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A NOTE ON A UNICITY THEOREM OF K. TOHGE
X1A0-MIN L1 aAND HONG-XUN Y1

Abstract

In this paper, we deal with the problem of uniqueness of meromorphic functions
sharing three values CM, and get rid of the restriction on the hyper-orders in a unicity
theorem of K. Tohge. An example is provided to show that the result in this paper is
best possible.

1. Introduction and main results

Let f and g be two non-constant meromorphic functions in the complex
plane. It is assumed that the reader is familiar with the standard notations of
Nevanlinna’s theory such as T(r, f), m(r,f), N(r, f), N(r,f) and so on, which
can be found in [1]. We use E to denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. The notation
S(r, f) denotes any quantity satisfying S(r, f) = o(T(r, f)) (r — co,r ¢ E).

Let a be a complex number, we say that f and g share the value a CM
provided f —a and g —a have the same zeros counting multiplicities (see [2]).
We say that f and g share co CM provided that 1/f and 1/g share 0 CM. 1In

this paper, we also need the following definition.

DerFmNITION.  Let f be a non-constant meromorphic function. The hyper-
order of f, denoted v(f), is defined by

. log log T'(r, f
v(f) = llmsup T().

In 1988, K. Tohge [3] proved the following theorems:

THEOREM A. Let f and g be two distinct transcendental meromorphic
Sfunctions sharing 0,1 and co CM. If f' and g’ share 0 CM, then f and g satisfy
one of the following relations:
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(i f-g=1,

i (f-Dg-1=1,
(i) f+g=1,

EIV) f =g,

(

V) f-l=clg-1),
Vi) [(e= 1) f +1]-[(c— g — ] = —¢,

where ¢ (#0,1) is a constant.

THEOREM B. Let f and g be two distinct transcendental meromorphic
Sfunctions sharing 0,1 and oo CM, and let a (#0) be a finite complex number.
If [ and g’ share a CM and max{v(f),v(g)} < 1, then f and g satisfy one of the
following relations:

(Jf'g—l

(ii) (/ 3@—1)

(iii) [(e=1)f+1]- [(c— )g — ¢] = —¢, where ¢ (#£0,1) is a constant.
Now it is natural to ask the following question:

QuesTiION 1. What can be said if we get rid of the condition
“max{v(f),v(9)} < 1” in Theorem B?

In this paper, we shall answer Question 1 and obtain a new result. Indeed,
we shall prove the following theorem:

THEOREM 1. Let f and g be two distinct transcendental meromorphic
Sfunctions sharing 0,1 and oo CM, and let a (#0) be a finite complex number.
If [ and g’ share a CM, then [ and g satisfy one of the following relations:

(i) f = Ae“, g=(1/A)e ", where w satisfying o> = —1, and A (#0) are
constants;

(ii) f =1+ Ae”, g=1+(1/4)e ", where w satisfying ©*> = —1, and
A (#0) are constants;

(i) £(2) = 1/(c = D)(Ae®c D7 1), g(z) = e/ (e — D)(1 = (1/d)e-sle=Doz),

where A, ¢ and w are constants satisfying A #0, ¢ #0,1 and w*> =1/c.

It is obvious that if /" and g satisfy the relations (i), (ii) and (iii) of Theorem
1, then the order of f is equal to 1. By Theorem 1 we immediately deduce the
following uniqueness theorem of meromorphic functions.

THEOREM 2. Let f and g be two transcendental meromorphic functions
sharing 0,1 and co CM, and suppose that [’ and g' share a CM, where a (#0) is
a finite complex number. If the order of f is not equal to 1, then f =g.

2. Some lemmas

The following notations are used throughout this paper.
Let & be a non-constant meromorphic function, and let k be a positive
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integer. We denote by Ny (r,1/(h—a)) the counting function of a-points of &
with multiplicity < k, and denote by Ny (r,1/(h —a)) the counting function of
a-points of & with multiplicity > k (see [2]).

Let f and g share 0,1 and oo CM, we denote by Ny(r) the counting function
of the zeros of f — g not containing the zeros of f,1/f and f — 1 (see [4] or [5]).

LemMa 1 (see [2, Lemma 9.1]). Let f and g be two non-constant mero-
morphic functions sharing 0,1 and oo CM. If

30(0.1) 4001, 1) >3,

where
51)(0,f)11i321p%’ 51)(17f)11i£?pw7
then f+g=1.

LemmA 2 (see [2, p. 369]). Let F and G be two non-constant meromorphic
functions, and let

F// Gl/
If z,, is a common simple pole of F and G, then ¢(z,,) = 0.

LeEmMa 3 (see [4, Lemma 4]). Let f and g be meromorphic functions sharing
0,1,00 CM. If f g, then

No (%) N ( %) Nl f) = S0 f).

LeEmMaA 4 (see [5, Lemma 7] or [6, Lemma 3]). Let f and g be two distinct
non-constant meromorphic functions sharing 0,1 and oo CM. If f is a Mébius
transformation of g, then f and g satisfy one of the following relations:

vi) [(e=Df +1]-[(c=1)g =] = —¢,
where ¢ (#0,1) is a constant.

LemmA 5 (see [8, p. 120)). Let fi,fs,...,[n be meromorphic functions
linearly independent over the complex number field C such that

Zfizl.
i1
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Then

n

T(r f) < Z;N(r,%> +(n— I)Zl:]v(r,fi)+S(r) (1<j<n),
i#]
) =

where T(r) = max | <;< {T(r, f/)} and S(r) = o(T(r)) (r — oco,r ¢ E).

LemmA 6 (see [2, Theorem 1.62] or [10, Theorem 1]). Let fi,f2,..., fn be
non-constant meromorphic functions, and let fy1 (#£0) be a meromorphic function
such that

n+1

(2.1) > fi=1l
i=1

If there exists a subset I = RT satisfying mesl = oo such that
(2.2)

n+1 n+1
ZN( )—i—nZN <(A+o)T(r,f;)) (r—oo,rel,j=12,...,n),
17&]

where L < 1. Then f,.1 = 1.

Remark. Lemma 6 plays an important role for the proof of Theorem 1.
Now we give a simple proof of Lemma 6. Suppose that

(2.3) > f#0.
j=1

Without loss of generality, let

n k
(24) S =D aif

j=1 i=1
where fi, f2,..., fk (1 <k <n) are linearly independent over the complex
number field C, and a;,ay,...,a; are nonzero constants. By (2.1) and (2.4), we
have

k
(2.5) S aifi+ fur =1

i=1

By Lemma 5, (2.2) and (2.5) we can easily verify that fi, fa,..., fx, fur1 are
linearly dependent over the complex number field C, hence we have

(2.6) afitafi+-+ofi + ki fur1 =0,

where c¢y,¢a,...,¢k,ckr1 are constants not all equal to zero. Noting that
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S, f2, ..., fr are linearly independent over the complex number field C, we can
see that ¢k # 0. From (2.6) we have

Ck

. ao .
(2.7) Sl = ———fi = — Ji,
Cie+1 Ci+1

substituting (2.7) into (2.5) we get

(2.8) i(ai— G >f,- = 1.

i1 Cht1

Ci

From (2.8) we can see that a; —

. (i=1,2,...,k) are not all equal to zero.
k+1
By Lemma 5, (2.2) and (2.8) we can have a contradiction. Thus, ZJ": W fi=0,

and f,,; =1, which proves Lemma 6.

In 1999, H. X. Yi [11] proved the following result, which is an extension
of Lemma 6: Let f, f2,...,f, be non-constant meromorphic functions, and let
fnits foa2y -+ oy fuam be meromorphic functions such that

i #£0 (k=n+1,n+2,...,n+m)

and

n+m

Y fi=4,
i=1

where A4 is a nonzero constant. If there exists a subset I = R" satisfying
mesl = oo such that

n+m l n+m 7
;N<r,ﬁ) +(n+m—1) ;N(r,ﬁ) < (A+o(1)T(r, )
i#]
(r—oo,rel, j=1,2,...,n),
where A < 1. Then there exist ;€ {0,1} (i=1,2,...,m) such that

m

Z tifuri = A.

i=1

LemmA 7 (see [5, Theorem 1]). Let f and g be two distinct non-constant
meromorphic functions sharing 0,1 and .o CM. If

lim sup No(r) 1
r}z? T(l’, f) 2

then f is a Mobius transformation of g.
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LemMa 8 (see [5, Theorem 2|). Let f and g be two non-constant mero-
morphic functions sharing 0,1 and o CM. If

1
0 < limsup No(r) =
r—o0 (l" ) 2

r¢ E

then f is not any Mobius transformation of g, and f and g satisfy one of the
following relations:

. e’ —1 e —1
i f= Sy — 10 9% ey 1
elk+hy _q e k+y _q

(if) ffm’ 9= G 1
e” — 1 e 1
(iif) f = ooy — 10 95 i 1

where s and k (>2) are positive integers such that 1 <s <k, and s and k+ 1 are
relatively prime, and y is a non-constant entire function.

LemMA 9 (see [4, Lemma 1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0,1 and oo CM, then there exist two entire func-
tions o and B such that

e* —1 e *—1
(2.9) f= 1 9= e F_1’
where e # 1, e*# 1 and ef~* # 1, and
(2.10) T(r,g) + T(r,e”) + T(r,e’) = O(T(r, [)) (r¢E).

Lemma 10 (see [12, Lemma 2.4]). Let h be a non-constant meromorphic
function and let o, f, y be meromorphic functions such that T(r,a)+ T(r,p)+
T(r,y) =S(r,h), and oo £ 0 or y #0. Furthermore, let

H = oh® + ph+ .
If N(r,h)=S(r,h), N(r,1/h) = S(r,h) and Nyy(r,1/H)=S(r,h), then p*—4oy=0.

3. Proof of Theorem 1

By the assumptions of Theorem 1, we have

f'—a )

1 =e,
g —a

(3.1)

where J is an entire function. Suppose that ¢° =

constant. From (3.1) we get

(3.2) f—Ag=(1—-Aaz+C,

A, where A is a nonzero
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where C is a constant. Since f # g, from (3.2) we know that
(3.3) (1 —A)az+ C #£0.
By (3.2) and (3.3) we get

on(0, f) +on(l, f) =2

By Lemma 1, we have f+¢g=1 and f’'+ ¢’ =0, which implies that a is a
Picard value of f’ and ¢’. This contradicts Hayman’s inequality (see [1, Theo-
rem 3.5]). Thus ¢’ is not a constant, and hence

(3.4) 6 #0.
By logarithmic differentiation, from (3.1) we obtain
f'l/ g//
3.5 o' = - .
( ) f/ —a g/ —a
By Lemma 2, (3.4) and (3.5), we get
1
(36) N ) £ N (1) < T8 + 001 = 5001
By Lemma 3, we have
(37) N(z(r,_f):S(l’,f).
By (3.6) and (3.7), we obtain
(3-8) N(r, f) =S f).

We discuss the following two cases.

Case 1. Suppose that f is a Mobius transformation of g. By Lemma 4,
we know that f and ¢ satisfy one of the six relations in Lemma 4.

Assume that f and g satisfy the relation (i) in Lemma 4. Let f = ¢*, where
o is a non-constant entire function. Then g = e *. Substituting f and g into
(3.1) we get

(3 9) OC/8295 — ae” _ eé
’ —ao' — ae*

By (3.9) we have

(3.10) T(r,e®) = T(r,e*) + S(r, f)

and
o o

(3.11) —et el 4 —e = 1.
a a

By Lemma 6, (3.10) and (3.11) we obtain
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!

!
(3.12) Loroq, Leryed =
a a

From (3.12) we get o(z) = awz + C, where o satisfying w? = —1, and C are
constants. Thus f(z) = Ae®* and ¢g(z) = (1/A)e ™=, where A is a nonzero
constant. From this we have the relation (i) in Theorem 1.

Assume that f and g satisfy the relation (i) in Lemma 4. In the same
manner as above, we can obtain f(z) =1+ 4e’” and ¢g(z) =1+ (1/4)e ",
where o satisfying w? = —1, and 4 (#0) are constants. From this we have the
relation (ii) in Theorem 1.

Assume that f and g satisfy the relation (vi) in Lemma 4. In the same
manner as above, we can obtain f(z) =1/(c — 1)(4e®“~V®* —1) and g¢(z) =
c/(c—=1)(1 = (1/A)e~*c=V»7)  where w satisfying w?> =1/c, and A (#0) are
constants. From this we have the relation (iii) in Theorem 1.

Assume that f and g satisfy the relation (iii) in Lemma 4. Since f and g
share 0,1 and oo CM, from the relation (iii) in Lemma 4, we know that 0 and 1
are Picard values of f. Thus N(r, f)=T(r, f)+ S(r, f), which contradicts (3.8).

Assume that f and ¢ satisfy the relations (iv) and (v) in Lemma 4. In the
same manner as above, we can obtain contradictions.

Case 2. Suppose that f is not any Mobius transformation of g. By
Lemma 7, we consider the following two subcases.

SuBCASE 2.1. Assume that

. No(r) 1

0<l1 < —.

SIS T ) S 2
ré¢ E

By Lemma 8, we know that f and g satisfy one of the three relations in
Lemma 8.

Assume that f and g satisfy the relation (i) in Lemma 8. Then we have
N(r,f)=T(r,f)+ S(r, f), which contradicts (3.8).

Assume that f and g satisfy the relation (ii) in Lemma 8. By (3.8) we know
that k =s. Thus,
(3.13) fee gt p 1 g e
By (3.13) we obtain
(B.14) T, f) =kT(r,e") +S(r, f), T(r,g) =kT(r,e’)+S(r,[).
Substituting (3.13) into (3.1) we get

(3.15) ky'e7 4 (k — 1)y'e® D7 .. 4 ylelbtr — gekr o
) —ky' — (k= 1)yle? — - —ylelk=Vy —geky 7"

By (3.14) and (3.15) we have
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(3.16) T(r, e‘j) > kT(r,e”)+ S(r, f)
and
/ 1) ) " \
(3.17) kv gy =17 ey Y
a a a

/ / /
+y_eé—y+2le5—2}’+...+k_ye(5—kyE1.
a a a

By Lemma 6, (3.14), (3.16) and (3.17) we obtain

ky' s ..
—yeé’k/ =1
a
and hence
s 9 Ky
(3.18) e’ = kT/e )

Substituting (3.18) into (3.17) we get

/ _ / ’ _
(3.19) (k%+i>eky+ (M+l)e(k—1)7 Lt (y_+u>ey =0.

ky' a k a k
From (3.19) we obtain

ky' a (k=1)p" 1 _ Y k-1
(3:20) a ky 0 2 Tk 0 at % % 0

From (3.20) we have a contradiction.
Assume that f and g satisfy the relation (iii) in Lemma 8. By (3.8) we
know that s = k. Thus,

f=—e"—ekr et = e ey
In the same manner as above, we can obtain a contradiction.

SUBCASE 2.2. Assume that

. N()(r')
lim sup =
)’—éf T(V,f)
Thus,
(3.21) No(r) =S, f).

Noting that f and g share 0,1 and co CM, by Lemma 9 we have (2.9) and
(2.10). If e = C, where C is a nonzero constant. From (2.9) we obtain

(f=1g _
ED
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From this we get that f is a Mdbius transformation of g, which is a contra-
diction. Thus, ef is not a constant. From (2.9) we obtain
(e* — 1)(1 — ef™)
ef—1 '

We use Nj(r) to denote the counting function of the common zeros of e¢* —1
and ¢ — 1. From (3.22), the following formula is obviously

No(r) = Ng (r) + S(r, f)-
From this and (3.21) we have
(3.23) Ny (r) = S(r, f).
By (2.9) and (3.23), we have

(3.24) N(r,f)= N(r,ﬁ) + S(r, f).

By (3.8) and (3.24) we get

(3.25) T(r,ef) = S(r, f).

From (2.9) and (3.25) we have

(3.26) T(r, f)=T(r,e*)+S(r,[f), T(rg) =T f)+Sr[)

Substituting (2.9) into (3.1) we get

(3.27) (o'eP —[)’/‘/95 —a)e* + (ﬂ:e/} —ae®? + 2aef — a)e” o
(/e + p'ef — a'eb) — (B'ef + ae?f — 2aef + a)e™

It is obvious that

(3.28) plef —ae” +2aef —a#0, pef +ae® —2aef +a#0.

If o’ef — e — o’ =0, then

1B
(3.29) o = efi -

By integration, from (3.29) we obtain

(3.30) e*=C(ef - 1),

where C is a nonzero constant, which is a contradiction. Thus
(3.31) aef —plef — o' #0.

In the same manner as above, we have

(3.32) e+ plef —o'ef £ 0.

By (3.25), (3.26), (3.27), (3.28), (3.31) and (3.32) we have
(3.33) T(r,e%) > T(r,e*) + S(r, f)
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and
a'ef — plelf — o L Bef+ae® —2aef +a
- e — e
plef — ae*f + 2aef —a plef — ae*f + 2aef —a
N a'ef + plel — o'ef
e
Blef — ae?f 4 2aef — a

(3.34)

o—o 1.

By Lemma 6, (3.25), (3.26), (3.33) and (3.34) we obtain

a'ef + plef —a'ef
(3.35) reT 4 O =1,
p'elf — ae?f 4 2aef —a

and

a'ef —plef — o . BeP+ae* —2aef +a _

3.36 =0.
(3.36) ﬂ'eﬁ—aezﬁ—i-Zae/f—ae +ﬁ'eﬁ—aezﬁ+2aeﬁ—ae

From (3.35) and (3.36) we get

(—a'eP + Bef + o) (' e + el —a'eh)

3.37
(3:37) (B'el + ae? — 2aef + a)(B'ef — ae? + 2ael — a)

=1.

From (3.37) we obtain

(3.38) ef (cx’ — %)2 =a*e” + <g — 2a2> ef + a2

Set

(3.39) H=dae"+ (@ - 2a2> e+,

then

(3.40) H=¢f (oc' - ﬁ2l>2

Applying Lemma 10 to H, from (3.39) and (3.40) we have
2

(3.41) (“’%2 - 2a2> —4a* = 0.

From (3.41) we get

(3.42) B = daow,

and hence

(3.43) ef = gt
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where o satisfying w? = 1, and 4 are nonzero constants. Substituting (3.42) and
(3.43) into (3.38), we have

1
o = 2aw + aw (Blez‘"“z + B—ezawz),
1

where By and o, are constants satisfying B} = 4 and w? = 1. Thus,

1
(3.44) o = 2awz + % < Bie — e zawz> e
1
. w1 B
where C is a constant. Set B = , — A4 and
1 2awz 1 —2auz
(3.45) o = 2awz + 3 | BeX™ — e +C.
From (3.45) we have
(3.46) o' = 2aw + Baw - e + % . g~ 20z,

Noting that B> = 4, from (3.42), (3.43) and (3.46) we get

(3.47)
a'e? + plef —a'ef = Blaw - "% + 2B*aw - €87 + 2B%aw - €*“* — Baw - e**

and
(3.48) ‘e? — ae® + 2aeP — a = (4aw + 2a)B? - ¢** — aB* . 37 — 4.
Substituting (3.47) and (3.48) into (3.35), we deduce

e8aw; _ (460 + 2)/32 . 84(1(/): + 1/B4

— o—a+2awz
(349) e8awz +2/B_e6aw: +2/B3 . elawz _ 1/B4 = —Bwe”™ !
Let
4o + 2 1 2 2 1
_ .8 _ RV BT
(3.50) Pi(x)=1x g Lt P = P +3 x° gy e 5

From (3.50) we can easily see that every root of P;(y) =0 (j = 1,2) is not equal
to zero, and that there is at least one root of P;(y) = 0 that is not any root of
Py(y) =0. Thus, from (3.49) we can have a contradiction.

Theorem 1 is thus completely proved.
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