A NOTE ON A UNICITY THEOREM OF K. TOHGE

Xiao-Min Li and Hong-Xun Yi

Abstract

In this paper, we deal with the problem of uniqueness of meromorphic functions sharing three values CM, and get rid of the restriction on the hyper-orders in a unicity theorem of K . Tohge. An example is provided to show that the result in this paper is best possible.

1. Introduction and main results

Let f and g be two non-constant meromorphic functions in the complex plane. It is assumed that the reader is familiar with the standard notations of Nevanlinna's theory such as $T(r, f), m(r, f), N(r, f), \bar{N}(r, f)$ and so on, which can be found in [1]. We use E to denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. The notation $S(r, f)$ denotes any quantity satisfying $S(r, f)=o(T(r, f))(r \rightarrow \infty, r \notin E)$.

Let a be a complex number, we say that f and g share the value $a \mathrm{CM}$ provided $f-a$ and $g-a$ have the same zeros counting multiplicities (see [2]). We say that f and g share $\infty \mathrm{CM}$ provided that $1 / f$ and $1 / g$ share 0 CM . In this paper, we also need the following definition.

Definition. Let f be a non-constant meromorphic function. The hyperorder of f, denoted $v(f)$, is defined by

$$
v(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

In 1988, K. Tohge [3] proved the following theorems:
THEOREM A. Let f and g be two distinct transcendental meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$. If f^{\prime} and g^{\prime} share 0 CM , then f and g satisfy one of the following relations:

[^0](i) $f \cdot g \equiv 1$,
(ii) $(f-1)(g-1) \equiv 1$,
(iii) $f+g \equiv 1$,
(iv) $f \equiv c g$,
(v) $f-1 \equiv c(g-1)$,
(vi) $[(c-1) f+1] \cdot[(c-1) g-c] \equiv-c$,
where $c(\neq 0,1)$ is a constant.
TheOrem B. Let f and g be two distinct transcendental meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$, and let $a(\neq 0)$ be a finite complex number. If f^{\prime} and g^{\prime} share $a \mathrm{CM}$ and $\max \{v(f), v(g)\}<1$, then f and g satisfy one of the following relations:
(i) $f \cdot g \equiv 1$,
(ii) $(f-1)(g-1) \equiv 1$,
(iii) $[(c-1) f+1] \cdot[(c-1) g-c] \equiv-c$, where $c(\neq 0,1)$ is a constant.

Now it is natural to ask the following question:
Question 1. What can be said if we get rid of the condition $" \max \{v(f), v(g)\}<1 "$ in Theorem B?

In this paper, we shall answer Question 1 and obtain a new result. Indeed, we shall prove the following theorem:

THEOREM 1. Let f and g be two distinct transcendental meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$, and let $a(\neq 0)$ be a finite complex number. If f^{\prime} and g^{\prime} share a CM , then f and g satisfy one of the following relations:
(i) $f=A e^{a \omega z}, g=(1 / A) e^{-a \omega z}$, where ω satisfying $\omega^{2}=-1$, and $A(\neq 0)$ are constants;
(ii) $f=1+A e^{a \omega z}, g=1+(1 / A) e^{-a \omega z}$, where ω satisfying $\omega^{2}=-1$, and A $(\neq 0)$ are constants;
(iii) $f(z)=1 /(c-1)\left(A e^{a(c-1) \omega z}-1\right), \quad g(z)=c /(c-1)\left(1-(1 / A) e^{-a(c-1) \omega z}\right)$, where A, c and ω are constants satisfying $A \neq 0, c \neq 0,1$ and $\omega^{2}=1 / c$.

It is obvious that if f and g satisfy the relations (i), (ii) and (iii) of Theorem 1 , then the order of f is equal to 1 . By Theorem 1 we immediately deduce the following uniqueness theorem of meromorphic functions.

TheOrem 2. Let f and g be two transcendental meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$, and suppose that f^{\prime} and g^{\prime} share a CM , where $a(\neq 0)$ is a finite complex number. If the order of f is not equal to 1 , then $f \equiv g$.

2. Some lemmas

The following notations are used throughout this paper.
Let h be a non-constant meromorphic function, and let k be a positive
integer. We denote by $N_{k)}(r, 1 /(h-a))$ the counting function of a-points of h with multiplicity $\leq k$, and denote by $N_{(k}(r, 1 /(h-a))$ the counting function of a-points of h with multiplicity $\geq k$ (see [2]).

Let f and g share 0,1 and $\infty \mathrm{CM}$, we denote by $N_{0}(r)$ the counting function of the zeros of $f-g$ not containing the zeros of $f, 1 / f$ and $f-1$ (see [4] or [5]).

Lemma 1 (see [2, Lemma 9.1]). Let f and g be two non-constant meromorphic functions sharing 0,1 and ∞ CM. If

$$
\delta_{1)}(0, f)+\delta_{1)}(1, f)>\frac{3}{2}
$$

where

$$
\delta_{1)}(0, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{1)}(r, 1 / f)}{T(r, f)}, \quad \delta_{1)}(1, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{1)}(r, 1 /(f-1))}{T(r, f)}
$$

then $f+g \equiv 1$.
Lemma 2 (see [2, p. 369]). Let F and G be two non-constant meromorphic functions, and let

$$
\phi \equiv \frac{F^{\prime \prime}}{F^{\prime}}-\frac{G^{\prime \prime}}{G^{\prime}}
$$

If z_{∞} is a common simple pole of F and G, then $\phi\left(z_{\infty}\right)=0$.
Lemma 3 (see [4, Lemma 4]). Let f and g be meromorphic functions sharing $0,1, \infty$ CM. If $f \not \equiv g$, then

$$
N_{(2}\left(r, \frac{1}{f}\right)+N_{(2}\left(r, \frac{1}{f-1}\right)+N_{(2}(r, f)=S(r, f)
$$

Lemma 4 (see [5, Lemma 7] or [6, Lemma 3]). Let f and g be two distinct non-constant meromorphic functions sharing 0,1 and ∞ CM. If f is a Möbius transformation of g, then f and g satisfy one of the following relations:
(i) $f \cdot g \equiv 1$,
(ii) $(f-1)(g-1) \equiv 1$,
(iii) $f+g \equiv 1$,
(iv) $f \equiv c g$,
(v) $f-1 \equiv c(g-1)$,
(vi) $[(c-1) f+1] \cdot[(c-1) g-c] \equiv-c$,
where $c(\neq 0,1)$ is a constant.
Lemma 5 (see [8, p. 120]). Let $f_{1}, f_{2}, \ldots, f_{n}$ be meromorphic functions linearly independent over the complex number field C such that

$$
\sum_{i=1}^{n} f_{i} \equiv 1
$$

Then

$$
T\left(r, f_{j}\right)<\sum_{i=1}^{n} N\left(r, \frac{1}{f_{i}}\right)+(n-1) \sum_{\substack{i=1 \\ i \neq j}}^{n} \bar{N}\left(r, f_{i}\right)+S(r) \quad(1 \leq j \leq n),
$$

where $T(r)=\max _{1 \leq i \leq n}\left\{T\left(r, f_{i}\right)\right\}$ and $S(r)=o(T(r))(r \rightarrow \infty, r \notin E)$.
Lemma 6 (see [2, Theorem 1.62] or [10, Theorem 1]). Let $f_{1}, f_{2}, \ldots, f_{n}$ be non-constant meromorphic functions, and let $f_{n+1}(\not \equiv 0)$ be a meromorphic function such that

$$
\begin{equation*}
\sum_{i=1}^{n+1} f_{i} \equiv 1 \tag{2.1}
\end{equation*}
$$

If there exists a subset $I \subseteq R^{+}$satisfying mes $I=\infty$ such that

$$
\begin{equation*}
\sum_{i=1}^{n+1} N\left(r, \frac{1}{f_{i}}\right)+n \sum_{\substack{i=1 \\ i \neq j}}^{n+1} \bar{N}\left(r, f_{i}\right)<(\lambda+o(1)) T\left(r, f_{j}\right) \quad(r \rightarrow \infty, r \in I, j=1,2, \ldots, n), \tag{2.2}
\end{equation*}
$$

where $\lambda<1$. Then $f_{n+1} \equiv 1$.
Remark. Lemma 6 plays an important role for the proof of Theorem 1. Now we give a simple proof of Lemma 6. Suppose that

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j} \not \equiv 0 . \tag{2.3}
\end{equation*}
$$

Without loss of generality, let

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j} \equiv \sum_{i=1}^{k} a_{i} f_{i}, \tag{2.4}
\end{equation*}
$$

where $f_{1}, f_{2}, \ldots, f_{k}(1 \leq k \leq n)$ are linearly independent over the complex number field C, and $a_{1}, a_{2}, \ldots, a_{k}$ are nonzero constants. By (2.1) and (2.4), we have

$$
\begin{equation*}
\sum_{i=1}^{k} a_{i} f_{i}+f_{n+1} \equiv 1 \tag{2.5}
\end{equation*}
$$

By Lemma 5, (2.2) and (2.5) we can easily verify that $f_{1}, f_{2}, \ldots, f_{k}, f_{n+1}$ are linearly dependent over the complex number field C, hence we have

$$
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{k} f_{k}+c_{k+1} f_{n+1}=0 \tag{2.6}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{k}, c_{k+1}$ are constants not all equal to zero. Noting that
$f_{1}, f_{2}, \ldots, f_{k}$ are linearly independent over the complex number field C, we can see that $c_{k+1} \neq 0$. From (2.6) we have

$$
\begin{equation*}
f_{n+1}=-\frac{c_{1}}{c_{k+1}} f_{1}-\cdots-\frac{c_{k}}{c_{k+1}} f_{k}, \tag{2.7}
\end{equation*}
$$

substituting (2.7) into (2.5) we get

$$
\begin{equation*}
\sum_{i=1}^{k}\left(a_{i}-\frac{c_{i}}{c_{k+1}}\right) f_{i} \equiv 1 \tag{2.8}
\end{equation*}
$$

From (2.8) we can see that $a_{i}-\frac{c_{i}}{c_{k+1}}(i=1,2, \ldots, k)$ are not all equal to zero. By Lemma 5, (2.2) and (2.8) we can have a contradiction. Thus, $\sum_{j=1}^{n} f_{j} \equiv 0$, and $f_{n+1} \equiv 1$, which proves Lemma 6 .

In 1999, H. X. Yi [11] proved the following result, which is an extension of Lemma 6: Let $f_{1}, f_{2}, \ldots, f_{n}$ be non-constant meromorphic functions, and let $f_{n+1}, f_{n+2}, \ldots, f_{n+m}$ be meromorphic functions such that

$$
f_{k} \not \equiv 0 \quad(k=n+1, n+2, \ldots, n+m)
$$

and

$$
\sum_{i=1}^{n+m} f_{i} \equiv A
$$

where A is a nonzero constant. If there exists a subset $I \subseteq R^{+}$satisfying mes $I=\infty$ such that

$$
\begin{aligned}
& \sum_{i=1}^{n+m} N\left(r, \frac{1}{f_{i}}\right)+(n+m-1) \sum_{\substack{i=1 \\
i \neq j}}^{n+m} \bar{N}\left(r, f_{i}\right)<(\lambda+o(1)) T\left(r, f_{j}\right) \\
& \quad(r \rightarrow \infty, r \in I, j=1,2, \ldots, n)
\end{aligned}
$$

where $\lambda<1$. Then there exist $t_{i} \in\{0,1\}(i=1,2, \ldots, m)$ such that

$$
\sum_{i=1}^{m} t_{i} f_{n+i} \equiv A
$$

Lemma 7 (see [5, Theorem 1]). Let f and g be two distinct non-constant meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$. If

$$
\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{N_{0}(r)}{T(r, f)}>\frac{1}{2},
$$

then f is a Möbius transformation of g.

Lemma 8 (see [5, Theorem 2]). Let f and g be two non-constant meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$. If

$$
0<\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{N_{0}(r)}{T(r, f)} \leq \frac{1}{2}
$$

then f is not any Möbius transformation of g, and f and g satisfy one of the following relations:
(i) $f \equiv \frac{e^{s \gamma}-1}{e^{(k+1) \gamma}-1}, g \equiv \frac{e^{-s \gamma}-1}{e^{-(k+1) \gamma}-1}$,
(ii) $f \equiv \frac{e^{(k+1) \gamma}-1}{e^{(k+1-s) \gamma}-1}, g \equiv \frac{e^{-(k+1) \gamma}-1}{e^{-(k+1-s) \gamma}-1}$,
(iii) $f \equiv \frac{e^{s \gamma}-1}{e^{-(k+1-s) \gamma}-1}, g \equiv \frac{e^{-s \gamma}-1}{e^{(k+1-s) \gamma}-1}$,
where s and $k(\geq 2)$ are positive integers such that $1 \leq s \leq k$, and s and $k+1$ are relatively prime, and γ is a non-constant entire function.

Lemma 9 (see [4, Lemma 1]). Let f and g be two distinct nonconstant meromorphic functions sharing 0,1 and $\infty \mathrm{CM}$, then there exist two entire functions α and β such that

$$
\begin{equation*}
f \equiv \frac{e^{\alpha}-1}{e^{\beta}-1}, \quad g \equiv \frac{e^{-\alpha}-1}{e^{-\beta}-1} \tag{2.9}
\end{equation*}
$$

where $e^{\beta} \not \equiv 1, e^{\alpha} \not \equiv 1$ and $e^{\beta-\alpha} \not \equiv 1$, and

$$
\begin{equation*}
T(r, g)+T\left(r, e^{\alpha}\right)+T\left(r, e^{\beta}\right)=O(T(r, f)) \quad(r \notin E) \tag{2.10}
\end{equation*}
$$

Lemma 10 (see [12, Lemma 2.4]). Let h be a non-constant meromorphic function and let α, β, γ be meromorphic functions such that $T(r, \alpha)+T(r, \beta)+$ $T(r, \gamma)=S(r, h)$, and $\alpha \not \equiv 0$ or $\gamma \not \equiv 0$. Furthermore, let

$$
\begin{gathered}
H=\alpha h^{2}+\beta h+\gamma \\
\text { If } \bar{N}(r, h)=S(r, h), \bar{N}(r, 1 / h)=S(r, h) \text { and } N_{1)}(r, 1 / H)=S(r, h), \text { then } \beta^{2}-4 \alpha \gamma \equiv 0 .
\end{gathered}
$$

3. Proof of Theorem 1

By the assumptions of Theorem 1, we have

$$
\begin{equation*}
\frac{f^{\prime}-a}{g^{\prime}-a}=e^{\delta} \tag{3.1}
\end{equation*}
$$

where δ is an entire function. Suppose that $e^{\delta} \equiv A$, where A is a nonzero constant. From (3.1) we get

$$
\begin{equation*}
f-A g=(1-A) a z+C \tag{3.2}
\end{equation*}
$$

where C is a constant. Since $f \not \equiv g$, from (3.2) we know that

$$
\begin{equation*}
(1-A) a z+C \not \equiv 0 \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3) we get

$$
\delta_{1)}(0, f)+\delta_{1)}(1, f)=2
$$

By Lemma 1, we have $f+g \equiv 1$ and $f^{\prime}+g^{\prime} \equiv 0$, which implies that a is a Picard value of f^{\prime} and g^{\prime}. This contradicts Hayman's inequality (see [1, Theorem 3.5]). Thus e^{δ} is not a constant, and hence

$$
\begin{equation*}
\delta^{\prime} \not \equiv 0 \tag{3.4}
\end{equation*}
$$

By logarithmic differentiation, from (3.1) we obtain

$$
\begin{equation*}
\delta^{\prime}=\frac{f^{\prime \prime}}{f^{\prime}-a}-\frac{g^{\prime \prime}}{g^{\prime}-a} \tag{3.5}
\end{equation*}
$$

By Lemma 2, (3.4) and (3.5), we get

$$
\begin{equation*}
N_{1)}(r, f) \leq N\left(r, \frac{1}{\delta^{\prime}}\right) \leq T\left(r, \delta^{\prime}\right)+O(1)=S(r, f) \tag{3.6}
\end{equation*}
$$

By Lemma 3, we have

$$
\begin{equation*}
N_{(2}(r, f)=S(r, f) \tag{3.7}
\end{equation*}
$$

By (3.6) and (3.7), we obtain

$$
\begin{equation*}
N(r, f)=S(r, f) \tag{3.8}
\end{equation*}
$$

We discuss the following two cases.
Case 1. Suppose that f is a Möbius transformation of g. By Lemma 4, we know that f and g satisfy one of the six relations in Lemma 4.

Assume that f and g satisfy the relation (i) in Lemma 4. Let $f=e^{\alpha}$, where α is a non-constant entire function. Then $g=e^{-\alpha}$. Substituting f and g into (3.1) we get

$$
\begin{equation*}
\frac{\alpha^{\prime} e^{2 \alpha}-a e^{\alpha}}{-\alpha^{\prime}-a e^{\alpha}}=e^{\delta} \tag{3.9}
\end{equation*}
$$

By (3.9) we have

$$
\begin{equation*}
T\left(r, e^{\delta}\right) \geq T\left(r, e^{\alpha}\right)+S(r, f) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha^{\prime}}{a} e^{\alpha}+e^{\delta}+\frac{\alpha^{\prime}}{a} e^{\delta-\alpha} \equiv 1 \tag{3.11}
\end{equation*}
$$

By Lemma 6, (3.10) and (3.11) we obtain

$$
\begin{equation*}
\frac{\alpha^{\prime}}{a} e^{\delta-\alpha} \equiv 1, \quad \frac{\alpha^{\prime}}{a} e^{\alpha}+e^{\delta} \equiv 0 \tag{3.12}
\end{equation*}
$$

From (3.12) we get $\alpha(z)=a \omega z+C$, where ω satisfying $\omega^{2}=-1$, and C are constants. Thus $f(z)=A e^{a \omega z}$ and $g(z)=(1 / A) e^{-a \omega z}$, where A is a nonzero constant. From this we have the relation (i) in Theorem 1.

Assume that f and g satisfy the relation (ii) in Lemma 4. In the same manner as above, we can obtain $f(z)=1+A e^{a \omega z}$ and $g(z)=1+(1 / A) e^{-a \omega z}$, where ω satisfying $\omega^{2}=-1$, and $A(\neq 0)$ are constants. From this we have the relation (ii) in Theorem 1.

Assume that f and g satisfy the relation (vi) in Lemma 4. In the same manner as above, we can obtain $f(z)=1 /(c-1)\left(A e^{a(c-1) \omega z}-1\right)$ and $g(z)=$ $c /(c-1)\left(1-(1 / A) e^{-a(c-1) \omega z}\right)$, where ω satisfying $\omega^{2}=1 / c$, and $A(\neq 0)$ are constants. From this we have the relation (iii) in Theorem 1.

Assume that f and g satisfy the relation (iii) in Lemma 4. Since f and g share 0,1 and $\infty \mathrm{CM}$, from the relation (iii) in Lemma 4, we know that 0 and 1 are Picard values of f. Thus $N(r, f)=T(r, f)+S(r, f)$, which contradicts (3.8).

Assume that f and g satisfy the relations (iv) and (v) in Lemma 4. In the same manner as above, we can obtain contradictions.

CASE 2. Suppose that f is not any Möbius transformation of g. By Lemma 7, we consider the following two subcases.

Subcase 2.1. Assume that

$$
0<\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{N_{0}(r)}{T(r, f)} \leq \frac{1}{2}
$$

By Lemma 8, we know that f and g satisfy one of the three relations in Lemma 8.

Assume that f and g satisfy the relation (i) in Lemma 8. Then we have $N(r, f)=T(r, f)+S(r, f)$, which contradicts (3.8).

Assume that f and g satisfy the relation (ii) in Lemma 8. By (3.8) we know that $k=s$. Thus,

$$
\begin{equation*}
f=e^{k \gamma}+e^{(k-1) \gamma}+\cdots+1, \quad g=e^{-k \gamma}+e^{-(k-1) \gamma}+\cdots+1 \tag{3.13}
\end{equation*}
$$

By (3.13) we obtain

$$
\begin{equation*}
T(r, f)=k T\left(r, e^{\gamma}\right)+S(r, f), \quad T(r, g)=k T\left(r, e^{\gamma}\right)+S(r, f) \tag{3.14}
\end{equation*}
$$

Substituting (3.13) into (3.1) we get

$$
\begin{equation*}
\frac{k \gamma^{\prime} e^{2 k \gamma}+(k-1) \gamma^{\prime} e^{(2 k-1) \gamma}+\cdots+\gamma^{\prime} e^{(k+1) \gamma}-a e^{k \gamma}}{-k \gamma^{\prime}-(k-1) \gamma^{\prime} e^{\gamma}-\cdots-\gamma^{\prime} e^{(k-1) \gamma}-a e^{k \gamma}}=e^{\delta} \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15) we have

$$
\begin{equation*}
T\left(r, e^{\delta}\right) \geq k T\left(r, e^{\gamma}\right)+S(r, f) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{k \gamma^{\prime}}{a} e^{k \gamma}+\frac{(k-1) \gamma^{\prime}}{a} e^{(k-1) \gamma}+\cdots+\frac{\gamma^{\prime}}{a} e^{\gamma}+e^{\delta} \tag{3.17}\\
& +\frac{\gamma^{\prime}}{a} e^{\delta-\gamma}+\frac{2 \gamma^{\prime}}{a} e^{\delta-2 \gamma}+\cdots+\frac{k \gamma^{\prime}}{a} e^{\delta-k \gamma} \equiv 1 .
\end{align*}
$$

By Lemma 6, (3.14), (3.16) and (3.17) we obtain

$$
\frac{k \gamma^{\prime}}{a} e^{\delta-k \gamma} \equiv 1
$$

and hence

$$
\begin{equation*}
e^{\delta} \equiv \frac{a}{k \gamma^{\prime}} e^{k \gamma} . \tag{3.18}
\end{equation*}
$$

Substituting (3.18) into (3.17) we get

$$
\begin{equation*}
\left(\frac{k \gamma^{\prime}}{a}+\frac{a}{k \gamma^{\prime}}\right) e^{k \gamma}+\left(\frac{(k-1) \gamma^{\prime}}{a}+\frac{1}{k}\right) e^{(k-1) \gamma}+\cdots+\left(\frac{\gamma^{\prime}}{a}+\frac{k-1}{k}\right) e^{\gamma} \equiv 0 . \tag{3.19}
\end{equation*}
$$

From (3.19) we obtain

$$
\begin{equation*}
\frac{k \gamma^{\prime}}{a}+\frac{a}{k \gamma^{\prime}} \equiv 0, \quad \frac{(k-1) \gamma^{\prime}}{a}+\frac{1}{k} \equiv 0, \quad \frac{\gamma^{\prime}}{a}+\frac{k-1}{k} \equiv 0 . \tag{3.20}
\end{equation*}
$$

From (3.20) we have a contradiction.
Assume that f and g satisfy the relation (iii) in Lemma 8. By (3.8) we know that $s=k$. Thus,

$$
f=-e^{k \gamma}-e^{(k-1) \gamma}-\cdots-e^{\gamma}, \quad g=-e^{-k \gamma}-e^{-(k-1) \gamma}-\cdots-e^{-\gamma} .
$$

In the same manner as above, we can obtain a contradiction.
Subcase 2.2. Assume that

Thus,

$$
\begin{equation*}
N_{0}(r)=S(r, f) . \tag{3.21}
\end{equation*}
$$

Noting that f and g share 0,1 and ∞ CM, by Lemma 9 we have (2.9) and (2.10). If $e^{\beta} \equiv C$, where C is a nonzero constant. From (2.9) we obtain

$$
\frac{(f-1) g}{f(g-1)} \equiv C .
$$

From this we get that f is a Möbius transformation of g, which is a contradiction. Thus, e^{β} is not a constant. From (2.9) we obtain

$$
\begin{equation*}
f-g=\frac{\left(e^{\alpha}-1\right)\left(1-e^{\beta-\alpha}\right)}{e^{\beta}-1} . \tag{3.22}
\end{equation*}
$$

We use $N_{0}^{*}(r)$ to denote the counting function of the common zeros of $e^{\alpha}-1$ and $e^{\beta}-1$. From (3.22), the following formula is obviously

$$
N_{0}(r)=N_{0}^{*}(r)+S(r, f) .
$$

From this and (3.21) we have

$$
\begin{equation*}
N_{0}^{*}(r)=S(r, f) . \tag{3.23}
\end{equation*}
$$

By (2.9) and (3.23), we have

$$
\begin{equation*}
N(r, f)=N\left(r, \frac{1}{e^{\beta}-1}\right)+S(r, f) . \tag{3.24}
\end{equation*}
$$

By (3.8) and (3.24) we get

$$
\begin{equation*}
T\left(r, e^{\beta}\right)=S(r, f) . \tag{3.25}
\end{equation*}
$$

From (2.9) and (3.25) we have

$$
\begin{equation*}
T(r, f)=T\left(r, e^{\alpha}\right)+S(r, f), \quad T(r, g)=T(r, f)+S(r, f) \tag{3.26}
\end{equation*}
$$

Substituting (2.9) into (3.1) we get

$$
\begin{equation*}
\frac{\left(\alpha^{\prime} e^{\beta}-\beta^{\prime} e^{\beta}-\alpha^{\prime}\right) e^{2 \alpha}+\left(\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a\right) e^{\alpha}}{\left(\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta}\right)-\left(\beta^{\prime} e^{\beta}+a e^{2 \beta}-2 a e^{\beta}+a\right) e^{\alpha}}=e^{\delta} . \tag{3.27}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a \not \equiv 0, \quad \beta^{\prime} e^{\beta}+a e^{2 \beta}-2 a e^{\beta}+a \not \equiv 0 . \tag{3.28}
\end{equation*}
$$

If $\alpha^{\prime} e^{\beta}-\beta^{\prime} e^{\beta}-\alpha^{\prime} \equiv 0$, then

$$
\begin{equation*}
\alpha^{\prime}=\frac{\beta^{\prime} e^{\beta}}{e^{\beta}-1} . \tag{3.29}
\end{equation*}
$$

By integration, from (3.29) we obtain

$$
\begin{equation*}
e^{\alpha}=C\left(e^{\beta}-1\right), \tag{3.30}
\end{equation*}
$$

where C is a nonzero constant, which is a contradiction. Thus

$$
\begin{equation*}
\alpha^{\prime} e^{\beta}-\beta^{\prime} e^{\beta}-\alpha^{\prime} \not \equiv 0 . \tag{3.31}
\end{equation*}
$$

In the same manner as above, we have

$$
\begin{equation*}
\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta} \not \equiv 0 . \tag{3.32}
\end{equation*}
$$

By (3.25), (3.26), (3.27), (3.28), (3.31) and (3.32) we have

$$
\begin{equation*}
T\left(r, e^{\delta}\right) \geq T\left(r, e^{\alpha}\right)+S(r, f) \tag{3.33}
\end{equation*}
$$

and

$$
\begin{align*}
& -\frac{\alpha^{\prime} e^{\beta}-\beta^{\prime} e^{\beta}-\alpha^{\prime}}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\alpha}-\frac{\beta^{\prime} e^{\beta}+a e^{2 \beta}-2 a e^{\beta}+a}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\delta} \tag{3.34}\\
& +\frac{\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta}}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\delta-\alpha} \equiv 1
\end{align*}
$$

By Lemma 6, (3.25), (3.26), (3.33) and (3.34) we obtain

$$
\begin{equation*}
\frac{\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta}}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\delta-\alpha} \equiv 1 \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha^{\prime} e^{\beta}-\beta^{\prime} e^{\beta}-\alpha^{\prime}}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\alpha}+\frac{\beta^{\prime} e^{\beta}+a e^{2 \beta}-2 a e^{\beta}+a}{\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a} e^{\delta} \equiv 0 . \tag{3.36}
\end{equation*}
$$

From (3.35) and (3.36) we get

$$
\begin{equation*}
\frac{\left(-\alpha^{\prime} e^{\beta}+\beta^{\prime} e^{\beta}+\alpha^{\prime}\right)\left(\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta}\right)}{\left(\beta^{\prime} e^{\beta}+a e^{2 \beta}-2 a e^{\beta}+a\right)\left(\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a\right)} \equiv 1 \tag{3.37}
\end{equation*}
$$

From (3.37) we obtain

$$
\begin{equation*}
e^{\beta}\left(\alpha^{\prime}-\frac{\beta^{\prime}}{2}\right)^{2} \equiv a^{2} e^{2 \beta}+\left(\frac{\left(\beta^{\prime}\right)^{2}}{4}-2 a^{2}\right) e^{\beta}+a^{2} \tag{3.38}
\end{equation*}
$$

Set

$$
\begin{equation*}
H=a^{2} e^{2 \beta}+\left(\frac{\left(\beta^{\prime}\right)^{2}}{4}-2 a^{2}\right) e^{\beta}+a^{2} \tag{3.39}
\end{equation*}
$$

then

$$
\begin{equation*}
H=e^{\beta}\left(\alpha^{\prime}-\frac{\beta^{\prime}}{2}\right)^{2} \tag{3.40}
\end{equation*}
$$

Applying Lemma 10 to H, from (3.39) and (3.40) we have

$$
\begin{equation*}
\left(\frac{\left(\beta^{\prime}\right)^{2}}{4}-2 a^{2}\right)^{2}-4 a^{4} \equiv 0 \tag{3.41}
\end{equation*}
$$

From (3.41) we get

$$
\begin{equation*}
\beta^{\prime}=4 a \omega \tag{3.42}
\end{equation*}
$$

and hence

$$
\begin{equation*}
e^{\beta}=A e^{4 a \omega z} \tag{3.43}
\end{equation*}
$$

where ω satisfying $\omega^{2}=1$, and A are nonzero constants. Substituting (3.42) and (3.43) into (3.38), we have

$$
\alpha^{\prime}=2 a \omega+a \omega_{1}\left(B_{1} e^{2 a \omega z}+\frac{1}{B_{1}} e^{-2 a \omega z}\right)
$$

where B_{1} and ω_{1} are constants satisfying $B_{1}^{2}=A$ and $\omega_{1}^{2}=1$. Thus,

$$
\begin{equation*}
\alpha=2 a \omega z+\frac{\omega_{1}}{2 \omega}\left(B_{1} e^{2 a \omega z}-\frac{1}{B_{1}} e^{-2 a \omega z}\right)+C \tag{3.44}
\end{equation*}
$$

where C is a constant. Set $B=\frac{\omega_{1} B_{1}}{\omega}$, then $B^{2}=A$ and

$$
\begin{equation*}
\alpha=2 a \omega z+\frac{1}{2}\left(B e^{2 a \omega z}-\frac{1}{B} e^{-2 a \omega z}\right)+C . \tag{3.45}
\end{equation*}
$$

From (3.45) we have

$$
\begin{equation*}
\alpha^{\prime}=2 a \omega+B a \omega \cdot e^{2 a \omega z}+\frac{a \omega}{B} \cdot e^{-2 a \omega z} \tag{3.46}
\end{equation*}
$$

Noting that $B^{2}=A$, from (3.42), (3.43) and (3.46) we get

$$
\begin{equation*}
\alpha^{\prime} e^{2 \beta}+\beta^{\prime} e^{\beta}-\alpha^{\prime} e^{\beta}=B^{5} a \omega \cdot e^{10 a \omega z}+2 B^{4} a \omega \cdot e^{8 a \omega z}+2 B^{2} a \omega \cdot e^{4 a \omega z}-B a \omega \cdot e^{2 a \omega z} \tag{3.47}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{\prime} e^{\beta}-a e^{2 \beta}+2 a e^{\beta}-a=(4 a \omega+2 a) B^{2} \cdot e^{4 a \omega z}-a B^{4} \cdot e^{8 a \omega z}-a \tag{3.48}
\end{equation*}
$$

Substituting (3.47) and (3.48) into (3.35), we deduce

$$
\begin{equation*}
\frac{e^{8 a \omega z}-(4 \omega+2) / B^{2} \cdot e^{4 a \omega z}+1 / B^{4}}{e^{8 a \omega z}+2 / B \cdot e^{6 a \omega z}+2 / B^{3} \cdot e^{2 a \omega z}-1 / B^{4}} \equiv-B \omega e^{\delta-\alpha+2 a \omega z} \tag{3.49}
\end{equation*}
$$

Let

$$
\begin{equation*}
P_{1}(\chi)=\chi^{8}-\frac{4 \omega+2}{B^{2}} \cdot \chi^{4}+\frac{1}{B^{4}}, \quad P_{2}(\chi)=\chi^{8}+\frac{2}{B} \cdot \chi^{6}+\frac{2}{B^{3}} \cdot \chi^{2}-\frac{1}{B^{4}} \tag{3.50}
\end{equation*}
$$

From (3.50) we can easily see that every root of $P_{j}(\chi)=0(j=1,2)$ is not equal to zero, and that there is at least one root of $P_{1}(\chi)=0$ that is not any root of $P_{2}(\chi)=0$. Thus, from (3.49) we can have a contradiction.

Theorem 1 is thus completely proved.
Acknowledgement. The authors want to express their thanks to the anonymous referee for his valuable suggestions and comments.

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964.
[2] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[3] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J., 11 (1988), 249-279.
[4] H. X. Yi, Unicity theorems for meromorphic functions that share three values, Kodai Math. J., 18 (1995), 300-314.
[5] Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math., 30 (1999), 667-682.
[6] Amer H. H. Al-Khaladi, Unicity theorems for meromorphic functions, Kodai Math. J., 23 (2000), 27-34.
[7] Q. C. Zhang, Meromorphic functions sharing values or sets, Doctoral Thesis, Shandong University, 1999.
[8] R. Nevanlinna, Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes, Gauthier-Villars, Paris, 1929.
[9] P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 18 (1995), 437-450.
[10] H. X. Yi, Some theorems on systems of meromorphic functions, J. Shandong Univ. Nat. Sci. Ed., 32 (1997), 121-127.
[11] H. X. Yi, Some theorems on systems of meromorphic functions III, J. Shandong Univ. Nat. Sci. Ed., 34 (1999), 1-9.
[12] P. Li and C.-C. Yang, When an entire function and its linear differential polynomial share two values, Illinois J. Math., 44 (2000), 349-362.

Department of Mathematics
Shandong University
Jinan, Shandong 250100
People's Republic of China
e-mail: li-xiaomin@163.com

Department of Mathematics
Shandong University
Jinan, Shandong 250100
People's Republic of China
e-mail: hxyi@sdu.edu.cn

[^0]: 2000 Mathematics Subject Classification: Primary 30D35.
 Keywords: Meromorphic functions, shared values, hyper-orders, uniqueness theorem.
 Project supported by NSFC and the RFDP.
 Received July 6, 2001; revised July 4, 2002.

