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A NOTE ON A UNICITY THEOREM OF K. TOHGE

Xiao-Min Li and Hong-Xun Yi

Abstract

In this paper, we deal with the problem of uniqueness of meromorphic functions

sharing three values CM, and get rid of the restriction on the hyper-orders in a unicity

theorem of K. Tohge. An example is provided to show that the result in this paper is

best possible.

1. Introduction and main results

Let f and g be two non-constant meromorphic functions in the complex
plane. It is assumed that the reader is familiar with the standard notations of
Nevanlinna’s theory such as Tðr; f Þ, mðr; f Þ, Nðr; f Þ, Nðr; f Þ and so on, which
can be found in [1]. We use E to denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. The notation
Sðr; f Þ denotes any quantity satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ ðr ! y; r B EÞ.

Let a be a complex number, we say that f and g share the value a CM
provided f � a and g� a have the same zeros counting multiplicities (see [2]).
We say that f and g share y CM provided that 1= f and 1=g share 0 CM. In
this paper, we also need the following definition.

Definition. Let f be a non-constant meromorphic function. The hyper-
order of f , denoted nð f Þ, is defined by

nð f Þ ¼ lim sup
r!y

log log Tðr; f Þ
log r

:

In 1988, K. Tohge [3] proved the following theorems:

Theorem A. Let f and g be two distinct transcendental meromorphic
functions sharing 0; 1 and y CM. If f 0 and g 0 share 0 CM, then f and g satisfy
one of the following relations:
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(i) f � g1 1,
(ii) ð f � 1Þðg� 1Þ1 1,
(iii) f þ g1 1,
(iv) f 1 cg,
(v) f � 11 cðg� 1Þ,
(vi) ½ðc� 1Þ f þ 1� � ½ðc� 1Þg� c�1�c,

where c ð00; 1Þ is a constant.

Theorem B. Let f and g be two distinct transcendental meromorphic
functions sharing 0; 1 and y CM, and let a ð00Þ be a finite complex number.
If f 0 and g 0 share a CM and maxfnð f Þ; nðgÞg < 1, then f and g satisfy one of the
following relations:

(i) f � g1 1,
(ii) ð f � 1Þðg� 1Þ1 1,
(iii) ½ðc� 1Þ f þ 1� � ½ðc� 1Þg� c�1�c, where c ð00; 1Þ is a constant.

Now it is natural to ask the following question:

Question 1. What can be said if we get rid of the condition
‘‘maxfnð f Þ; nðgÞg < 1’’ in Theorem B?

In this paper, we shall answer Question 1 and obtain a new result. Indeed,
we shall prove the following theorem:

Theorem 1. Let f and g be two distinct transcendental meromorphic
functions sharing 0; 1 and y CM, and let a ð00Þ be a finite complex number.
If f 0 and g 0 share a CM, then f and g satisfy one of the following relations:

(i) f ¼ Aeaoz, g ¼ ð1=AÞe�aoz, where o satisfying o2 ¼ �1, and A ð00Þ are
constants;

(ii) f ¼ 1þ Aeaoz, g ¼ 1þ ð1=AÞe�aoz, where o satisfying o2 ¼ �1, and
A ð00Þ are constants;

(iii) f ðzÞ ¼ 1=ðc� 1ÞðAeaðc�1Þoz � 1Þ, gðzÞ ¼ c=ðc� 1Þð1� ð1=AÞe�aðc�1ÞozÞ,
where A, c and o are constants satisfying A0 0, c0 0; 1 and o2 ¼ 1=c.

It is obvious that if f and g satisfy the relations (i), (ii) and (iii) of Theorem
1, then the order of f is equal to 1. By Theorem 1 we immediately deduce the
following uniqueness theorem of meromorphic functions.

Theorem 2. Let f and g be two transcendental meromorphic functions
sharing 0; 1 and y CM, and suppose that f 0 and g 0 share a CM, where a ð00Þ is
a finite complex number. If the order of f is not equal to 1, then f 1 g.

2. Some lemmas

The following notations are used throughout this paper.
Let h be a non-constant meromorphic function, and let k be a positive
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integer. We denote by NkÞðr; 1=ðh� aÞÞ the counting function of a-points of h
with multiplicitya k, and denote by Nðkðr; 1=ðh� aÞÞ the counting function of
a-points of h with multiplicityb k (see [2]).

Let f and g share 0; 1 and y CM, we denote by N0ðrÞ the counting function
of the zeros of f � g not containing the zeros of f ; 1= f and f � 1 (see [4] or [5]).

Lemma 1 (see [2, Lemma 9.1]). Let f and g be two non-constant mero-
morphic functions sharing 0; 1 and y CM. If

d1Þð0; f Þ þ d1Þð1; f Þ >
3

2
;

where

d1Þð0; f Þ ¼ 1� lim sup
r!y

N1Þðr; 1= f Þ
Tðr; f Þ ; d1Þð1; f Þ ¼ 1� lim sup

r!y

N1Þðr; 1=ð f � 1ÞÞ
Tðr; f Þ ;

then f þ g1 1.

Lemma 2 (see [2, p. 369]). Let F and G be two non-constant meromorphic
functions, and let

f1
F 00

F 0 �
G 00

G 0 :

If zy is a common simple pole of F and G, then fðzyÞ ¼ 0.

Lemma 3 (see [4, Lemma 4]). Let f and g be meromorphic functions sharing
0; 1;y CM. If f 2 g, then

Nð2 r;
1

f

� �
þNð2 r;

1

f � 1

� �
þNð2ðr; f Þ ¼ Sðr; f Þ:

Lemma 4 (see [5, Lemma 7] or [6, Lemma 3]). Let f and g be two distinct
non-constant meromorphic functions sharing 0; 1 and y CM. If f is a Möbius
transformation of g, then f and g satisfy one of the following relations:

(i) f � g1 1,
(ii) ð f � 1Þðg� 1Þ1 1,
(iii) f þ g1 1,
(iv) f 1 cg,
(v) f � 11 cðg� 1Þ,
(vi) ½ðc� 1Þ f þ 1� � ½ðc� 1Þg� c�1�c,

where c ð00; 1Þ is a constant.

Lemma 5 (see [8, p. 120]). Let f1; f2; . . . ; fn be meromorphic functions
linearly independent over the complex number field C such that

Xn
i¼1

fi 1 1:
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Then

Tðr; fjÞ <
Xn
i¼1

N r;
1

fi

� �
þ ðn� 1Þ

Xn
i¼1
i0j

Nðr; fiÞ þ SðrÞ ð1a ja nÞ;

where TðrÞ ¼ max1aianfTðr; fiÞg and SðrÞ ¼ oðTðrÞÞ ðr ! y; r B EÞ.

Lemma 6 (see [2, Theorem 1.62] or [10, Theorem 1]). Let f1; f2; . . . ; fn be
non-constant meromorphic functions, and let fnþ1 ð20Þ be a meromorphic function
such that

Xnþ1

i¼1

fi 1 1:ð2:1Þ

If there exists a subset I JRþ satisfying mesI ¼ y such that

(2.2)Xnþ1

i¼1

N r;
1

fi

� �
þ n

Xnþ1

i¼1
i0j

Nðr; fiÞ < ðlþ oð1ÞÞTðr; fjÞ ðr ! y; r A I ; j ¼ 1; 2; . . . ; nÞ;

where l < 1. Then fnþ1 1 1.

Remark. Lemma 6 plays an important role for the proof of Theorem 1.
Now we give a simple proof of Lemma 6. Suppose that

Xn
j¼1

fj 2 0:ð2:3Þ

Without loss of generality, let

Xn
j¼1

fj 1
Xk
i¼1

ai fi;ð2:4Þ

where f1; f2; . . . ; fk ð1a ka nÞ are linearly independent over the complex
number field C, and a1; a2; . . . ; ak are nonzero constants. By (2.1) and (2.4), we
have

Xk
i¼1

ai fi þ fnþ1 1 1:ð2:5Þ

By Lemma 5, (2.2) and (2.5) we can easily verify that f1; f2; . . . ; fk; fnþ1 are
linearly dependent over the complex number field C, hence we have

c1 f1 þ c2 f2 þ � � � þ ck fk þ ckþ1 fnþ1 ¼ 0;ð2:6Þ
where c1; c2; . . . ; ck; ckþ1 are constants not all equal to zero. Noting that

xiao-min li and hong-xun yi230



f1; f2; . . . ; fk are linearly independent over the complex number field C, we can
see that ckþ1 0 0. From (2.6) we have

fnþ1 ¼ � c1

ckþ1
f1 � � � � � ck

ckþ1
fk;ð2:7Þ

substituting (2.7) into (2.5) we get

Xk
i¼1

ai �
ci

ckþ1

� �
fi 1 1:ð2:8Þ

From (2.8) we can see that ai �
ci

ckþ1
ði ¼ 1; 2; . . . ; kÞ are not all equal to zero.

By Lemma 5, (2.2) and (2.8) we can have a contradiction. Thus,
Pn

j¼1 fj 1 0,
and fnþ1 1 1, which proves Lemma 6.

In 1999, H. X. Yi [11] proved the following result, which is an extension
of Lemma 6: Let f1; f2; . . . ; fn be non-constant meromorphic functions, and let
fnþ1; fnþ2; . . . ; fnþm be meromorphic functions such that

fk 2 0 ðk ¼ nþ 1; nþ 2; . . . ; nþmÞ
and Xnþm

i¼1

fi 1A;

where A is a nonzero constant. If there exists a subset I JRþ satisfying
mesI ¼ y such that

Xnþm

i¼1

N r;
1

fi

� �
þ ðnþm� 1Þ

Xnþm

i¼1
i0j

Nðr; fiÞ < ðlþ oð1ÞÞTðr; fjÞ

ðr ! y; r A I ; j ¼ 1; 2; . . . ; nÞ;

where l < 1. Then there exist ti A f0; 1g ði ¼ 1; 2; . . . ;mÞ such that

Xm
i¼1

ti fnþi 1A:

Lemma 7 (see [5, Theorem 1]). Let f and g be two distinct non-constant
meromorphic functions sharing 0; 1 and y CM. If

lim sup
r!y
r BE

N0ðrÞ
Tðr; f Þ >

1

2
;

then f is a Möbius transformation of g.
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Lemma 8 (see [5, Theorem 2]). Let f and g be two non-constant mero-
morphic functions sharing 0; 1 and y CM. If

0 < lim sup
r!y
r BE

N0ðrÞ
Tðr; f Þ a

1

2
;

then f is not any Möbius transformation of g, and f and g satisfy one of the
following relations:

(i) f 1
esg � 1

eðkþ1Þg � 1
, g1

e�sg � 1

e�ðkþ1Þg � 1
,

(ii) f 1
eðkþ1Þg � 1

eðkþ1�sÞg � 1
, g1

e�ðkþ1Þg � 1

e�ðkþ1�sÞg � 1
,

(iii) f 1
esg � 1

e�ðkþ1�sÞg � 1
, g1

e�sg � 1

eðkþ1�sÞg � 1
,

where s and k ðb2Þ are positive integers such that 1a sa k, and s and k þ 1 are
relatively prime, and g is a non-constant entire function.

Lemma 9 (see [4, Lemma 1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0; 1 and y CM, then there exist two entire func-
tions a and b such that

f 1
ea � 1

eb � 1
; g1

e�a � 1

e�b � 1
;ð2:9Þ

where eb 2 1, ea 2 1 and eb�a 2 1, and

Tðr; gÞ þ Tðr; eaÞ þ Tðr; ebÞ ¼ OðTðr; f ÞÞ ðr B EÞ:ð2:10Þ

Lemma 10 (see [12, Lemma 2.4]). Let h be a non-constant meromorphic
function and let a, b, g be meromorphic functions such that Tðr; aÞ þ Tðr; bÞþ
Tðr; gÞ ¼ Sðr; hÞ, and a2 0 or g2 0. Furthermore, let

H ¼ ah2 þ bhþ g:

If Nðr; hÞ ¼ Sðr; hÞ, Nðr; 1=hÞ ¼ Sðr; hÞ and N1Þðr; 1=HÞ ¼ Sðr; hÞ, then b2�4ag10.

3. Proof of Theorem 1

By the assumptions of Theorem 1, we have

f 0 � a

g 0 � a
¼ ed;ð3:1Þ

where d is an entire function. Suppose that ed 1A, where A is a nonzero
constant. From (3.1) we get

f � Ag ¼ ð1� AÞazþ C;ð3:2Þ
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where C is a constant. Since f 2 g, from (3.2) we know that

ð1� AÞazþ C2 0:ð3:3Þ

By (3.2) and (3.3) we get

d1Þð0; f Þ þ d1Þð1; f Þ ¼ 2:

By Lemma 1, we have f þ g1 1 and f 0 þ g 0 1 0, which implies that a is a
Picard value of f 0 and g 0. This contradicts Hayman’s inequality (see [1, Theo-
rem 3.5]). Thus ed is not a constant, and hence

d 0 2 0:ð3:4Þ

By logarithmic di¤erentiation, from (3.1) we obtain

d 0 ¼ f 00

f 0 � a
� g 00

g 0 � a
:ð3:5Þ

By Lemma 2, (3.4) and (3.5), we get

N1Þðr; f ÞaN r;
1

d 0

� �
aTðr; d 0Þ þOð1Þ ¼ Sðr; f Þ:ð3:6Þ

By Lemma 3, we have

Nð2ðr; f Þ ¼ Sðr; f Þ:ð3:7Þ

By (3.6) and (3.7), we obtain

Nðr; f Þ ¼ Sðr; f Þ:ð3:8Þ

We discuss the following two cases.

Case 1. Suppose that f is a Möbius transformation of g. By Lemma 4,
we know that f and g satisfy one of the six relations in Lemma 4.

Assume that f and g satisfy the relation (i) in Lemma 4. Let f ¼ ea, where
a is a non-constant entire function. Then g ¼ e�a. Substituting f and g into
(3.1) we get

a 0e2a � aea

�a 0 � aea
¼ ed:ð3:9Þ

By (3.9) we have

Tðr; edÞbTðr; eaÞ þ Sðr; f Þð3:10Þ
and

a 0

a
ea þ ed þ a 0

a
ed�a 1 1:ð3:11Þ

By Lemma 6, (3.10) and (3.11) we obtain
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a 0

a
ed�a 1 1;

a 0

a
ea þ ed 1 0:ð3:12Þ

From (3.12) we get aðzÞ ¼ aozþ C, where o satisfying o2 ¼ �1, and C are
constants. Thus f ðzÞ ¼ Aeaoz and gðzÞ ¼ ð1=AÞe�aoz, where A is a nonzero
constant. From this we have the relation (i) in Theorem 1.

Assume that f and g satisfy the relation (ii) in Lemma 4. In the same
manner as above, we can obtain f ðzÞ ¼ 1þ Aeaoz and gðzÞ ¼ 1þ ð1=AÞe�aoz,
where o satisfying o2 ¼ �1, and A ð00Þ are constants. From this we have the
relation (ii) in Theorem 1.

Assume that f and g satisfy the relation (vi) in Lemma 4. In the same
manner as above, we can obtain f ðzÞ ¼ 1=ðc� 1ÞðAeaðc�1Þoz � 1Þ and gðzÞ ¼
c=ðc� 1Þð1� ð1=AÞe�aðc�1ÞozÞ, where o satisfying o2 ¼ 1=c, and A ð00Þ are
constants. From this we have the relation (iii) in Theorem 1.

Assume that f and g satisfy the relation (iii) in Lemma 4. Since f and g
share 0; 1 and y CM, from the relation (iii) in Lemma 4, we know that 0 and 1
are Picard values of f . Thus Nðr; f Þ ¼ Tðr; f ÞþSðr; f Þ, which contradicts (3.8).

Assume that f and g satisfy the relations (iv) and (v) in Lemma 4. In the
same manner as above, we can obtain contradictions.

Case 2. Suppose that f is not any Möbius transformation of g. By
Lemma 7, we consider the following two subcases.

Subcase 2.1. Assume that

0 < lim sup
r!y
r BE

N0ðrÞ
Tðr; f Þ a

1

2
:

By Lemma 8, we know that f and g satisfy one of the three relations in
Lemma 8.

Assume that f and g satisfy the relation (i) in Lemma 8. Then we have
Nðr; f Þ ¼ Tðr; f Þ þ Sðr; f Þ, which contradicts (3.8).

Assume that f and g satisfy the relation (ii) in Lemma 8. By (3.8) we know
that k ¼ s. Thus,

f ¼ ekg þ eðk�1Þg þ � � � þ 1; g ¼ e�kg þ e�ðk�1Þg þ � � � þ 1:ð3:13Þ

By (3.13) we obtain

Tðr; f Þ ¼ kTðr; egÞ þ Sðr; f Þ; Tðr; gÞ ¼ kTðr; egÞ þ Sðr; f Þ:ð3:14Þ

Substituting (3.13) into (3.1) we get

kg 0e2kg þ ðk � 1Þg 0eð2k�1Þg þ � � � þ g 0eðkþ1Þg � aekg

�kg 0 � ðk � 1Þg 0eg � � � � � g 0eðk�1Þg � aekg
¼ ed:ð3:15Þ

By (3.14) and (3.15) we have
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Tðr; edÞb kTðr; egÞ þ Sðr; f Þð3:16Þ
and

kg 0

a
ekg þ ðk � 1Þg 0

a
eðk�1Þg þ � � � þ g 0

a
eg þ edð3:17Þ

þ g 0

a
ed�g þ 2g 0

a
ed�2g þ � � � þ kg 0

a
ed�kg 1 1:

By Lemma 6, (3.14), (3.16) and (3.17) we obtain

kg 0

a
ed�kg 1 1

and hence

ed 1
a

kg 0
ekg:ð3:18Þ

Substituting (3.18) into (3.17) we get

kg 0

a
þ a

kg 0

� �
ekg þ ðk � 1Þg 0

a
þ 1

k

� �
eðk�1Þg þ � � � þ g 0

a
þ k � 1

k

� �
eg 1 0:ð3:19Þ

From (3.19) we obtain

kg 0

a
þ a

kg 0
1 0;

ðk � 1Þg 0
a

þ 1

k
1 0;

g 0

a
þ k � 1

k
1 0:ð3:20Þ

From (3.20) we have a contradiction.
Assume that f and g satisfy the relation (iii) in Lemma 8. By (3.8) we

know that s ¼ k. Thus,

f ¼ �ekg � eðk�1Þg � � � � � eg; g ¼ �e�kg � e�ðk�1Þg � � � � � e�g:

In the same manner as above, we can obtain a contradiction.

Subcase 2.2. Assume that

lim sup
r!y
r BE

N0ðrÞ
Tðr; f Þ ¼ 0:

Thus,

N0ðrÞ ¼ Sðr; f Þ:ð3:21Þ
Noting that f and g share 0; 1 and y CM, by Lemma 9 we have (2.9) and
(2.10). If eb 1C, where C is a nonzero constant. From (2.9) we obtain

ð f � 1Þg
f ðg� 1Þ 1C:
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From this we get that f is a Möbius transformation of g, which is a contra-
diction. Thus, eb is not a constant. From (2.9) we obtain

f � g ¼ ðea � 1Þð1� eb�aÞ
eb � 1

:ð3:22Þ

We use N �
0 ðrÞ to denote the counting function of the common zeros of ea � 1

and eb � 1. From (3.22), the following formula is obviously

N0ðrÞ ¼ N �
0 ðrÞ þ Sðr; f Þ:

From this and (3.21) we have

N �
0 ðrÞ ¼ Sðr; f Þ:ð3:23Þ

By (2.9) and (3.23), we have

Nðr; f Þ ¼ N r;
1

eb � 1

� �
þ Sðr; f Þ:ð3:24Þ

By (3.8) and (3.24) we get

Tðr; ebÞ ¼ Sðr; f Þ:ð3:25Þ
From (2.9) and (3.25) we have

Tðr; f Þ ¼ Tðr; eaÞ þ Sðr; f Þ; Tðr; gÞ ¼ Tðr; f Þ þ Sðr; f Þ:ð3:26Þ
Substituting (2.9) into (3.1) we get

ða 0eb � b 0eb � a 0Þe2a þ ðb 0eb � ae2b þ 2aeb � aÞea
ða 0e2b þ b 0eb � a 0ebÞ � ðb 0eb þ ae2b � 2aeb þ aÞea ¼ ed:ð3:27Þ

It is obvious that

b 0eb � ae2b þ 2aeb � a2 0; b 0eb þ ae2b � 2aeb þ a2 0:ð3:28Þ
If a 0eb � b 0eb � a 0 1 0, then

a 0 ¼ b 0eb

eb � 1
:ð3:29Þ

By integration, from (3.29) we obtain

ea ¼ Cðeb � 1Þ;ð3:30Þ
where C is a nonzero constant, which is a contradiction. Thus

a 0eb � b 0eb � a 0 2 0:ð3:31Þ
In the same manner as above, we have

a 0e2b þ b 0eb � a 0eb 2 0:ð3:32Þ
By (3.25), (3.26), (3.27), (3.28), (3.31) and (3.32) we have

Tðr; edÞbTðr; eaÞ þ Sðr; f Þð3:33Þ
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and

� a 0eb � b 0eb � a 0

b 0eb � ae2b þ 2aeb � a
ea � b 0eb þ ae2b � 2aeb þ a

b 0eb � ae2b þ 2aeb � a
edð3:34Þ

þ a 0e2b þ b 0eb � a 0eb

b 0eb � ae2b þ 2aeb � a
ed�a 1 1:

By Lemma 6, (3.25), (3.26), (3.33) and (3.34) we obtain

a 0e2b þ b 0eb � a 0eb

b 0eb � ae2b þ 2aeb � a
ed�a 1 1;ð3:35Þ

and

a 0eb � b 0eb � a 0

b 0eb � ae2b þ 2aeb � a
ea þ b 0eb þ ae2b � 2aeb þ a

b 0eb � ae2b þ 2aeb � a
ed 1 0:ð3:36Þ

From (3.35) and (3.36) we get

ð�a 0eb þ b 0eb þ a 0Þða 0e2b þ b 0eb � a 0ebÞ
ðb 0eb þ ae2b � 2aeb þ aÞðb 0eb � ae2b þ 2aeb � aÞ 1 1:ð3:37Þ

From (3.37) we obtain

eb a 0 � b 0

2

� �2
1 a2e2b þ ðb 0Þ2

4
� 2a2

 !
eb þ a2:ð3:38Þ

Set

H ¼ a2e2b þ ðb 0Þ2

4
� 2a2

 !
eb þ a2;ð3:39Þ

then

H ¼ eb a 0 � b 0

2

� �2
:ð3:40Þ

Applying Lemma 10 to H, from (3.39) and (3.40) we have

ðb 0Þ2

4
� 2a2

 !2
� 4a4 1 0:ð3:41Þ

From (3.41) we get

b 0 ¼ 4ao;ð3:42Þ

and hence

eb ¼ Ae4aoz;ð3:43Þ
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where o satisfying o2 ¼ 1, and A are nonzero constants. Substituting (3.42) and
(3.43) into (3.38), we have

a 0 ¼ 2aoþ ao1 B1e
2aoz þ 1

B1
e�2aoz

� �
;

where B1 and o1 are constants satisfying B2
1 ¼ A and o2

1 ¼ 1. Thus,

a ¼ 2aozþ o1

2o
B1e

2aoz � 1

B1
e�2aoz

� �
þ C;ð3:44Þ

where C is a constant. Set B ¼ o1B1

o
, then B2 ¼ A and

a ¼ 2aozþ 1

2
Be2aoz � 1

B
e�2aoz

� �
þ C:ð3:45Þ

From (3.45) we have

a 0 ¼ 2aoþ Bao � e2aoz þ ao

B
� e�2aoz:ð3:46Þ

Noting that B2 ¼ A, from (3.42), (3.43) and (3.46) we get

(3.47)

a 0e2b þ b 0eb � a 0eb ¼ B5ao � e10aoz þ 2B4ao � e8aoz þ 2B2ao � e4aoz � Bao � e2aoz

and

b 0eb � ae2b þ 2aeb � a ¼ ð4aoþ 2aÞB2 � e4aoz � aB4 � e8aoz � a:ð3:48Þ

Substituting (3.47) and (3.48) into (3.35), we deduce

e8aoz � ð4oþ 2Þ=B2 � e4aoz þ 1=B4

e8aoz þ 2=B � e6aoz þ 2=B3 � e2aoz � 1=B4
1�Boed�aþ2aoz:ð3:49Þ

Let

P1ðwÞ ¼ w8 � 4oþ 2

B2
� w4 þ 1

B4
; P2ðwÞ ¼ w8 þ 2

B
� w6 þ 2

B3
� w2 � 1

B4
:ð3:50Þ

From (3.50) we can easily see that every root of PjðwÞ ¼ 0 ð j ¼ 1; 2Þ is not equal
to zero, and that there is at least one root of P1ðwÞ ¼ 0 that is not any root of
P2ðwÞ ¼ 0. Thus, from (3.49) we can have a contradiction.

Theorem 1 is thus completely proved.
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Gauthier-Villars, Paris, 1929.

[ 9 ] P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic

functions, Kodai Math. J., 18 (1995), 437–450.

[10] H. X. Yi, Some theorems on systems of meromorphic functions, J. Shandong Univ. Nat. Sci.

Ed., 32 (1997), 121–127.

[11] H. X. Yi, Some theorems on systems of meromorphic functions III, J. Shandong Univ. Nat.

Sci. Ed., 34 (1999), 1–9.

[12] P. Li and C.-C. Yang, When an entire function and its linear di¤erential polynomial share

two values, Illinois J. Math., 44 (2000), 349–362.

Department of Mathematics

Shandong University

Jinan, Shandong 250100

People’s Republic of China

e-mail: li-xiaomin@163.com

Department of Mathematics

Shandong University

Jinan, Shandong 250100

People’s Republic of China

e-mail: hxyi@sdu.edu.cn

a unicity theorem of k. tohge 239


