We also assume the normality of various rings and
cyclic covers of them. For careful treatments of normality we refer to our pre-
vious paper [18].

Acknowledgment. For the preparation of this paper we carried out cal-
culations for many examples with much helps from the software Ubasic 86
developed by Y. Kida, with which we could easily treat rational coefficient divi-
sors. Our thanks are due to Prof. Y. Kida.

§1. Graded cyclic covers of normal graded rings in terms of the
construction of Pinkham and Demazure

1.1. Basic facts. To state our result we first review the basic background
of the Demazure construction from [20, 21]. Let X be a normal irreducible
projective scheme of dim > 1 over a field k, and k(X) the rational function
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field of X. We denote the groups of Weil divisors on X by Div(X). For
EeDiv(X)®Q, we can attach the divisorial sheaf Oy(E). Now, let
D e Div(X) ® Q be a Q-Cartier ample divisor described as in the introduction and
represented as D=3y (pv/ay)V (with py.qveZ, (py,qv)=1, qy =1).
Here Irr'(X) denotes the set of prime divisors of X. We are particularly in-
terested in the denominators ¢, in this paper. We consider n: C(X,D) =
Specy (P, Ox(nD)T") — X and n’ : U(X, D) = Specy (P, ., Ox(nD)T") — X.
Note that C(X,D) and U(X,D) are normal schemes. Then, we have the
following commutative diagram.

UX,D) —— V\V(R.)

' |

X —~— cx,D) r, V = Spec(R)

N |

s(X,D) ——  V(R)

Here, s(X, D) is the section of the G,-fiber space n: C(X,D) — X and is defined
by the ideal @n>l Ox(nD)T" of Oc(x,p). In addition, ¥ is the filtered blowing-
up of Spec(R) with respect to the ﬁltratlon on R induced by the grading of R.

For the divisor class group of these normal schemes, we have
CI(R) = HDiv(R)/HP(R),
where HDiv(R) (resp. HP(R)) is the group of homogeneous (resp. homogeneous
principal) divisors of R (see [15]). We have the canonical isomorphism
HDiv(U) =~ HDiv(R),
where HDiv(U) is the group of the divisors on U that are stable under the G-
action induced by the graded structure of U = U(X, D). For a prime divisor V'
of X, we set Fy =n (V). Then we have n*(V) =gy Fy e HDiv(U) ([1]).
Now, we define the bijection
2 : Div(X) ® Q — HDiv(U) ® Q =~ HDiv(R) ® Q

by Z(Xyen! (x) rVV) Y ven(x)4vTvFy. We define Div(X, D) = Div(X)® Q
by Div(X,D) = 2~ (HDiv(R)). Con51der1ng the relation
divy(T) =n"*(D)= Y pyFy e HDiv(U)
Vel (X)
(see Proposition 2.9 of [1]) and the isomorphism HP(R) = P(X) ® Z div(T),
we can see that 2~ (HP(R)) = P(X) @ ZD, where P(X) is the group of principal
divisors on X. Hence we obtain the following:

CI(R) = Div(X, D)/(P(X) ® ZD).
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Further, we obtain the relations for the fractional graded R-ideals

R(Z(E)) = k@ZHO(X, Ox(E + kD)T* < k(X)[T, T™"]

with E e Div(X) ® Q. In particular, R(Z2(—(1/qy)V)) < R is the prime ideal
associated with ¥ e Irr! (X).

1.2. Construction of a graded cyclic cover. Let Z(E) be a Q-Cartier
homogeneous Q-divisor of R with E € Div(X) ® Q, and let r > 0 be the minimal
integer such that r9(E) = 2(rE) € HP(R). Then there exist ¢’ € Z and ¢ € k(X)
such that rE — a’D = divy(p). We can easily see that ¢pT% R(rZ(E)) = R, and
hence divg(¢pT?) = rZ(E). Next, associated with the triple (R, Z(E),pT*), we
introduce the cyclic r-cover S as follows (see [18]):

r—1
S =S(R,Z(E),pT") = P R(Z(E))u', with u" = ¢T".
i=0

We call such an S a graded cyclic r-cover of R. If Z(E) is an integral divisor of
R (that is, if E € Div(X, D)), we say that S is an integral graded cyclic r-cover of
R. Throughout this paper we assume that either (i) char(R) =0 or (ii) char(R) =
p>0, (r,p) =1 and every coefficient of rZ(E) is an integer relatively prime with p.
Then S is a normal domain (Proposition 1.12 of [18]). If we set the degrees of u
and T as deg(u) =d'/s and deg(T) =r/s, S has a Z-graded structure, where
s=(r,a’). Now, let o, € Z satisfy oa’ + fir = s, and define T = TPu. Then
T is a homogeneous element of Q(S) of degree 1. Now the Pinkham-Demazure
description of S is given by the following.

TuroREM 1.3. Let S = S(R, Z(E),pT®) be the normal graded cyclic r-cover
of R= R(X,D) described above. Then, the Pinkham-Demazure description of S
with respect to T = TPu* with aa’ + fr =s (= (r,a’)) is given by S = R(Y,D) as
follows:

(1) Y is the cyclic cover of X given by p:Y = Spe:cX(C—DIS;O1 Ox(I((r/s)E —

(@'/s)D))) — X.
(2) D = p*(eE + BD). } 3
(3) We have the relations p*(E)—(a'/s)De P(Y) and p*(D)— (r/s)De P(Y).

Proof. (1) Since /R.S =S,, it follows that Proj(S) is covered by the
schemes of the form Spec((Sy,),), with f;e R; (d >0). Here we have the relation

on Spec((Ry)y) = X.
Spec((Ry,)o)

i=0 \keZ

Sy, = <é§<@ OX(iE+kD)Tk>uf>

Since T*u' has degree 0 iff k +i(a’/r) =0, there are exactly s possibilities for
such pairs (k,i), given by (—(la'/s),(Ir/s)) for [=0,...,s—1. Thus we have
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s—1 !
Y = Proj(S) = Specy <@ Oy (l (gE _ %D)) T(/u'/s)u/r/s> .
=0

(2) Considering the part of S‘; of degree n, we have

/
Oy (nD)(T*u*) @0X< ( E—%D) +n(ocE+ﬂD)> T /9)Ir/s (T Py )",

This implies the relation D = p*(aE + D).
(3) This follows from the relations p*(E) — (a'/s)p*(«E + D) = pp*((r/s)E —
(a'/s)D) and p*(D) — (r/s)p*(oE + D) = ap*((r/s)E — (a’/s)D). Q.E.D.

Remark 1.4. (1) In Theorem 1.3, if we choose one couple (o,f), another
possible choice, (', '), is (o', ') = («—r/s, f+a'/r). Then o’ E+p' D= (aE+SD) —
((r/s)E — (a'/s)D) on X. Thus certainly p*(«'E + p'D) and p*(«E + D) are
linearly equivalent on Y.

(2) Here, by the definition of the grading on S, R is the rth Veronese subring
of S if and only if s=1.

To facilitate discussion of the canonical module, we introduce the following
notation: For any Q-divisor G = > (pw/qw)W (with pw,qw € Z, (pw,qw) = 1,
gw = 1), we define G’ by G' => ((gw — 1)/qw)W. As shown in [20], the ca-
nonical module Kz of R= R(X,D) is given by Kr = R(Z(Ky + D')). Now,
Ky + D' and Ky + (D) are related by the following.

Turorem 1.5. Let S(R(X,D),Z(E),pT*)=R(Y,D) be as in Theorem 1.3.
Then we have

p*(Kx + D'+ 77 (2(E))) — (Ky + (D)') € P(Y).
Proof. By Theorem 3.2 of [18], we have

r—1
Ks = P Kr(Z(E) + kZ(E))u' = @R (Kxy + D)+ 2(E) + k2(E))u’
i=0
By arguments similar to those in the proof of Theorem 1.3, we can show the
relation

@D Oy (75" (Ks) +nD) = P Oy(p*(Kx + D'+ 2 (2(E)")) + nD).

neZ neZ
Here the bijection Zs : Div(Y) ® Q@ — HDiv(S) is defined in the same way as &
of R. Studying the ramifications of & : Div(R) — HDiv(S) (cf. [18; Lemma 1.10,
(2.4)]), it can be shown that (¢ ® Q)(Z(E)’) e HDiv(S). Then, comparing the
ramifications X — R— § and X — Y — S, we can see that p (27N (2(E))) e
Div(Y,D). We can also see p*(Ky + D’) € Div(Y, D), and hence p*(Ky + D' +
2 "(2(E)")) e Div(Y,D). Thus the assertion follows from the bijectivity of
%5 : Div(Y, D) — Div(U(Y, D)). Q.E.D.
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Remark 1.6. (1) If we represent E as E =3y yx)(PE,v/qev)V, with
pEv.qe.v €Z, (PEV,qE,v) =1, and gg y > 1, then we can easily see that

LCM(qv,qe,v)/qv — 1
LCM(gqv,qE,v)

v,

and hence

- LCM(qv,qe,v) — 1
D'+7 ' (2(E))= >  qE, »
Vel (X) LCM(qv,qE,v)

In §2, we discuss the kit conditions of Ky + D' +9 Y 2(E)".

(2) Let V be the prime divisor of Y that lies over a prime divisor ¥ of X.
Then, by Theorem 1.5, we can see that the denominator of the fractional part
of D is given by LCM(qV,qE v)/epy, where ey, is the ramification index of
p:Y — X along V.

1.7. Index one cover. Now, suppose that Kz + Z(F) is a Q-Cartier divisor
of index r. There are a’ € Z and ¢ € k(X) such that r(Ky + D'+ E) —a'D =
divy(¢). In the case Z2(E)=0, the integral graded r-cyclic cover S =
S(R,2(Kx + D'),pT®) is called an index one cover of R which is very important
in the theory of singularities. There are already several works on singularities
appearing in the index one covers of singularities [12, 13, 19].

CorOLLARY 1.7.1. Let S=S(R,Kr+ Z(E),pT®) be the normal graded
cyclic r-cover of R= R(X,D) as described above. Then the Pinkham-Demazure
construction S with respect to T = TPu® with aa' + pr=s (= (r,a’)) is given by
S = R(Y,D) as follows:

(1) Y is the cyclic cover of X given by

s—1 1
p: Y:Specx<@0x(l(£(KX+D'+E)—%D))) — X.

1=0

(2) D=
(3) If E -
tion Ks(Zs(

p{UKy + D'+ E) + D}, N
=p"(E - 9 Y2(E)"), then E e Div(Y, D), and we obtain the rela-
) = S(a’

Proof of (3). We have p*(Ky + D'+ E) — (a'/s)D e P(Y) by the asser-
tion (3) of Theorem 1.3. Then, since %(Ky+ D'+ E) = %(E)’, we have
p*(Ky + D'+ 2 Y(2(E)")) — (Ky + D') € P(Y) by Theorem 1.5. Hence Ky +
D'+ p*(E — 27 Y(2(E)")) — (d'/s)D € P(Y). Q.E.D.

1.8. Class groups. Let S = S(R,Z(E),pT%) asin 1.2. To investigate the
relations between CI(R) and CI(S), we need the homogeneous class group
HCI(S) with respect to the Z,-grading of S from §2 of [18]. This is given by
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HCI(S) = {cl(x*(F)) e CI(S) | F € Div(R) ® Q, *(F) € Div(S)},

where u* : Div(R) ® Q — Div(S) ® Q is the natural map. Then we have the
exact sequence (see [18:2.6))

0 — Z cl(LZ(E)) — CI(R) — HCI(S) — Coker f — 0,

where L and f are defined as L=min{/ e Z |/ > 0,/Z(E) e Div(R)} and f:
Z—PZ/0,Z with B(1)=(Py), where we represent Z(E) as Z(E)=
Here 7" represents prime divisors of R, and the sum is over all such prime
divisors. The following result plays an important role in the arguments given
in §3.

PrOPOSITION 1.9. Let S=S(R,Z(E),pT") =~ R(Y,D) be as in Theorem
1.3. Then, if (r,a’) =1, we have HCI(S) = CI(S).

Proof. The relation Y = X follows from Theorem 1.3. Also, we have the
relations Div(X) ® Q = Div(X, D) o Div(X,D). Hence p*(HDiv(R)® Q) o
HDiv(S). The assertion follows from the isomorphism CI(S) =~ HDiv(S)/
HP(S).

Example 1.10. Let S = R[x,y,z]/x*+ y*+z2.  We know that S is a UFD
(see p. 34 of [15]) and it can be written S = S(R][x,y], (1/2) div(x? +y?), —(x>+?)).
We have the relation 0= CI(R[x,y]) =HCI(S)=CI(S). However, r=a’'=s=2.
Hence the converse of Proposition 1.9 does not hold in general.

§2. A characterization of the klt-conditions of normal graded rings

2.1. The purpose of this section is to give criterion for the normal graded
singularities to be log terminal or log canonical in terms of the Pinkham-
Demazure construction. The rationality is characterized in [3, 20, 21], under
the assumption that Spec(R) — V(R ) has only rational singularities. Here we
discuss the rationality of Spec(R) — V(R.) in terms of the Pinkham-Demazure
construction. Theorems 2.6 and 2.9 in this paper are natural continuation of
studies in [20], [21] and the main result in §4 of [18]. In this section, the formula
for Goto-Watanabe’s a(R) invariant related to the index one cover given in 1.7 is
the key to reduce the situation considered here to index 1. Now, we begin by
considering finite cyclic covers. Throughout this section, all local rings are
defined over an algebraically closed field of characteristic zero. Let us recall the
definitions of log terminal singularity and log canonical singularity, which we
need. We refer to the articles [8], [12] and [9] for more general facts about log
terminal singularity and log canonical singularity.
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2.2. Definitions of kit and log canonical. Let 77 = Spec(R) be a normal
local singularity of dimension d with an effective rational divisor A € Div(R) ® Q.
We wish to consider the situation in which the following holds.

(2.2.1) There is an integer r such that r(K) + A) is an integral Cartier divisor
on V.

With this condition, let ¢: 7 — V' be a resolution of singularities with
normal crossing exceptional divisor E = qﬁ’l(Sing(~ 7)) such that the total trans-
form of A is a normal crossing divisor. Also, let A be the proper transform of D
by ¢. Define the divisor F on V by

r(Ky +A+E)=¢"(r(Ky +A)) + F.
(klt) V is Kawamata log terminal (klt for short) with respect to Ky + A if [A] <0
(that is, all coefficients are less than 1), if the condition (2.2.1) is satisfied and if

(2.2.2) there is a resolution ¢ such that F is an effective divisor whose
support coincides with E.

(Ie) V is log canonical with respect to Ky + A, if the condition (2.2.1) is satisfied
and if

(2.2.3) there is a resolution ¢ such that F is an effective divisor.

If (2.2.1) is satisfied, the smallest such positive number r is called the
(Ky + A)-index.

To study the log terminal property and the log canonical property of sin-
gularities of G,,-fiber spaces, we consider a particular finite cover that we now
define. Let R be a normal domain of dimension d and define S = S(R, D, f) as
in [18], where D is a fractional divisor of R, and f € K = Q(R), with divg(f)=r-D.
Moreover, we assume that

r=min{ie Z|i >0 and i- D is a principal divisor}.

As demonstrated in our previous paper [18], the cyclic cover S is also a normal
d-dimensional domain. Here we represent D as D = >y 1,1 (Pv/qv)V, with
pv.qv€Z, qv =1 and (py,qr) =1. For p: Spec(S) — Spec(R) we have the
following.

LemMa 2.3. Let Ae Div(R) ® Q. (1) Then p*(Kg + A) is a Q-Cartier divisor
on S if and only if Kr+ A is a Q-Cartier divisor on R. (2) S is kit (resp. log
canonical) with respect to p*(Kg + A) if and only if R is kit (resp. log canonical)
with respect to Kg + A.

Proof. (1) By §2 of [18], we have the exact sequence

0 — Z cl(LD) — CI(R) 2 CI(S),

where L is defined as L=min{/ e Z|/DeDiv(R)} and p*(b) = (—D;:&R(b—i—iD)u"
e Div(S) for b e Div(R). Let m be a positive integer such that m(Kg + A) €
Div(R). From the above exact sequence, we can see that p*(m(Kg+A)) is a
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QO-Cartier divisor of S if and only if there is an integer ¢ > 0 such that
cl('m(Kgr +A)) € Z cI(LD). Since D is Q-Cartier, we obtain the assertion.

For (2), the proof can now be carried out in a standard manner using
Iitaka’s log ramification formula [6, Theorem 11.5]. We omit the proof of this
lemma (see [8, 9]).

The rationality of U(X, D) is studied already in our previous works; Lemma
(3.1) and Example (3.5) of [20], §3 and §4 of [22], §5 of [17], and Proposition (1.5)
of [16]. The following result unifies various statements in [20, 21]. Our argu-
ments follow almost the same line of reasoning as the proof of Theorem 3.12
of [18]. Before discussing the kit conditions, we make the following remark.

LemmA 24. Let Z(E) be a homogeneous Q-divisor of R(X,D) with
E eDiv(X). Then [2(E)] <0 if and only if [D'+ E] <0.

Proof. For any number x, we see that ¢gx <1 if and only if x+
(g—1)/q < 1. Q.E.D.

PropPOSITION 2.5. Let R(X,D) be a normal graded ring over a field k with
char(k) =0, and let Z(E) be a homogeneous Q-divisor with E € Div(X) ® Q.
Then U(X,D) = Spec(R(X,D)) — V(R.) is kit (resp. log canonical) with respect
to Kr+ 2(E) if and only if (X,x) is kit (resp. log canonical) with respect to
Ky x+ D, +E, at all points xe X.

Proof. Let xe X be a closed point of X. Then the fiber U(X,D), of
U(X,D) over Spec(Oy ) can be written U(X, D) = Spec,, (%), where

B =P Ox (kD) T* < k(X)[T,T]
keZ
(cf. [22]). We choose f; and ry such that dive,  (fy) = rDy in Div(Oy ) and ry
is the minimum at Oy . Then fx’lT’* € Oy x(ryDy)T"™ is a unit of 4. We
obtain
rv—1
BT —1)B = S(Ox 1, Dy, fr) =S = P Oy (ID,)T".
=0
Following Flenner [3], we define o : 4 — S[U, U] =S ®,; k[U, U] with a(g) =
{g mod(f~'T" —1)%} - U™ for g € Oy (mD)T™. Here, we have the relation

B(Ky+ D(E))-S[U, U =S(p*(Kg+ D' +E)) ®k[U, U

Since the characteristic of the base field is zero, « is étale ([3, §2]). Hence S is kit
(resp. log canonical) with respect to p*(Kg+ D'+ E) if and only if U(Oy , Dy) is
kit (resp. log canonical) with respect to K4+ Z(E). Hence the assertion follows
from Lemma 2.3. Q.E.D.

We can now show the main result of this section.
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THEOREM 2.6. Let R = R(X,D) be a normal graded ring over a field k with
char(k) =0, and let 9(E) be a homogeneous Q-divisor with E € Div(X) ® Q such
that [2(E)| <0 (¢f Lemma 2.4). Also let r>1 be an integer. Then R(X,D) is
klt with respect to Kg + Z(E) of index r if and only if the following two conditions
hold.

(1) There exists a' € Z satisfying a’ < —1 such that r(Kxy + D'+ E) —a’'D is
an integral principal divisor on X. Further r € N is the minimal integer such that
this holds.

(2) At each point x of X, (X,x) is kit with respect to Ky, .+ D’ + Ey.

Proof. The proof is given in two steps. First, we show the assertions under
the assumption that Kz + Z(E) is a Cartier divisor on R. In the second step, we
demonstrate that the result of Step 1 proves the theorem by using the log index
one cover given in Corollary 1.7.1.

Step 1. Assume that Kz + Z(E) is a Cartier divisor of R. Then, we may
assume that U(X, D) is kit with respect to Kr + Z(E) by Proposition 2.5. As
shown in §11 of [9], U(X, D) has only rational singularities. From this point,
the proof can be carried out in almost the same way as in §3 of [21].

By assumption, there are a € Z and ¢ € k(X) such that Ky + D'+ E —aD =
divy(p). Here —Z(F) is an effective integral divisor. Hence Ks > Ks(Z(E)) =
(1/(pT*))S. We denote the rational form 1/(¢T“) by wy. Let ¥: C(X,D)—
Spec(R) be the graded blowing-up as in 1.1. Also, let Z(E), < C(X,D) be the
proper transform of Z(E). Then, by Proposition (1.6) of [21], we obtain the
following relations:

wc(Z(E),) = @ Ox(Ky + D'+ E + kD)T* = ¥* () Oc(—(a+ 1)X).
k=1

If R is kIt with respect to Kg + Z(E), then —a > 0 by definition. Hence the
condition (1) follows. Conversely, assume that ¢ < 0. We have w¢ = ¥*(wo) -
Oc(—2(E) — (a+ 1)X) o ¥*(wp)Oc. Hence ¥*(wy) is regular on C. Then,
since C has only rational singularities, (¥7)"(wo) is regular for any resolution
7: C — C. We can now easily check the kit condition (2.2.2). This completes
Step 1 of the proof.

SteP 2. Suppose Kg+ Z(E) is a Q-Cartier divisor of index r. Let S =
S(R,Kg+ D'+ E,¢T*) = R(Y,D) be the associated graded cyclic r-cover as
described in 1.7. Let 7 : Spec(S) — Spec(R) and p: Y — X be the associated
cyclic covers. R R

By Corollary 1.7.1, #n*(Kr+ %(E)) = Ky + Zs(E) with E = p*(E —
2~ (2(E)")eDiv(Y,D). The condition Zs(E)<0 holds, since we have as-
sumed [Z(E)] <0 (cf. Lemma 2.4). Hence R is kIt with respect to Kz + Z(E) if
and only if S is kIt with respect to Ks+ Zs(E), by Lemma 2.3.

With the conditions for S corresponding to (1) and (2) in the statement of
the theorem, we have the relations
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!/
KY+D/+E—%D:KY+D’+E—p*(KX+D/+E)eP(Y).

Obviously @’ <0 if and only if a'/s <0. Further, X is kIt with respect to
Ky + D' + E if and only if Y is kit with respect to Ky + D’ + E, by Lemma 2.3.
Hence (1) and (2) hold for R if and only if (1) and (2) hold for S. This
completes the proof of Theorem 2.6.

Next we consider the necessary condition for R to have a log canonical
singularity.

ProposITION 2.7. Let R= R(X,D) be a normal graded ring over a field k
with char(k) =0, and let 9(E) be a homogeneous Q-divisor with E € Div(X) ® Q.
If R is log canonical with respect to Kr+ Z(E) of index r, represented by the
Pinkham-Demazure construction, then the following two conditions hold.

(1) There exists a’ € Z with a’ <0 such that r(Ky + D' + E) —a'D is an in-
tegral principal divisor on X, and r € N is the minimal integer such that this holds.

(2) At each point x of X, (X, x) has a log canonical singularity with respect to
KX,x + D/r + Ex~

Proof.  First, (2) follows from Proposition 2.5. Now assume K + Z(E) is
a Q-Cartier divisor of index r. Let S=S(R,Kzx+ D'+ E,¢T*)=R(Y,D)
be the associated graded cyclic r-cover as described in 1.7. Let # : Spec(S) —
Spec(R) and p: Y — X be the associated cyclic covers. y

By Corollary 1.7.1, n*(Kgr+2(E)) = Kx +Zs(E), with E=p*(E—
27"(%(E)") e Div(Y,D). Since R is log canonical with respect to Kz + Z(E),
S is log canonical with respect to Kg+ Zs(E), by Lemma 2.3. We have
the relation Ky + D'+ E — (a'/s)D e P(Y). Let ¥: C(Y,D) — Spec(S) be the
graded blowing-up as in 1.1. Let 9s(E), = C(Y,D) be the proper transform
of Zs(E). Then, as in Step 1 of the proof of Theorem 2.6, we obtain the
relation wc(Zs(E),) = Oc(—(a'/s+1)Y). Thus a'/s<0 follows from the
definition of the log canonical condition of Kg+ Zg(E).

This completes the proof.

Although we have not been able to obtain a necessary and sufficient
condition for R(X, D) to be a log canonical singularity as in 2.6, we do have a
sufficient condition.

THEOREM 2.8. Let R = R(X,D) be a normal graded ring over a field k with
char(k) =0, and let 9(E) be a homogeneous Q-divisor with E € Div(X) ® Q such
that 9(E) = Z(E)'. Let r >0 be an integer. Suppose the following conditions
hold.

(1) There exists a’' € Z with a’ < 0 such that r(Ky + D'+ E) —a’'D is an integral
principal divisor on X. Further r € N is the minimal integer such this holds.

(2) At each point x of X, (X,x) is kit with respect to Ky .+ D! + Ej.

Then R(X, D) is a log canonical singularity of index r with respect to K+ Z(E).
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Proof (cf. [7, 16]). If a’ <0, then, as we have already seen, R is a kit
singularity of index r with respect to Kg + Z(E) by Theorem 2.6. Hence we
assume a’ = 0 in the following. As for the proof of Theorem 2.6, we prove the
assertion in the case r = 1.

Assume that Kz + Z(E) is a Cartier divisor of R. Since Z(E)' = Z(E), we
have Z(E) =0 (and hence E =0). We employ the notation used in Step 1 of
the proof of Theorem 2.6. By assumption, ¢ € k(X) with Ky + D' = divy(p).
Let ¥ : C(X,D) — Spec(R) be the graded blowing-up as described in 1.1. By
setting wo = 1/p, we have Kg = wS, and we can show the relation

wc =@ Ox(Ky + D'+ kD)T* = ¥*(w9) Oc(—X).
k>1

Let 7: C — C be a resolution of singularities of C, where 7~' (X + Sing(C))
is a simple normal crossing divisor. We denote the proper transform of X as
X = C. Let us represent the canonical divisor divs((W7)"(wo)) as Kz = -Gy +
G, where G; and Gy are effective divisors on C whose supports have no common
irreducible components. Further, since Spec(R) — V(R ) has only rational sin-
gularities, the support of G; is contained in r71(X). Tt is then clear that G; > X.

We show the relation G; = X by contradiction. Assume G; # X. Then
Gy —X is a non-zero effective divisor. Hence 0 # O;, 3 = O;, 3(Gr). We have
the natural inclusion relations

H"(04(Gy)) —— H(0g,_3(Gr))
HO(OC) S HO(OGF)Z)-

Since y(1) #0, ¢ is not the zero-map. We have the commutative diagram of
exact sequences
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and we have

0 —— H'wx(X)) —— H(0:(Gr)) —— H(0p,_3(Gy))

l J |

0 — Hwy) —— Hlwg) —— Hwg/og)

Hence f is not the zero-map, and « is not an isomorphism.

In the resolution of singularities 7| : X — X, X has only rational singu-
larities. Hence we have the relation H%(wg) =~ H%(wy). By the Grauert-
Riemenshneider vanishing theorem we have H'!'(C,wg) =0, and therefore we
obtain the exact sequence

0— H(C,wz) — H°(C,w:(Gy)) — H (wg,) — 0.

Since the support of Gy is contained in ¢~'(X), the relation H(C,ws(Ey)) <
H(C — ¢ '(X),wz) follows. Then, since C has only rational singularities, we
obtain

H(C,0¢) = H'(C,oc) and H'(C — ¢ ' (X),0z) = H'(C - X, 0¢).
Therefore

0 —
H (C X,COC) ~ @HO(OX(KX+D/+]€D))T1‘:HO(CUX)a

HY w c -
©e) = “picwe =D

since Ky + D’ =div(p). However, this contradicts the fact that o is not an
isomorphism.

The arguments for the case of general r are the same as those in the proof of
Theorem 2.6.

Now, from Theorems 2.7 and 2.8 we obtain the following.

COROLLARY 2.9. Let R= R(X,D) be a normal graded ring over a field k
with char(k) =0, and let Z(E) be a homogeneous Q-divisor with E € Div(X) ® Q
such that (E) = 9(E)". Suppose the following condition holds.

(*) At each point x of X, (X,x) is kit with respect to Kx ,+ D! + E|.

Then R(X, D) is a log canonical singularity with respect to Kg + 9(E) of index r if
and only if there exists a' € Z with a’ <0 such that r(Kxy + D'+ E) —a'D is an
integral principal divisor on X and r € N is the minimal integer such that this holds.

§3. Cyclic covers of the Kummer type and Veronese subrings

31. Let S=R(X,D) be a normal graded domain with D=
> vew'(x)(Pv/av)V, as in 1.1. For a positive integer m, we have the
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natural isomorphism of the mth Veronese subring S ~ R(X,mD). We can
reconstruct S as a graded cyclic cover of S as follows: R(X,D) =
S(R(X,mD), Zx,mp)(D), T™). This is a very natural construction of a cyclic
cover. Another familiar method to construct a cyclic cover is that for a cyclic
cover of the Kummer type, S = R[X]/(X™ — v) with ve R. Our interest in this
section is with the relations between these two types of cyclic covers. Our results
in the followings extend S. Mori’s structure theorems [Theorems 3.9 and 3.11]
regarding graded factorial domains. First, we show the following as a general
result concerning of normal Kummer extensions for not necessarily graded cases.

THEOREM 3.2. Let R be a normal domain. For non-units vi,...v, € R and
integers my,...,my, € Z with m; > 2, we define the ring S as S = R[X1,...,X,]/
(X" —v1,..., X" —v,). Then the following hold:

(i) S is a normal domain if and only if all v;R are reduced and no pair v;R and
v;R with i #j has a common prime component.

(ii) S is a cyclic cover of R if and only if (m;;m;) =1 for any i +# j.

Proof. (i) Suppose that S is a normal domain. Then, for any i, R[Xi]/
(X™ —wv;) is a direct summand of S, hence is normal by the purerity. In
particular, we obtain the isomorphism S(R, (1/m;) div(v;),v;) = R[Xi]/(X]" — v;).
Thus we conclude that v; is reduced. For any pair i,;j with i #j, R[X;, X;]/
(X" —v;, X" —v;) is normal by the same reason as above. At this point, we can
conclude that v;(R[X;]/(X" —v;)) defines a reduced ideal of R[X;]/(X;" —uv;) by
the normality of (R[X;]/(X;" —v;))[X;//(X" —vj). Therefore R < R[X;](X/" —v;)
has no ramification at any prime component of v;R. In particular, ;R and v;R
have no common prime component.

Conversely, suppose that all v;R are reduced and that each pair v;R and
v;R have no common prime component for any i #;j. Then we have the rela-
tion S(R,(1/my) div(vi),v1) = R[X1]/(X{" —v1), and this is normal (cf. [18]
for precise arguments about the normality of such covers). Let for j > 2.
Since R < R[X1](X{" — v1) has no ramification at any prime component of v;R,
U R[X,](X{™ — v1) is reduced. Further, we can easily see that v;R[X](X{" — v1)
and v R[X1](X|" — v;) have no common component for j # k. Hence the nor-
mality of S follows by induction on .

The equivalence assertion (ii) is known. Q.E.D.

THEOREM 3.3. Let R= R(X,D) be a normal domain as described in 1.1,
let vy,...v, € R be homogeneous reduced non-units, and let my,...,m, € Z with
m; > 2. Here we assume that no pair v;R and v;R has a common prime com-
ponent and that (m;,m;) =1 for any i # j. We define the cyclic m - --m,-cover S
of R by S=R[Xy,.... X,/ (X" —vi,..., X" —v,). Then the following hold:

(i) Stm=m) ~ R if and only if (m;,degg(v;)) =1 for 1 <i<n.

(i) Under the conditions stated in of (i), representing v;R = R(—=Z(E;)) by
E =% ,(1/qy,)VikeDiv(X,D), 1 <i<n, and with S = R(X,D) as given in
Theorem 1.3, D can be written
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_ZZ Py, Vi + ZPVV

i1 k=1 "9Vix vz, 4

where (py ., miqy,,) =1, and (py,qv) =1 for V # V.

Proof.  Let Q(R) (resp. Q(S)) be the quotient field of R (resp. S). Also, let
li=1ljzm for 1<j<n. Then, since (l,...,1) generates Z/mZ @ -
® Z/myZ, defining XeQ(S) as X =][", X;, we have the relation Q(S)=
O(R)[X]/ (X" — T’ vF). As shown in [I8], we can represent the cyclic

i=1"i
my -+ -my-cover S of R as follows:

1 . i Il L I
S=S|R—d ! .
( ,ml..'mn 1VR<HUI>,:II;IIUI>

Further, we have the relations

1 . n / 1 n
— div vi |l =9 —— LE;

(my ---my) (ﬁihﬂ) - (i li degR(Uz')>D € P(X).
n i

i=1

and

We can easily see that ((my---my),> i, degg(vi)) = [T, (m;, degg(v))).
Therefore the assertion (i) follows from assertion (2) of Remark 1.4.
(i) We have

1 n n
oy 2 = Z 5=

i=1 k= mqV"

Therefore, by Theorem 1.5 and Remark 1.6, the ramification of D at Vi is
miqy,, and at V # Vi, is qy. Q.E.D.

The following is the converse of Theorem 3.3.

THEOREM 3.4. Let S = R(X,D) be a normal domain as described in 1.1, and
let m > 1 be an integer. We consider the following conditions.

(@) If (m,qv) # (m,qy:) then ((m,qy),(m,qy)) = 1. Further, if my,...,m,
are the possible different values of each (m,qy) with m; > 2, then m = [[;_, m
holds.

(b) For each my, let Viy,..., Vi, be the components such that (m;,qy,,) > 2.
Then E; =, (1/qy ) Vir defines a principal divisor S(—Zs(E;)) = t;S. Fur-
ther, for any i#j, we have {Vi1,..., Vi, } O {Vj1,...,Vi,} = 0.

Assume conditions (a) and (b) hold. Then (i) t/" is a reduced element of S

1
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with (m;,deggm (")) =1 for 1 <i<n, (i) no pair t"S™ and t/'»71’S<m) has a
common prime component for i #j, and (iii) we have the isomorphism

S = ST XX - X ),

Proof. By assumption there exist a/ € Z and ¢, € k(X) such that
E; —a/D =divy(p,), ie., t;=¢T% for 1<i<n.

Hence a;py,, = 1 mod qy;, and qyla; for V ¢ {V;1,...,V,,}. We thus obtain
the relations (a;,qy;,) =1 and a//(I[;.;m;) € Z. Hence

aj
L1j.im
It can then be shown that 7" e (S<”’))”;/<H_ m)) and (m;,ai/(I]; ., my)) = 1.
Further, we have R

p
b= ZZ J;Vlk/m,VAV”kJr > T

i=1 k=1 Ve, v

m;E; — -(mD) = divy (¢;") for 1 <i<n.

with (([;.;m)pvi,sqv/mi) =1 and (mpy,qy)=1 for V #V;,. Hence mE; =
. (1/(qw . /m:))Vix defines a reduced divisor of S =~ R(X,mD). Therefore
the assertions of (i) and (ii) follow. ~
Since (i) and (ii) hold, if we define S by
S=S"[Xy, . X/ (X" =X =),

then, by the similar arguments in the proof of Theorem 3.3, we can show the

relation
n
S = S<R(X7 mD)ng(X,mD) <ZEI> ) (Zl T tﬂ)m>> .
i=1

Here we have m> " | E;— (>."a})(mD) = m divy ([, ¢;) and (m Z =1
Now, let o,f€Z such that oc(Z" Y+ pm=1. Then defining D as D=
oS30, Ei) + B(mD), we have Sz R(X D). Hence D—D=ao(>" E)+

B(mD) — (3} a}) + pm)D = 31 alE; — aiD) = Y0, div(pf). Therefore S=
SOX, . X)X = X — t;""). Q.E.D.

Example 3.5. (i) Let R be a normal graded ring and R = Ry[xy,...,x,] with
X1,...,Xs a minimal homogeneous generator of R, = @y>1 Rr. Also, with
a; =deg(x;) for i=1,...,s, we assume (al,..., ;) = 1. Next we define ¢; by
¢i=(ay,...,a;i_1,ai41,...,ay) for i=1,...,s and write L = H1<l<sc- Then it
is wellknown that Ry[x, .. .,x5]< ) = RO[ ,x!], where x/ = x;" fori=1,...,s.

Hence we obtain the relation

R RW[xy, ... x]/(x" = x],..., x5

s X:)
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By this relation, we can obtain the following:

(3.5.1) If ¢; > 2 for some i, then x;R and x/R") are reduced.

(3.5. 2) If i >2 and ¢; = 2 for some pair i,j, with i #j, then x;R and x;R
(resp. x/R") and x/R™)) do not have a common prime component by Theorems
3.3 and 3.4. Hence ht(x;, x;)R > 2 (resp. ht(x/,x/)R") > 2).

(3.5.3) Let R=R(X,D) as in 1.1. Assume  that ¢ =2 for i=1,.
Then, by the arguments above, we can see that gy =¢; at the components
V < V(x;R) and LD is an integral divisor.

(ii) Let us next consider the case R = k[xi,x;,x3]/f, where f is a weighted
homogeneous polynomial of degree & and k is an algebraically closed field with
char(k) =0. In Assertion 1.6.4 of [14], K. Saito showed that L|h. Hence
there exists g e k[x], x5, x}] with g(xga“”),xga"a3>,x§a"az>) = f(x1,x2,x3) and R =
kix{,x},x5]/g. We can see that the denominators ¢, of the fractional parts of
D have at most 4 types, by arguments similar to those in (i).

In the rest of this section, we discuss the class groups. First, we show the
following.

THEOREM 3.6. Let S R(X,D) as in 1.1 and let S"™ =~ R(X,mD). Then
the natural map o: C1(S"™) — CI(S) is an isomorphism if and only if m=T[(m, qy)
and ((m,qy),(m,qy')) =1 for any V #V'.

Proof. By Proposition 1.9, we have the exact sequence
0 — Z (LDg(x,mp)(D)) — CI(R(X,mD)) — CI(R(X, D)) — Coker f — 0,

where L and g are defined as in 1.8. Also, we have mD =3y j.1y

((mpy /(m,qv))/(qv/(m,qv)))V, with (mpy/(m,qv),qv/(m,qv)) =1 for all V.
Then we have the representation Zr(x,mp)(D) = 2y ciyi (x) (Py/(m, qV))“V where
7" € Div(R(X,mD)) is the prime divisor associated Wlth V elrr!(X). Hence
L=LCM{(m,qy)} and B:Z — @y _yp1(x)Z/(m.qv)Z by B(1) = (pr). Now
A(LDgx,mpy(D)) =0 if and only if L :m. Further, it is easy to see that
Coker(f) =0 if and only if L =T](m,qy). Q.E.D.

Combining Theorem 3.6 with Theorem 3.4, we obtain the following.

COROLLARY 3.7. Let S = R(X,D) be as in 1.1 and let m > 0 be an integer.
Suppose that the natural map o : Cl(S"™) — CI(S) is an isomorphism and that
S(—(1/qy)V) < S is a principal prime ideal for any Velrr'(X) with (m,qy) > 2.
Then S is a graded cyclic cover of S"™ obtained by the Kummer extension with the
following conditions, in which Vy,...,V, are the prime divisors with my > 2.

(i) (m,qy;) and (m,qy) are relatively prime for any i,j with i #j and the
equality m = [[(m,qy) holds. We set m; = (m,qy;).

(i) There is a homogeneous prime element v; of S") such that
S (—(m;/qu)V;) = v:S"), (my,deggm (v;)) =1 for i=1,...,n, and
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S=SMX, LX) (X = o, X — 0,).
We will apply this to a graded UFD. First, we recall the following.

THEOREM 3.8 [20]. Let R= R(X,D) as in 1.1. Then CI(R) =0 if and only
if (qv,qv')=1 for any pair V #V' and Z cl(LD)= CI(X), where L =
LCM(qV) = HVeIrrl(X) qv-

As a corollary we can show the following.

THEOREM 3.9 (S. Mori [10]). Let R= R(X, D) be a UFD as described above.
Then

R=R(X,LD)[uy,....un)/ ()" —vyp,....ulln —vy,),
where vy, € R(X,LD), is a prime element such that (qy,e;) =1 for i=1,...,m.

Proof. By Theorem 3.8, we can see CI(R(X,LD))=0. Further, for any
Velrr'(X), (1/gv)V eDiv(X,D)=ZD® P(X); ie., there are aj, eZ and
¢y € k(X) such that (1/qy)V —a},D =div(p,). Hence we obtain the assertion
by Corollary 3.7. Here we can see e; = qya)/L. Q.E.D.

Next we study the cyclic cover of the Kummer type. As a corollary of
Theorems 3.3 and 3.6, we obtain the following.

THEOREM 3.10. Let R = R(X, D) be as in 1.1, and let v; € R be homogeneous
prime elements for i =1,...,n. Also, let my,...,m, be positive integers such that
(mj,deg(v;)) =1 for any i and (m;,m;) =1 for i #j. Then

S=RXp,.... X, /(X" —vp,..., X" —p,)

is a normal graded cyclic cover of R with R = S" ") and the natural map
CI(R) — CI(S) is isomorphic.

CoROLLARY 3.11 (cf. [10]). Let R=R(X, D) be a graded UFD as in 1.1, and let
v; € R be homogeneous prime elements for i =1,....,n. Also, let my,...,m, be
positive integers such that (m;,deg(v;)) =1 for any i and (m;;m;) =1 for i #j.
Then
S=R[X1,....X]/(X[" —vi,..., X" —v,)

is a UFD with R = Stm=m),

§4. A few remarks on integral cyclic covers

We now give some remarks on integral cyclic covers. By using Flenner’s
result, in the characteristic zero case we can show the following, which basically
asserts that every integral cyclic cover of the completion of a graded ring is graded
cyclic cover.
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ProPOSITION 4.1.  Let R = R(X,D) be as in 1.1, let r > 0 an integer, and let
R" be the completion of R. We assume that Ry =k is an algebraically closed
field of characteristic zero. Let n:Z — Spec(R") be an integral r-cyclic cover.
Then there exits E € Div(X,D) and rE —a'D = div(p) as in 1.2 such that n is
obtained from the graded integral r-cyclic cover R < S = S(R, Z(E),pT®) by the
completion.

Proof. By assumption we can choose & € Div(R") which defines a torsion
of CI(R") of order r and obtain the relation S(R",Z,®) = Oz, where ® is an
element of the quotient field of R* with r% = div(®). As demonstrated in §4 of
[4], the cokernel of the injection CI(R) — CI(R") is torsion free. Hence we can
choose E € Div(X, D) such that cl(Z(E)) = cl(2) in CI(R"). Therefore we obtain
an isomorphism S(R", Z(E),pT*) =~ S(R",%,®), since we can take the rth root
of units of R" (see the remark following Example 1.6 of [18]). Q.E.D.

(4.2) As is seen in 1.2, our cyclic cover S = S(R,Z(E),pT*) possesses a
natural bigraded structure corresponding to the divisor class. This fact is very
useful for obtaining an explicit representation of the Z/rZ-action on S. For a
standard generator{ € Z/rZ wehaveC (pT'w/) = Cj((pTiuj) Since S, = @)_, Sn.1
with S, ; = H°(X, Ox (I r/s / g )+ n(aE +BD)) T s)1tnby( /sy "Hence
we obtain the relatlon ( (Urfs)ytny for x e Sl

Cyclic covers of ratlonal double points are wellknown and important in
studies of terminal singularities [13]. With Proposition 4.1, their study can be
reduced to that of class groups. Here we will give a simple example.

Example 4.3 (D2 — Dayi2). Let R= R(PI,D) be a rational double point
of type D, with n=4m+2 and me Z.y, where D= (1/2)P, + (1/2)P>—
((n—3)/(n—2))P; and Py, P,, Py are three distinct points of P'. We have
CI(R) = {0, cl((1/2)Py), cl((1/2)Ps), cl((1/2)Py + (1/2)P,)} =~ Z/2Z ® Z/2Z.
We study the Z/rZ-action on the cyclic cover S associated with Z((1/2)P)).
We have (1/2)P1 —2mD = (1/2)P1 —mP1 —Wle +2mP3 — (1/2)1)3 ~ (1/2)P1 —
(1/2)P;. Hence r =2,a" = 4m, and s =2. Now, we can choose («,f) = (0,1)
and define D = p*(D) = P{ + (1/2){P; | + P3,} — ((4m —1)/2m)P;, where p:
Y — X with p*{P1} = {P*} p{P} = {Pz 1, P35}, and p*{Ps} = {P;}. Hence
S=R(Y, D) is a rational double point of type D,.». We take xi,x;, and x3
soO as to satisfy kx, = SZ,O = HO(PI, OP1(P1 + Py, — 2P3))T2, kxy, = Szm,] =
H°(P',Op)u, and kx3 = Sy, 1.1 = H'(P', Opi(P; — P3))Tu. Then, there is a
linear relation among x?"*! x;x3, and x3 in Syni20 = H'(P', Opi ((2m+1)P; +
(2m+1) — (4m+ 1)P3)) T2 =~ k2. Tt is easily seen that S = k[x,x2,x3]/
(X3 +x7"' + xx3). Thus, the action of Z/2Z is given by (xi,x,x3) —
()Cl, x2,7x3).

Index one covers (or canonical covers) of 2-dimensional rational singularities
have been studied from several points of view by many authors. However, in
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general, the resulting Gorenstein singularities have invariants that are much
different from those of Gorenstein rational singularities. We close this paper by
showing following.

PROPOSITION 4.4. Let R be the rational triple point given by R = R(P', D)
with D = (1/2a)P1 + (1/(2a+ 1))P> + (1/(2a(2a + 1)))P3, where Py, P,, and P
are distinct points 0f~P1 and a > 1. Then the numerical invariants of the index
one cover S = R(Y,D) of R are as follows: the index of R is 2(2a+1),a(S) =
a—1, the genus of Y is a, py(S) = (1/2)a(a+ 1), and embdim(k)& > 2a+ 4.

Proof. Set Kpi = —2P;. Then, we have Kpi + D' — (a—1)D ~ (1/2)P; —
(a/(2a+1))P, — (1/(2(2a +1)))P;. Hence the index r of R is 2(2a+1).
We thus obtain ¢’ =22a+ 1)(a—1),s = (r, ) = 2(2(1 +1), and a(R) =d'/s =
a—1. Let wus consider Y =Specp @1 0 Op1((1/2)Py = (la/(2a + 1)) Py —
(1/(2(2a +1)))P3)) & X = P'. Here p is a cycllc cover of degree s =2(2a+ 1)
with branching points P;, P, and P;. Here we make the following definitions:

p (P ={P{si=1,....2a+ 1}, p~'(P2) = {P;,, P3,}, and p~'(P3) = {P;}.
By Hurwitz’s formula, we have g(Y) = a. Further, we can choose (o, ) = (0, 1).
Hence
} 2a+1 2a+1 1
DZ/)*(D>:Z;P1*J+P;,1+P2+ Py~ Q- Z—sz — P,
i~
where Q = 3! P{,+ P35+ P5,+ P;, with deg(Q) =2a+4. We regard S
as a bigraded ring, as in (4.2): Si; = HO(P', Opi (F1))u' T" 1@V where

Fit = [l((Kp1+D') — (a—1)D) +kD] = [lzi"] o+ E“H o [2a’(‘2; m P,

for integers / and k. We study S; with k <a—1=a(S). For [ =2m, with
0 <m < 2a, we have

{0 if m =0,
Fomo = )
mPy — mP, — P3 if 0<m<2a
0 if m=20,
F2m,/c: mPl_mPZ_P3 if 0<m§2a—k,

mPlf(WI71)P27P3 if2¢l*k+1£l’l’l£2a.
For [ =2m+ 1, with 0 <m < 2a, we have
mPy— (m+1)P,—P; if0<m<a—k-1,
F2m+l7k: .
mPy — mP, — Ps if a—k<m<2a.

Therefore p,(S) = EZ(:%) dim S, = S/ "0(k+ 1) = a(a+1)/2 (cf. Corollary 2.10
of [21)).



456

MASATAKA TOMARI AND KEI-ICHI WATANABE

We next show embdim(R) & =2a+4. For k=a, we have

0 if m=0,
Fopg = § mPy —mP, — P3 if 1<m<a,
mPy—(m—1)P,—P; if a+1<m<2q,

F N P1 lfi’l/l:O7
LET\ (m4+1)Py —mPy — Py if 1 <m < 2a.

Here Sk om+1 =0 for 0 <m < 2a. Hence @510:0 Sa2mi1 N (B, Si)? =0, since

s 18

(10]
(1]
(12]

(13]

(14]

(15]

(16]

even. Therefore we obtain the relations

2a 2a
embdim(S(s) ) > dim Sy + Y dim Sy omer =242+ Y 1 =2a+4.
= m=1

m=0
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