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Abstract

In this article E. Cartan’s theorem about the existence of (local) totally geodesic

submanifolds with a prescribed tangent plane is generalized to manifolds which are

equipped only with a linear connection; there is also given a global version of the

theorem. The results are used for a short and geometric proof of the Theorem of

Cartan-Ambrose-Hicks, and more generally of a generalization which is concerned with

the existence of a‰ne maps of arbitrary rank.

Manifolds with a linear connection can be regarded as generalizations of
a‰ne spaces (in the sense of linear algebra). Therefore, we will shortly call them
a‰ne manifolds. The morphisms of the category of a‰ne manifolds are the
a‰ne maps, as they are defined in [KN] I, p. 225; and in this spirit it is con-
venient to speak of a‰ne submanifolds instead of auto-parallel ones; see [KN] II.

As a‰ne submanifolds and a‰ne maps essentially are determined by their
1-jet at one point, it is a natural question to ask for criteria which guarantee the
local and global existence of a‰ne submanifolds resp. a‰ne maps correspond-
ing to given linear initial data at one point. In riemannian geometry these local
questions where partially already treated by E. Cartan in [C]. His work was
continued by W. Ambrose, N. J. Hicks and R. Hermann, see [A, Hi1, Hi2, He].
The most important result in this context is known as the Theorem of Cartan-
Ambrose-Hicks which states the global equivalence of simply connected, geo-
desically complete a‰ne manifolds under suitable hypotheses; see [Hi1, W]. It
is a special case of Theorem 4 of this article, in which the dimension of the
manifolds may be di¤erent, and the global a‰ne map we look for may be neither
an immersion nor a submersion. Theorem 2 is a local version of this result. In
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both cases the a‰ne maps, we are looking for, are constructed via their graphs
which have to be a‰ne submanifolds of the a‰ne product space of the mani-
folds being involved. In other terms, we derive these results from the local resp.
global existence theorem for a‰ne submanifolds (Theorem 1 and Theorem 3).
As is well known, global theorems of this kind are in general obtained by gluing
together local solutions, mostly a tedious work. We avoid it by using an idea of
K. Tsukada from his paper [T] on totally geodesic submanifolds of riemannian
spaces, where these submanifolds are obtained via integral manifolds of a distri-
bution D which is defined on the Graßmann bundle of the ambient space and
which in general is not completely integrable. Theorem 5 shed more light upon
this distribution by characterizing those ‘‘points’’ where D is involutive. By this
result we get a second very short proof of the ‘‘smooth and handy’’ version of
Theorem 1 which, in fact, is the basis for Theorems 2–4.

It should be mentioned that Theorems 1–4 can be found also in [Hi2].
But Hicks’ existence theorems for a‰ne maps rely on additional assumptions
which are shown here to be unnecessary; moreover, his proof of the local exis-
tence theorem for a‰ne submanifolds remains incomplete as an example below
shows. The essential tool which fills the latter gap is Lemma 2 of this article.
In addition, it opens the possibility for this very geometric treatment.

1. Preliminaries and notations

In this article ðM;‘Þ and ð ~MM; ~‘‘Þ denote two connected, a‰ne mani-

folds with torsion and curvature tensor T and R resp. ~TT and ~RR and with the
exponential map exp resp. gexpexp. We put m :¼ dim M. Furthermore, let p0 A M
and ~pp0 A ~MM be two fixed points. We are interested in the existence of an a‰ne
submanifold N through p0 with a prescribed tangent space Tp0

N and the exis-
tence of an a‰ne map f from a neighbourhood U ¼ Uðp0Þ into ~MM mapping p0
to ~pp0 with a prescribed tangent map Tp0

f : Tp0M ! T~pp0
~MM. For the formulation

of the results the following notions are important.

Definition 1. Let points p A M, ~pp A ~MM, a linear subspace V HTpM
and a linear map A : TpM ! T~pp

~MM be given. We say that V is torsion and
curvature invariant i¤ V satisfies TðV ;VÞHV and RðV ;VÞV HV , and that A
preserves the torsion and curvature tensor fields i¤ AðTðu; vÞÞ ¼ ~TTðAu;AvÞ and
AðRðu; vÞwÞ ¼ ~RRðAu;AvÞAw for all u; v;w A TpM. Furthermore, we put VðAÞ :¼
fðv;AvÞ j v A TpMgHTðp; ~ppÞðM � ~MMÞ.

Let us recall the definition of an a‰ne map f : M ! ~MM: It is a Cy map
whose di¤erential commutes with covariant di¤erentiation1, i.e., ~‘‘X f�Y ¼ f�‘XY .
Consequently, the image f � g of each geodesic g of M is a geodesic of ~MM, and
the image f�Z of a parallel vector field Z along a curve a : J ! M is a parallel

1For the covariant di¤erentiation of vector fields along maps see [P] p. 36.
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vector field along f � a. Therefore, the parallel translation and the di¤erential of
f commute in the following sense:

ðTaðt2Þ f Þ � k
t2

t1

a

 !
¼ k

t2

t1

f � a
 !

� ðTaðt1Þ f Þ for all t1; t2 A J:ð1Þ

Furthermore, for each point p A M the di¤erential Tp f preserves the torsion and
curvature tensor fields. It should be mentioned that, conversely, the a‰nity of f
follows from (1).

We say that an (immersed) submanifold N of ðM;‘Þ is a‰ne, if it
can be equipped with a covariant derivative ‘N such that the inclusion map
ðN;‘NÞ ,! ðM;‘Þ becomes a‰ne, in other terms, if ‘XY A XðNÞ for all X ;Y A
XðNÞ. Because of (1), a submanifold N is a‰ne i¤ its tangent bundle TN is
invariant under parallel translation in M along curves a : J ! N. If N is an
a‰ne submanifold, then each geodesic g of N is also a geodesic of M (in other
words, a‰ne submanifolds are totally geodesic), and each tangent space TpN is
torsion and curvature invariant. As mentioned in the introduction, in [KN] II
a‰ne submanifolds are said to be auto-parallel.

Obviously the image f ðNÞ of every injective a‰ne immersion f : N ! M is
an a‰ne submanifold of M. Therefore, a‰ne immersions represent ‘‘a‰ne sub-
manifolds with self-intersections’’. In a riemannian manifold the a‰ne subman-
ifolds are exactly the totally geodesic ones, but in a‰ne manifolds this equiv-
alence is not true as is demonstrated by the following example due to E. Cartan:
Let ‘0 be the canonical covariant derivative in R3 and denote by v� w the cross
product in this space. Then ‘XY ¼ ‘0

XY þX �Y defines another linear connec-
tion on R3, and in the a‰ne manifold ðR3;‘Þ the (usual) planes are totally geo-
desic, but not a‰ne submanifolds; notice that the geodesics of ðR3;‘Þ are again
the straight lines.

As we have seen, a‰ne maps and a‰ne submanifolds are related to each
other very closely. In the following Proposition 1 we will describe a further
relation; for that we remind the reader to the a‰ne product M� :¼ M � ~MM of
the a‰ne manifolds M and ~MM: It is the Cy product manifold with the unique
covariant derivative ‘� such that the canonical projections pr : M� ! M andeprpr : M� ! ~MM are a‰ne maps. The geodesics of ðM�;‘�Þ are the curves ðg; ~ggÞ :
J ! M� where g : J ! M and ~gg : J ! ~MM are geodesics of M resp. ~MM; and its
torsion and curvature tensors T� resp. R� are described by T�ððu; ~uuÞ; ðv; ~vvÞÞ ¼
ðTðu; vÞ; ~TTð~uu; ~vvÞÞ and R�ððu; ~uuÞ; ðv; ~vvÞÞðw; ~wwÞ ¼ ðRðu; vÞw; ~RRð~uu; ~vvÞ~wwÞ.

Proposition 1.
(a) A linear map A : TpM ! T~pp

~MM preserves the torsion and curvature tensor
fields if and only if VðAÞ is torsion and curvature invariant with respect to
‘�.

(b) A Cy-map f : U ! ~MM from an open subset U HM into ~MM is a‰ne if
and only if its graph is an a‰ne submanifold of the a‰ne product M�.

The simple proof is left to the reader.
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2. Local Theorems

At first we are interested in the existence of a (local) a‰ne submanifold
fitting to given initial data ðp0;VÞ, where p0 is a point of M and V a linear
subspace of Tp0M. For its construction we choose a normal neighbourhood
expp0 : U

T ! U of p0 in M; here UT is a star shaped neighbourhood of 0 in

Tp0M on which the exponential map is a di¤eomorphism into M.
Let us fix the following notations: For every u A Tp0

M let Ju denote
the interval ft A R j tu A UTg and gu : Ju ! M the geodesic t 7! expp0

ðtuÞ. Fur-
thermore, for every u A UT let us abbreviate pðuÞ :¼ expp0ðuÞ, tu :¼ k10 gu the
parallel translation along gu from Tp0M to TpðuÞM and Vu :¼ tuðVÞHTpðuÞM.
As expp0ðV VUT Þ is the union 6

u AV guðJuÞ, we call the regular submanifold

expp0ðV VUT Þ the geodesic umbrella associated to the data ðp0;VÞ.

Theorem 1. In the above situation the geodesic umbrella N :¼
expp0ðV VUT Þ is an a‰ne submanifold of M if and only if for every u A V VUT

one has2

Tð _gguð1Þ;VuÞHVu and Rð _gguð1Þ;VuÞVu HVu:ð2Þ
Of course, condition (2) is satisfied, if Vu is torsion and curvature invariant.

The riemannian version of the theorem is attributed to E. Cartan. The
above version can be found in [Hi2, Theorem 9], but his proof is incomplete as
we indicate after the proof of Theorem 1.

If the geodesic umbrella N is a‰ne, its construction implies Vu ¼ TpðuÞN
for every u A V VUT and therefore, the linear subspaces Vu satisfy (2). Thus,
it remains to prove that (2) implies the a‰nity of the umbrella N. This step is
based on two lemmas, the first of which is also used by Hicks (see [Hi2,
Proposition 2]).

Lemma 1. For every u A UTnf0g and v A Tp0M the infinitesimal variation
Y v : t 7! F�ðq=qsÞjð0; tÞ of the geodesic variation F : ðs; tÞ 7! expp0ðt � ðuþ svÞÞ ¼
guþsvðtÞ is the Jacobi field along the geodesic gu satisfying the initial data Y vð0Þ ¼ 0
and ð‘qY

vÞð0Þ ¼ v.

Remember that in ðM;‘Þ the Jacobi fields along a geodesic g are the solutions
of the di¤erential equation

‘q‘qY ¼ Rð _gg;YÞ _ggþ ‘qðTð _gg;YÞÞ;ð3Þ
see [KN] II, p. 63. It should also be mentioned that q denotes the canonical
unit vector field of R.

Lemma 2. Let be given a vector u A UTnf0g, a Jacobi field Y along gu

2Notice that the single vectors in (2) form the radial vector field pðuÞ 7! _gguð1Þ.
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satisfying Yð0Þ ¼ 0 and a vector field X A XðUÞ, which is parallel along every
geodesic gv ðv A Tp0MÞ. Then the vector field ‘YX : t 7! ‘Y ðtÞX satisfies the dif-
ferential equation

‘q‘YX ¼ Rð _ggu;YÞðX � guÞ:

Proof. If we put v :¼ ð‘qY Þð0Þ and define F and Y v as in Lemma 1, then
we have Y ¼ Y v, hence

‘YðtÞX ¼ ð‘q=qsðX � F ÞÞjð0; tÞ:
Because of X � Fðs; tÞ ¼ X � guþsvðtÞ the parallelity of X along the geodesic rays
implies

‘q=qtðX � FÞjðs; tÞ ¼ ‘qtðt 7! X � Fðs; tÞÞ ¼ 0:

Therefore, the structure equation for the curvature tensor (see [P] p. 83) gives

ð‘q‘YXÞðtÞ ¼ ð‘q=qt‘q=qsðX � FÞÞjð0; tÞ

¼ R F�
q

qt
;F�

q

qs

� �
ðX � FÞ þ ‘q=qs‘q=qtðX � FÞ

� �����
ð0; tÞ

¼ Rð _gguðtÞ;YðtÞÞðX � guðtÞÞ: r

Proof for Theorem 1 ‘‘(’’. At the moment we fix three vectors u; v;w A V
with u A UTnf0g, use the Jacobi field Y v and the map F from Lemma 1.
Because of uþ sv A V the image of the map F lies in the geodesic umbrella N.
Therefore, Lemma 1 shows

Et A Ju: Y vðtÞ A TguðtÞN:ð4Þ
In the following we use the development z : Ju ! Tp0M of vector fields Z along
gu in the sense of Cartan given by zðtÞ :¼ t�1

tu ZðtÞ, which satisfies

Et A Ju: ð‘qZÞðtÞ ¼ ttuðz 0ðtÞÞ:ð5Þ
Besides, for t A Ju we also define the tensors T̂TuðtÞ and R̂RuðtÞ on Tp0M by

T̂TuðtÞðxÞ :¼ t�1
tu Tð _ggtuð1Þ; ttuðxÞÞ and R̂RuðtÞðx; yÞ :¼ t�1

tu Rð _ggtuð1Þ; ttuðxÞÞttuðyÞ

for all x; y A Tp0
M. According to condition (2) the linear subspace V is invari-

ant with respect to these tensors, i.e.:

T̂TuðtÞðVÞHV and R̂RuðtÞðV ;VÞHV :ð6Þ
If now y denotes the development of the Jacobi field Y v, then the Jacobi
equation (3) implies that y is a solution of the linear di¤erential equation

y 00ðtÞ ¼ R̂RuðtÞðyðtÞ; uÞ þ ðT̂TuðyÞÞ0ðtÞ

with the initial values yð0Þ ¼ 0, y 0ð0Þ ¼ v A V . Combining this with (6) we
obtain
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yðJuÞHV ; hence Et A Ju: Y vðtÞ A Vtu:ð7Þ

Now let us vary the vector v: As our consideration takes place in the normal
neighbourhood U , there are no conjugate points along gu : Ju ! U ; combining
(4) and (7) we therefore obtain

Vu ¼ TpðuÞN for every u A V VUT :ð8Þ

We continue the argumentation with the Jacobi field Y v and apply formula (5)
to the development z of the vector field Z : t 7! ‘Y vðtÞX

w, where X w denotes
that radially parallel vector field with X wðp0Þ ¼ w. According to Lemma 2 we
get

z 0ðtÞ ¼ R̂RuðtÞðyðtÞ;wÞ:
Since zð0Þ ¼ 0 A V (because Y vð0Þ ¼ 0 and therefore Zð0Þ ¼ 0), we obtain from
(7) and (8)

zðJuÞHV ; hence in particular ‘Y vð1ÞX
w A Vu ¼ TpðuÞN:

Repeating the argument of the absense of conjugate points, we find
‘X ðX wjNÞ A XðNÞ for every X A XðNÞ. If now ðw1; . . . ;wrÞ is a basis of V , then
ðX w1 jN; . . . ;X wr jNÞ is a frame field of the tangent bundle TN, and therefore, we
finally get ‘XY A XðNÞ for all X ;Y A XðNÞ; thereby the a‰nity of the geodesic
umbrella N is proved. r

It should be mentioned that the proof of Theorem 9 in [Hi2] runs exactly
along the above lines (with some other notation), but it ends at formula (8).
Thereby Hicks has only proved ‘vY A TN for vectors v A TN in radial directions
and arbitrary vector fields Y A XðNÞ. The following example shows that his
proof is really incomplete: Let E A XðR3Þ, h� ; �i and ‘0 denote the radial vector
field defined by Ep G p, the canonical riemannian metric of R3 and its Levi-
Civita connection, respectively. With respect to the covariant derivative ‘XY ¼
‘0
XY þ hY ;Ei � X � E every 2-dimensional linear subspace NHR3 is a geodesic

umbrella with center p0 ¼ 0 satisfying formula (8) with V :¼ T0N; nevertheless,
N is no a‰ne submanifold of ðR3;‘Þ.

From Theorem 1 we will now derive a criterion on the existence of a local
a‰ne map for which at one point the di¤erential is prescribed by a linear map
A :Tp0

M !T~pp0
~MM. For that we choose normal neighbourhoods expp0

:UT !U

and gexpexp~pp0
: ~UUT ! ~UU of p0 in M resp. of ~pp0 in ~MM with AðUTÞH ~UUT .

As at the beginning of this section, for every ~uu A T~pp0
~MM we define the interval

~JJ~uu and the geodesic ~gg~uu : ~JJ~uu ! ~UU . Because we have Ju H ~JJAu, we can consider the
geodesic ðgu; ~ggAuÞ : Ju ! M� for every u A Tp0M. In addition for every u A UT

we define the linear map Au :¼ ðk10 ~ggAuÞ � A � ðk01 guÞ : Tguð1ÞM ! T~ggAuð1Þ
~MM.

Notice, if there exists an a‰ne map f : U ! ~MM with Tp0 f ¼ A, then we have
~ggAu ¼ f � gu for every u, hence Au ¼ Tguð1Þ f ; thus in this case the maps Au preserve
the torsion and curvature tensor fields. Therefore, the assumption of the fol-
lowing theorem is necessary.
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Theorem 2. If in the above situation for every u A UT the linear map Au

preserves the torsion and curvature tensor fields, then

f :¼gexpexp~pp0
� A � ðexpp0 jU

T Þ�1 : U ! ~MM

is an a‰ne map satisfying f ðp0Þ ¼ ~pp0 and Tp0 f ¼ A.

This result is a generalized local version of the Theorem of Cartan-
Ambrose-Hicks in which the map A is assumed to be an isomorphism (see [KN]
I, p. 257). The general version was also proved in [Hi2], but under additional
unpleasant assumptions. The idea to prove this theorem via the graph of f was
born, when we read a remark of R. Hermann in [He].

Proof. Of course, f is a Cy map satisfying f ðp0Þ ¼ ~pp0 and Tp0
f ¼ A; its

graph is the geodesic umbrella N :¼ exp�ðp0; ~pp0ÞðVðAÞV ðUT � ~UUTÞÞ in the a‰ne

product M� ¼ M � ~MM (for VðAÞ see Definition 1). According to Proposition
1(b) it remains to prove the a‰nity of N in M�. Starting from the linear sub-
space VðAÞ ¼ Tðp0; ~pp0ÞNHTðp0; ~pp0ÞM

� we define the linear subspaces VðAÞðu;AuÞ
analogously to the construction at the beginning of this section. It is easy to
see that VðAÞðu;AuÞ coincides with VðAuÞ. As every map Au preserves the tor-
sion and curvature tensor fields (because of the assumptions), we know from
Proposition 1(a) that the subspaces VðAÞðu;AuÞ are torsion and curvature invari-

ant. Therefore, Theorem 1 implies the a‰nity of the submanifold N. r

3. Graßmann bundle

For each point p A M let LpM be the set of frames of TpM, which we
describe by isomorphisms u : Rm ! TpM as in [KN] I, p. 56; by p : LM ! M
we denote the entire frame bundle.

For some fixed number r A f1; . . . ;m� 1g let t : GrðTMÞ ! M denote
the Graßmann bundle; its fibre over p is the Graßmann manifold GrðTpMÞ of
the r-dimensional subspaces V HTpM. This bundle is associated to the frame
bundle via the map

% : LM �GrðRmÞ ! GrðTMÞ; ðu;VÞ 7! uðVÞ:

For each u A LpM the map %u : GrðRmÞ ! GrðTpMÞ;V 7! uðVÞ is a di¤eomor-
phism; and if V A GrðRmÞ denotes the subspace which is spanned by the first
canonical unit vectors e1; . . . ; er A Rm, then the fibre bundle morphism

%V : LM ! GrðTMÞ; u 7! uðVÞ ¼ spanfuðe1Þ; . . . ; uðerÞgð9Þ
is a surjective submersion (even a principal fibre bundle). The linear connection
HðLMÞ of LM corresponding to ‘ induces a connection HðGrðTMÞÞ (in the
sense of Ehresmann) on the Graßmann bundle (see [KN] I, p. 87); it is given by

H%ðu;VÞðGrðTMÞÞ ¼ %V� HuðLMÞHT%ðu;VÞðGrðTMÞÞ ðu A LMÞ:ð10Þ
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This vector bundle HðGrðTMÞÞ contains a canonical subbundle D characterized
by

t�DV ¼ V ðV A GrðTMÞÞ;ð11Þ
see [T] p. 400; of course, D is a subbundle of TðGrðTMÞÞ of rank r; in general
it is not completely integrable.

Proposition 2.
(a) If a : J ! M is a broken Cy curve and V A GrðTpMÞ a subspace

with 0 A J and p ¼ að0Þ, then the horizontal lift Va of a in GrðTMÞ with
the initial value Vað0Þ ¼ V is given by the parallel displacement of V in
ðM;‘Þ along a, i.e., VaðtÞ ¼ ðk t

0 aÞðVÞHTaðtÞM.

(b) In the situation (a) the curve Va is tangential to D i¤ _aaðtÞ A VaðtÞ for all
t A J.

(c) If in the situation (a) a is a geodesic with _aað0Þ A V , then Va is already
tangential to D.

(d) For every two sections X ;Y A GðDÞ and every element V A GrðTMÞ
the relation ‘X ðVÞt�Y A V holds. Therefore, every integral manifold S
of D can be equipped uniquely with a covariant derivative ‘S such that
tjS : ðS;‘SÞ ! ðM;‘Þ becomes an a‰ne immersion.

(e) If f : N ! M is an a‰ne map of rank r, then its Gauß map g f :
N ! GrðTMÞ, p 7! f�TpN is tangential to D; therefore, S :¼ g f ðNÞ is an
integral manifold of D and g f is a submersion onto S, which is a‰ne with
respect to the covariant derivative ‘S described in (e).

Remark 1. The statements (d) and (e) are generalizations of Tsukada’s
Theorem 3.1 in [T].

Proof. For (a)–(c): Because of (9) we can write V ¼ uðVÞ with some
u A Lað0ÞM. As ~aa : t 7! ðk t

0 aÞ � u is the horizontal lift of a in LM with
~aað0Þ ¼ u, the horizontal lift Va is %V � ~aa : t 7! ðk t

0 aÞðuðVÞÞ ¼ ðk t
0 aÞðVÞ.—Since

t� jHVaðtÞðGrðTMÞÞ is an isomorphism onto TaðtÞM, the statement (b) follows
from t � Va ¼ a and (11). The statement (c) is now clear, because the tangent
vector field of a geodesic is parallel.

For (d): If X ;Y A GðDÞ and V A GrðTMÞ are given, let c be the
maximal integral curve of X with cð0Þ ¼ V . Then c is a horizontal curve
over a :¼ t � c, hence c ¼ Va because of (a); therefore for every t A J we obtain
t�Y � cðtÞ A t�DcðtÞ ¼ cðtÞ ¼ VaðtÞ ¼ ðk t

0 aÞðVÞ. Therefrom we derive ‘M
X ðVÞt�Y ¼

ð‘M
q ðt�Y � cÞÞð0Þ A V .—If now S is an integral manifold of D, then (according

to the statement just proved) for all X ;Y A XðSÞ and V A S there exists a vector
ZðVÞ A DV ¼ TVS such that ‘X ðVÞt�Y ¼ t�ZðVÞ. In this way a vector field Z A
XðSÞ is defined. By ‘S

XY :¼ Z we get the covariant derivative in question.
For (e): If p A N and v A TpN are given, we choose a curve a : ��1; 1½ ! N

with _aað0Þ ¼ v and put V :¼ g f ðpÞ. From (1) we get g f � aðtÞ ¼ ðk t
0ð f � aÞÞðVÞ ¼

Vf �aðtÞ and additionally ð _dd=dtÞð f � aðtÞÞ A g f ðaðtÞÞ ¼ Vf �aðtÞ. Applying (b) we

knut pawel and helmut reckziegel348



find that the curve g f � a is tangential to D, in particular g f
� v ¼ ð _dd=dtÞjt¼0 �

ðg f � aðtÞÞ A Dg f ðpÞ. Hence, the map g f is tangential to D.—According to the
rank theorem, for every point p A N we can find a neighbourhood U ¼ UðpÞ
such that L :¼ f ðUÞ is a submanifold of M and s :¼ f jU : U ! L a submersion
onto L. Obviously we have g f jU ¼ gi � s where i denotes the inclusion map
L ,! M. Now, gi is an injective immersion, which can be considered as a
parametrization of g f ðUÞ; because g f is tangential to D, g f ðUÞ therefore is an
integral manifold of D. Consequently, the entire set S :¼ g f ðNÞ is an integral
manifold of D. Since f ¼ ðtjSÞ � g f and tjS are a‰ne maps, it is easily seen
that also g f : N ! S is an a‰ne submersion. r

Remark 2. By the way we have proved that every a‰ne map can globally
be written as the composition i � s of an a‰ne submersion s and an a‰ne
immersion i; this result is already known from [LR, Theorem 1].

4. Global Theorems

We will now prove a globalization of Theorem 1. For that we intro-
duce a further notation. Let again a point p0 A M and a linear subspace V A
GrðTp0MÞ be fixed. If g : ½0; bg� ! M is a broken geodesic with gð0Þ ¼ p0 and
with the ‘‘break points’’ 0 < t1 < � � � < tn < bg, let Vg : ½0; bg� ! GrðTMÞ denote
the horizontal lift of g as in Proposition 2(a). Furthermore, put t0 :¼ 0, tnþ1 :¼ bg
and gi :¼ g j ½ti; tiþ1�. By GðM;VÞ we denote the set of all such broken geodesics
such that _ggiðtiÞ A VgðtiÞ holds for every i; then automatically one has _ggiðtÞ A VgðtÞ
for every t A ½ti; tiþ1�. In other terms, the elements of GðM;VÞ are those broken
geodesics g : ½0; bg� ! M emanating from p0 for which Vg is tangential to the
subbundle D everywhere (see Proposition 2(b)).

Theorem 3. If in the above situation for every geodesic ðg : ½0; bg� ! MÞ A
GðM;VÞ the linear subspace VgðbgÞ is torsion and curvature invariant, then there
exists one (and up to an a‰ne di¤eomorphism exactly one) geodesically closed,
a‰ne immersion F : N ! M from a simply connected a‰ne manifold N and a
point q0 A N such that Fðq0Þ ¼ p0 and F�Tq0N ¼ V .

The attribute geodesically closed means: For every maximal geodesic
~cc : J ! N the image F � ~cc : J ! M is a maximal geodesic, too. If M is geo-
desically complete, then F is geodesically closed if and only if N is geodesically
complete.

In the special case of a complete riemannian manifold M Theorem 3 is
due to R. Hermann [He]. He used strongly the Theorem of Hopf-Rinow and
remarked that therefore he could not see how to generalize the theorem to a‰ne
manifolds. Theorem 3 proves that even the geodesical completeness of M is not
needed.

Proof. We start with an arbitrary normal neighbourhood expp0 :
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UT ! U of p0 in M. Then we can apply Theorem 1 and find that the geo-
desical umbrella N0 ¼ expp0ðV VUTÞ is an a‰ne submanifold of M. According
to Proposition 2(e) the image S0 :¼ gN0ðN0Þ of its Gauß map gN0 : p 7! TpN0 is
an integral manifold of D with V A S0. Let S be the maximal connected inte-
gral manifold of D which contains S0 (see [N, Theorem 4] or [BH, Theorem 1.3
and 1.4], a proof of the paracompactness of S can be found in [LR] p. 94).
Because of Proposition 2(d) tjS is an a‰ne immersion with respect to a suitable
covariant derivative of S. Of course, we have tðVÞ ¼ p0 and t�TVS¼ t�DV ¼V .

Now the crucial point is to prove that tjS is geodesically closed. For that,
let a maximal geodesic ~cc : ~JJ ! S be given. As t � ~cc is a geodesic in M, it can be
extended to a maximal geodesic c : J ! M. Let us assume d :¼ sup ~JJ < sup J.
Then we choose some broken geodesic ~gg : ½0; d � ! S starting from ~ggð0Þ ¼ V with
~ggðdÞ A ~ccð ~JJÞ. We may assume ~ggðdÞ ¼ ~ccðdÞ. Then the horizontal lift Vg of the
broken geodesic

g : ½0; d� ! M; t 7! t � ~ggðtÞ for t A ½0; d �
cðtÞ for t A �d; d�

�
(with initial point p0) is given by VgðtÞ ¼ ~ggðtÞ for t A ½0; d � and VgðtÞ ¼ ~ccðtÞ
for t A �d; d½ . In particular, we have _ccðdÞ ¼ t� _~cc~ccðdÞ A t�T~ccðdÞS ¼ t�D~ccðdÞ ¼ ~ccðdÞ ¼
VgðdÞ. As the analogous argument holds for the other break points of g, we
find g A GðM;VÞ. Therefore Vg : ½0; d� ! GrðTMÞ is tangential to D, i.e., VgðdÞ
is a good candidate in order to continue ~cc. For realizing this idea we choose
some normal neighbourhood expp1 : U

T
1 ! U1 of p1 :¼ cðdÞ. Because of the

hypothesis of Theorem 3, we can again apply Theorem 1 replacing V by V1 :¼
VgðdÞ; hence the geodesic umbrella N1 ¼ expp1ðV1 VUT

1 Þ is an a‰ne submani-

fold of M and its ‘‘Gauß image’’ S1 :¼ gN1ðN1Þ is a further integral manifold
of D containing the ‘‘point’’ V1 A S1. If we now choose some e > 0 such that
JðdÞ :¼ �d� e; dþ e½H �d; sup J½ and cðJðdÞÞHU1, then cðJðdÞÞ lies in N1 be-
cause _ccðdÞ A V1. Furthermore, since N1 is an a‰ne submanifold we get for all
t A �d� e; d½

gN1 � cðtÞ ¼ TcðtÞN1 ¼ k
t

d

c

� �
ðTp1N1Þ ¼ k

t

d

c

� �
ðV1Þ ¼ VgðtÞ ¼ ~ccðtÞ;ð12Þ

hence ~ccðtÞ A S VS1. Therefore, S1 is a subset of S and gN1 an a‰ne di¤eo-
morphism into S. Therefrom we conclude that gN1 � c j JðdÞ is a geodesic in S
continuing ~cc beyond d (because of (12)) in contradiction to the maximality of
~cc. Thus we have proved sup ~JJ ¼ sup J. In the same way we get inf ~JJ ¼ inf J,
hence ~JJ ¼ J.

In order to define the a‰ne immersion F : N ! M of Theorem 3 we
use the universal covering j : N ! S of S and put F :¼ ðtjSÞ � j. Let us now
prove the uniqueness of F. For that let ~FF : ~NN ! M be another a‰ne immer-

sion and ~qq0 A ~NN a point which have the same properties as F and q0. Accord-
ing to Proposition 2(e) its Gauß map g

~FF is a local a‰ne di¤eomorphism into S
satisfying t � g ~FF ¼ ~FF . Since ~NN is simply connected and we have g

~FF ð~qq0Þ ¼ V ¼
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jðq0Þ, there exists a local a‰ne di¤eomorphism f : ~NN ! N such that j � f ¼ g
~FF

and f ð~qq0Þ ¼ q0. From the construction we get F � f ¼ ~FF . As ~FF is geodesi-
cally closed, f is geodesically closed, too. Therefore, according to the follow-
ing Lemma f is a covering map, in fact even an a‰ne di¤eomorphism because
of the simple connectedness of N. r

Lemma 3. If N and ~NN are connected a‰ne manifolds of the same dimension,
then each geodesically closed, a‰ne local di¤eomorphism f : ~NN ! N is a covering
map.

This lemma is a generalization of Hicks’ Theorem 3 in [Hi1], in which N is
assumed to be geodesically complete. One can follow Hicks’ proof; where he
uses the geodesically completeness of ~NN the argumentation keeps valid if instead
of that we use that f is geodesically closed.

Now we will also derive a global version of Theorem 2. Let again a
linear map A : Tp0M ! T~pp0

~MM be given. If we suppose the a‰ne manifold ~MM
to be geodesically complete, then for every broken geodesic g : ½0; bg� ! M with

gð0Þ ¼ p0 there exists a unique broken geodesic ~gg : ½0; bg� ! ~MM with ~ggð0Þ ¼ ~pp0
such that the following is true: If 0 < t1 < � � � < tn < bg are the ‘‘break points’’
of g, t0 :¼ 0, tnþ1 :¼ bg, gi :¼ g j ½ti; tiþ1� and ~ggi :¼ ~gg j ½ti; tiþ1� and if we define

AgðtÞ :¼ k
t

0

~gg

� �
� A � k

0

t

g

� �
: TgðtÞM ! T~ggðtÞ ~MM

for every t A ½0; bg�, then ~gg has no other ‘‘break points’’ than t1; . . . ; tn and

_~gg~ggiðtiÞ ¼ AgðtiÞð _ggiðtiÞÞð13Þ
holds for every i ¼ 0; . . . ; n. Another characteriziation of ~gg is the following: If
C : ½0; bg� ! Tp0

M denotes the development of g in Tp0
M (see [KN] I), then ~gg

is the broken geodesic with the development A � C.

Theorem 4. Let us assume that M is simply connected and ~MM geodesically
complete and that the linear map A : Tp0

M ! T~pp0
~MM has the following property:

For every broken geodesic g : ½0; bg� ! M emanating from p0 the linear map AgðbgÞ
(defined above) preserves the torsion and curvature tensors. Then there exists one
and only one a‰ne map f : M ! ~MM with f ðp0Þ ¼ ~pp0 and Tp0 f ¼ A.

This result generalizes the Theorem of Cartan-Ambrose-Hicks, in which
A is supposed to be an isomorphism. It should be mentioned that under this
condition f is a covering map if also M is geodesically complete, and a di¤eo-
morphism if in addition also ~MM is simply connected. It should also be noticed
that Hicks has treated this general case in [Hi2] but under additional unpleasant
assumptions.

Proof. As in the proof of Theorem 2 one proves

VðAgðtÞÞ ¼ VðAÞðg;~ggÞðtÞð14Þ
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in the situation described before Theorem 4; here VðAÞðg; ~ggÞðtÞ is constructed

in the a‰ne product M� ¼ M � ~MM by starting from the linear subspace VðAÞ
(see Definition 1); it means it is the corresponding horizontal lift of the geodesic
ðg; ~ggÞ : ½0; bg� ! M� in the Graßmann bundle GmðTM�Þ. Condition (13) implies
ðg; ~ggÞ A GðM�;VðAÞÞ (see the beginning of this section); and every geodesic of
the latter set is obtained in this way. Furthermore, Proposition 1(a) and (14)
show that VðAÞðg; ~ggÞðbgÞ is torsion and curvature invariant, because AgðbgÞ pre-
serves the torsion and curvature tensors (as supposed in Theorem 4). There-
fore, we can apply Theorem 3 and obtain: There exists an a‰ne, geodesically
closed immersion F : N ! M� from a simply connected a‰ne manifold N into
M� and a point q0 A N such that F ðq0Þ ¼ ðp0; ~pp0Þ and F�Tq0N ¼ VðAÞ. The
map g :¼ pr � F : N ! M is then an a‰ne map between m-dimensional mani-
folds; in particular, it has constant rang rk g. Because g�Tq0N ¼ pr�ðF�Tq0NÞ ¼
pr� VðAÞ ¼ Tp0M we get rk g ¼ m, that means, g is an a‰ne local di¤eomor-
phism. Since F is geodesically closed, it is easily seen that also g is geodesically
closed. Therefore we can apply Lemma 3 and find that g is an a‰ne covering
map, in fact even an a‰ne di¤eomorphism because of the simple connectedness
of M. Now f :¼ ~prpr � F � g�1 : M ! ~MM is ‘‘the’’ a‰ne map possessing all prop-
erties which are stated in Theorem 4. r

Remark 3. If the a‰ne manifolds ðM;‘Þ and ð ~MM; ~‘‘Þ have parallel torsion
and curvature tensors, then the parallel translation along curves in these mani-
folds are isomorphisms preserving the torsion and curvature tensors. Therefore,
in this situation it is easier to fulfill the hypotheses of Theorem 1–4: If V is
torsion and curvature invariant (resp. if A preserves the torsion and curvature
tensors), then automatically the subspaces Vu and VgðbgÞ of Theorem 1 resp. 2 are
torsion and curvature invariant (resp. the linear maps Au and AgðbgÞ of Theo-
rem 2 resp. 4 preserve the torsion and curvature tensors). Important examples
of such manifolds are the reductive homogeneous spaces; see [KN] II. For them
we immediately deduce the following corollary from Theorem 3, which general-
izes the well known result about the 1 :1 correspondence between totally geodesic
submanifolds of symmetric spaces and Lie triple systems.

Corollary. Let M ¼ G=H be a reductive homogeneous space with origin
o A M and the AdðHÞ-invariant splitting g ¼ hlm of the Lie algebra g of G;
we equip M with the canonical linear connection (see [KN] II, p. 192). Further-
more, let n be a linear subspace of m and V HToM its image under the canonical
isomorphism m ! ToM. In this situation there exists a a‰ne submanifold in M
corresponding to the initial data ðo;VÞ if and only if

EX ;Y ;Z A n: ð½X ;Y �m A n and ½½X ;Y �h;Z� A nÞ:ð15Þ
Furthermore, if (15) is satisfied, then there exists an a‰ne immersion F : N ! M
with the properties described in Theorem 3 (replacing p0 by o).

Remark 4. The manifold N of the corollary can also be given the
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structure of a homogeneous reductive space whose canonical covariant deriva-
tive coincides with the original one: As the torsion and the curvature tensor
of the latter covariant derivative are parallel again, the Theorem of Cartan-
Ambrose-Hicks can be used to show that the Lie group AðNÞ of all a‰ne dif-
feomorphisms N ! N acts transitively on N, and its Lie algebra aðNÞ can be
identified with a Lie subalgebra of XðNÞ (see [KN] I, p. 232). The Lie algebra
of the isotropy group AðNÞq0 with respect to some point q0 A F�1ðfogÞ is hq0 :¼
fX A aðNÞ jXq0 ¼ 0g; and mq0 :¼ fX A aðNÞ j Ev A Tq0N : ‘vX ¼ Tðv;Xq0Þg can be

shown to be an AdðAðNÞq0Þ-invariant subspace being complementary to hq0 ; in

this way NGAðNÞ=AðNÞq0 is given the structure of a reductive homogeneous
space. The idea for the construction of mq0 is the following: For every u A Tq0N
and s A R there exists a unique element fs A AðNÞ with initial value fsðq0Þ ¼ guðsÞ
and with di¤erential Tq0 fs ¼ ks

0 gu. (In the theory of symmetric spaces fs is
called a transvection along the geodesic gu, see [C] p. 266.) Then ð fsÞ is a 1-
parameter subgroup of AðNÞ with some generator A. The corresponding
fundamental vector field X :¼ A� is an element of the Lie algebra aðNÞ satisfying
Xq0 ¼ u and ‘vX ¼ Tðv; uÞ for all v A Tq0N. With this insight it is easy to show
that the above subspace mq0 has the stated properties.

Moreover, if F : mq0 ! m denotes the linear map induced by the di¤erential
Tq0F : Tq0N ! ToM of the immersion F of the Corollary, then for every X A mq0

and for the 1-parameter subgroups gX :R!AðNÞ resp. gFðXÞ :R!AðMÞ induced
by X resp. FðXÞ we have F � gX ðtÞ ¼ gFðXÞðtÞ � F for all t A R. Hence, at least

‘‘partially’’ F behaves like a morphism of homogeneous spaces.

5. Involutivity of the subbundle D

Let us recall that by definition the subbundle DHTðGrðTMÞÞ is involutive
at some ‘‘point’’ V A GrðTMÞ i¤ ½X ;Y �ðVÞ A DV for all X ;Y A GðDÞ, where
½X ;Y �ðVÞ denotes the value of the Lie bracket ½X ;Y � at the point V.

Theorem 5. The subbundle D is involutive at the point V A GrðTMÞ if and
only if the subspace V is torsion and curvature invariant.

Proof. At first a general remark: If a fibre bundle t : E ! M is equipped
with an Ehresmann connection HHTE, then we assign to it the tensor field W
of type ð1; 2Þ on E characterized by the following equation:

EX ;Y A XðEÞ: WðX ;YÞ ¼ �½XH;YH�V;

here V denotes the vertical subbundle kern t� and the indices H and V mean
that one has to regard the horizontal resp. vertical part of the respective vector
field. This tensor field W is called the curvature form of H. For every X ;Y A
GðHÞ and e A E we have

½X ;Y �ðeÞ A He , WðX ðeÞ;Y ðeÞÞ ¼ 0:ð16Þ
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Applying this construction on the connections HðLMÞ and HðGrðTMÞÞ of
Section 3 we come to curvature forms which we denote by WLM and WGrðTMÞ.
They are related to each other by

(17) %V� ðWLMðx1; x2ÞÞ
¼ WGrðTMÞð%V� x1; %V� x2Þ for all u A LM and x1; x2 A HuðLMÞ:

For the proof of (17) one takes notice of (9) and (10) and uses similar arguments
as for the proof of the structure equation for the curvature tensor (e.g. see [P]
p. 83).

The curvature form WGrðTMÞ is of interest for us because of formula (16)

which in combination with (11) implies: D is involutive at V A GrðTMÞ if and
only if

EX1;X2 A GðDÞ: ðWGrðTMÞðX1ðVÞ;X2ðVÞÞ ¼ 0 and t�½X1;X2�ðVÞ A VÞ:ð18Þ
Now we show that for all p A M, V A GrðTpMÞ and w1;w2 A HV ðGrðTMÞÞ we
have

WGrðTMÞðw1;w2Þ ¼
_dd

dt

����
t¼0

ðexpðt � Rðv1; v2ÞÞðVÞÞ with vi :¼ t�wi:ð19Þ

Here Rðv1; v2Þ is considered as an endomorphism of TpM; hence,

t 7! expðt � Rðv1; v2ÞÞ is a 1-parameter subgroup of GLðTpMÞ and t 7!
expðt � Rðv1; v2ÞÞðVÞ a curve in GrðTpMÞ.

For the proof of (19) we use (9) in order to choose a u A LpM with
uðVÞ ¼ V . Furthermore, let xi A HuðLMÞ be the horizontal lift of vi; then we
have %V� xi ¼ wi. If now o : TðLMÞ ! EndðRmÞ denotes the connection form of
HðLMÞ, then o �WLM is the usual corresponding curvature form with values in
EndðRmÞ satisfying

oðWLMðx1; x2ÞÞ ¼ u�1 � Rðv1; v2Þ � u because p�xi ¼ vi

(see [P] p. 282/286 or [KN] I, p. 133). Calling the definition of o in our mind
we get

WLMðx1; x2Þ ¼
_dd

dt

����
t¼0

ðu � expðt � ðu�1 � Rðv1; v2Þ � uÞÞÞ

¼
_dd

dt

����
t¼0

ðexpðt � Rðv1; v2ÞÞ � uÞ;

and therefore (because of (17))

WGrðTMÞðw1;w2Þ ¼ %V� ðWLMðx1; x2ÞÞ ¼
_dd

dt

����
t¼0

ð%Vðexpðt � Rðv1; v2ÞÞ � uÞÞ

¼
_dd

dt

����
t¼0

ðexpðt � Rðv1; v2ÞÞðVÞÞ;
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thus (19) is verified. Now, it is easy to prove:

_dd

dt

����
t¼0

ðexpðt � Rðv1; v2ÞÞðVÞÞ ¼ 0 , expðt � Rðv1; v2ÞÞðVÞ1V , Rðv1; v2ÞðVÞHV :

Hence, using (10) we get

ðEX1;X2 A GðDÞ : WGrðTMÞðX1ðVÞ;X2ðVÞÞ ¼ 0Þ , RðV ;VÞV HV :ð20Þ

On the other hand we obtain from Proposition 2(d) and the structure equation
for the torsion

EX1;X2 A GðDÞ: ðt�½X1;X2�ðVÞ A V , Tðt�X1ðVÞ; t�X2ðVÞÞ A VÞ;

hence,

ðEX1;X2 A GðDÞ : t�½X1;X2�ðVÞ A VÞ , TðV ;VÞHV :

Combining this result with (20) we finish the proof because of (18). r

Theorem 5 enables us to give an alternative proof of a ‘‘smooth and handy’’
version of Theorem 1. For that we use the following generalization of a result
of F. Nübel; [N, Theorem 1].

Proposition 3. Let M be a Cy manifold and D a vector subbundle of
TM. Furthermore, let V be a linear space, U HV a star shaped neighbourhood
of 0 and j : U ! M a Cy map. For every u A V put Ju :¼ ft A R j tu A Ug and
define bu : Ju ! V , t 7! tu. If then D is involutive at all points p A jðUÞ and if
all curves j � bu are tangential to D, then the entire map j is tangential to D.

Remark 5. Because in this proposition there are made no special as-
sumptions on the subbundle D, this result can be applied in many sit-
uations. For instance, we will use it in a forthcoming paper to prove an
analogue of Theorem 1 for spherically bent submanifolds of a riemannian space.

The proof of Proposition 3 is based on the following result of Blumenthal
and Hebda (see [BH] p. 165).

Lemma 4. In the situation of Proposition 3 let I and J denote open intervals
containing 0, F : I � J ! M a Cy map and Y the vector filed t 7! F�ðq=qsÞjð0; tÞ
along the curve a : J ! M, t 7! F ð0; tÞ. We suppose that for every s A I the curve
as : t 7! F ðs; tÞ is tangential to D, the subbundle D is involutive at the points of
F ðI � JÞ and that Yð0Þ A Dað0Þ. Then Y ðtÞ lies in DaðtÞ for all t A J.

Proof of Proposition 3. For p A U and v A TpV GV we apply Lemma 4
on the map F : ðs; tÞ 7! jðtðpþ svÞÞ. Because of Y ð0Þ ¼ 0 A Djð0Þ we get j�v ¼
ð _dd=dsÞjs¼0jðpþ svÞ ¼ Y ð1Þ A DjðpÞ. r

As announced, we give now an alternative proof of Theorem 1 under the
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natural, but slightly stronger hypothesis that for every u A V VUT the subspace
Vu is torsion and curvature invariant.

We put r :¼ dim V . Then j : V VUT ! GrðTMÞ, u 7! Vu is an injective
Cy immersion. The proof of the di¤erentiability of j runs along the lines of the
construction of bundle charts in the proof of Ehresmann’s fibre bundle theorem
in [E]. If we define bu as in Proposition 3, we obtain j � bu : t 7! Vtu, which is
the horizontal lift of the geodesic gu (see Proposition 2(a)). According to
Proposition 2(c) this curve is tangential to the subbundle D which is involutive
at every ‘‘point’’ of the r-dimensional submanifold S :¼ jðV VUTÞHGrðTMÞ
because of the hypothesis and Theorem 5. Proposition 3, therefore, shows that
S is an integral manifold of D. As t � j ¼ expp0 j ðV VUTÞ, the map tjS is an

a‰ne immersion onto the geodesic umbrella N ¼ expp0
ðV VUTÞ according to

Proposition 2(d). Consequently N is an a‰ne submanifold of M.

References

[A] W. Ambrose, Parallel translation of Riemannian curvature, Ann. of Math. (2), 64 (1956),

337–363.

[BH] R. A. Blumenthal and J. J. Hebda, The generalized Cartan-Ambrose-Hicks theorem,

Geom. Dedicata, 29 (1989), 163–175.

[C] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris,

1928 (2. ed. 1951).

[GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Großen,

Lecture Notes in Mathematics 55, Springer-Verlag, Berlin, 1968.

[He] R. Hermann, Existence in the large of totally geodesic submanifolds of Riemannian spaces,

Bull. Amer. Math. Soc., 66 (1960), 59–61.

[Hi1] N. Hicks, A theorem on a‰ne connexions, Illinois J. Math., 3 (1959), 242–254.

[Hi2] N. Hicks, Connexion preserving spray maps, Illinois J. Math., 10 (1966), 661–679.

[KN] S. Kobayashi and K. Nomizu, Foundations of Di¤erential Geometry, Vol. I & II,

Interscience Tracts in Pure and Applied Mathematics 15, Interscience Publishers, a division

of John Wiley & Sons, New York, 1963/1969.

[LR] M. Linden and H. Reckziegel, On a‰ne maps between a‰nely connected manifolds,

Geom. Dedicata, 33 (1990), 91–98.
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