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THEOREMS OF PICARD TYPE FOR ENTIRE FUNCTIONS OF
SEVERAL COMPLEX VARIABLES

Jin Lu*

Abstract

In this paper, some theorems of Picard type relating to the total derivative for
entire functions of several complex variables are proved.

1. Introduction

In 1940, H. Milloux showed that for a meromorphic function f on the
complex plane, the following inequality

T}(r) < ]vf(n O) +N_Vf(r7 OO) +Nf'(")(r7 1) - ]Vf("“)(rv 0) + S(V,f)

holds, where Tr(r) is the characteristic function of f and S(r, /) = O(log rT;(r))
holds for all large r outside a set with finite measure ([2], [3] and [6]). The
important characteristic of the above inequality is that the right side of it contains
a counting function of f*) and hence we can derive theorems of Picard type
relating to derivatives. For example, we can directly derive from the above
inequality the following: Let f be an entire function on the complex plane, and
let a,b (b #0) be two distinct complex numbers. If f #a and f* # b, then
f is constant ([2]). It is natural to ask the following question: Whether such
kinds of theorems hold for entire functions of several complex variables? In this
paper we discuss this question.

For ze C", we write z=(z1,22,...,2,). First we give the definition of
total derivative.

DEerINITION 1.1. Let f be an entire function on C”, the total derivative Df
of f is defined by

n

Df(z) = zif,(2),

J=1
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where f. is the partial derivative of f with respect to z; (j=1,2,...,n). The
k-th order total derivative DXf of f is defined by

D'f = D(D*'),

inductively.

The merit of the total derivative is the following: If f is a transcendental
entire function on C”, then for any positive integer k, D*f is also a transcen-
dental entire function on C" (see Lemma 2.2 bellow). However the partial
derivative may not have this property. The main theorems in this paper are
the following:

THEOREM 1.1. Let f be an entire function on C", and let a and b (b # 0) be
two distinct complex numbers and k be a positive integer. If f # a and D*f # b,
then f is constant.

THEOREM 1.2. Let [ be an entire function on C", and let b # 0 be a com-
plex number and k >?2 a positive integer. If fX.Df #b, then f is constant.

This theorem is also a generalization of a result of [6] on entire function of
one complex variable. In the Section 4 of this paper, we will give an example to
indicate that these two theorems are not valid if the total derivative is replaced
by the partial derivative.

2. Notations and lemmas
For z=(z1,...,2,) € C", define |z| = (|z1]* + - + |za|)"*  Let
Su(r)={zeC"|z| =r}, B,(r)={zeC"|z| <r}.
Set d =0+ 0 and d¢ = (0 — 0)/4ni. Define
wn(z) = dd® log|z|?,  0,(z) = d log|z|* A 0" (2), w(z) = dd‘|z|*.

Then o,(z) is a positive measure on S,(r) with the total measure one. Let
aeP'. If f~!(a) # C", we denote by Z] the a-divisor of f, write ZJ(r) =
B,(r)NZJ and define

ne(r,a) = rz—sz vg’_l(z).
z/l ()

Then the counting function Ny(r,a) is defined by

Ny(r,a) = J

0

r

dt
[nf(lv a) - nf(ov a)] 7 + nf(oa a) log r,

where n/(0,a) is the Lelong number of Z/ at the origin. Then Jensen’s formula
gives that
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Ni(1,0) = Nir.o0) = | loglf o) + O(1)

Su(r

We define the proximity function my(r,a) by

1
. — log™t Y
mm”>J§”%|ﬂn—ﬂ”

= J log™ | f(2)|on(2) if a= oo.
S (r)

(z) if a # oo;

We also define the characteristic function 7j(r) by
Ty (r) = my(r, 00) + Ny (r, o0).
The first main theorem states that ([4], Chapter 4, AS5.1)
Ty (r) = mys(r,a) + Ny(r,a) + O(1).

Let I = (oy,...,0,) be a multi-index, where ; (j =1,2,...,n) are nonnega-
tive integers. We denote by |I| the length of 7, that is, |[I| =} ", . Define
oy
f = .
f Ozy' -+ 0zy"

LemMa 2.1 ([7], Theorem 1). Let f be a non-constant meromorphic function
on C", and let I = (a1,00,...,0,) be a multi-index. Then

ol
T (z)

holds for all large r outside a set with finite Lebesgue measure.

an(2) = O(log rTy(r))

M1z (r, 00) = log"
)=

We say f to be transcendental if

lim I(r) = ©
r— log r

LEMMA 2.2. Let f be a transcendental entire function on C". Then for any
positive integer k, D*f is also a transcendental entire function on C", and

mpiyyy(r, 0) = O(log rTy(r))

holds for all large r outside a set with finite Lebesgue measure.

Proof. Since f is an entire function on C”, then we have a convergent
series on C" as follows:

f6) =3 Pr),
m=0
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where P™(z) is either identically zero or a homogeneous polynomial of degree m
inz (m=0,1,2,...). By the homogeneity of P"(z) we have
n
> fPl(z) =mP"(z) (m=1,2,...).
=t
Hence we see

Df(z) = sz £,(2) ZmP”’

J=1
By induction, we have

z) = kaP”’(z) (k=1,2,...).
m=1

Since f is transcendental, there are infinitely many terms of {P™(z)} which
are not identically zero. Hence there are infinitely many terms of {m*P"(z)}
which are not identically zero. Thus DXf is a transcendental entire function on
C" for all positive integers k.

It is clear that, for any positive integer k, there are multi-indices Ii,...,1,
such that
P
=Y 04(2)0"f(2)
j=1
where Qy(z) (j=1,2,...,p) are polynomials in z. Note that, for any rational

function R(z), we have mg(r,0) = O(log r). Hence

Ij
mosgy(re) = | tog[Y- 0y ff () |ou(2)
n(r) j=1
14 1 L|ovf V4 1
<
< ;L,(r) og +Zj 08|04 (2)lou(2) + O(1)
P )4
= may(r,0) + Y mg, (r,00) + O(1)
Jj=1 Jj=1

—Zm 57,7 (r, 00) 4 O(log r).

Thus by Lemma 2.1, we have completed the proof. O

LEmMMA 2.3. Let [ be a transcendental entire function on C", and let a be
a complex number. Then for any positive integer k,

ka—lf/(Dkf_a)(r, w0) = O(log rTy(r))
holds for all large r outside a set with finite Lebesgue measure.
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Proof. 1t is easy to see that D(D*f —a) = D**'f. By Lemma 2.2, we see
that D¥f —a is a transcendental entire function, and
(2.1) Mpkir/(pkf—a)(F; 00) = Mp(prr_ay)(pkf—a) (', )
= O(log rTpis_,(r)) = O(log rTpis(r))
holds for all large r outside a set with finite Lebesgue measure. Note that
(2.2) Tpis(r) = mpip(r,00) < kaf/f(r, 0) +my(r,0) = kaf/f(r, 0) + Ty (r).
By Lemma 2.2, (2.1) and (2.2), we get the desired conclusion. O

LemMmA 2.4.  Let f be a polynomial of degree p. If Df is constant, then f is
constant and Df = 0.

Proof. We write f as

)4
f2)=3"P"(2),

m=0

where P™(z) is either identically zero or a homogeneous polynomial of degree
m (m=0,1,2,...,p). As in the proof of Lemma 2.2, we have

P
Df(z) = ZmP”’(z),
m=1

If Df is constant, every mP™(z) must be identically zero, so is P"(z) (m =1,
2,...,p). Thus f is constant and Df = 0.

3. Main inequalities

In order to prove our theorems we first give some estimates for the charac-
teristic function relating to the total derivative. As usual, the notation || P”
means that the assertion P holds for all large r € [0, +00) outside a set with finite
Lebesgue measure.

THEOREM 3.1. Let f be a transcendental entire function on C". Then for
any positive integer k,

| Ty(r) < Ny(r,0) + Npip(r,1) — NDka(V, 0) + O(log rTy(r)).

Proof. By the equality
1 _Dkf_Dkf—l Dk+1f

A

and the definition of the proximity function, we see

(31) I’Vlf(}"7 0) < H’ZDA»f/f(V, OO) —+ m(D"ffl)/Dk“f(r? OO) + mDmf/f(r, OO) —+ 0(1)
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By the first main theorem, we have
(3:2)  mprp_1)preny(r, 00) = mpryypry1)(r,0)
= mpraigyprr-1)(rs 90) + Npigypry1 (1, 00)
— Nperigyprr—1y(r,0) + O(1).

By Lemma 2.2, we know that D*f and D**!f are transcendental entire
functions on C”, and hence Npi/(r, 0) = Npins(r,00) =0. Then by Jensen’s
formula, we see

(33) ND"’*‘f/(D"’ffl)(rﬂ O) — ND"“f/(D"ffl) (}’, OO)

Dk+1f

= log|————(2)|0,(2) + O(1

I, el @t + o)

1

= 10g|Dk+1f(z)\an(Z) —I—J log (7(2) an(z) + O(1)

JS,,(I‘) Sn(r) D]f_l
= NDka(I’, 0) - NDka(V, OO) - NDkf—l(Va 0) + NDkffl(V, OO) + 0(1)
= NDkH/'(I’, 0) — NDI:Hf(V, OO) — NDkf(V, 1) + NDk/'(V, OO) + 0(1)
= Npu17(r,0) = Npis(r, 1) + O(1).

By (3.1), (3.2) and (3.3), we have
T(r) = my (r,0) + Ny(r,0) + O(1)
< Np(r,0) + Npiyp(r, 1) — Nping(r, 0)
+mpigp(r, 00) + mpreig)p(r, 00) + Mpri gy pry—1y (1, 00) + O(1).

Therefore, by Lemmas 2.2 and 2.3, we obtain the conclusion of the theorem 3.1.
O

As usual, we use the notation Ny(r,a) for the counting function of the
a-divisor of f which does not count multiplicities.

THEOREM 3.2. Let [ be a transcendental entire function on C". Then
I Ty(r) < 2Ny (r,0) + Npy(r, 1) + O(log rT (r)).
Proof. 1If the zero multiplicity r of f at z° = (z0,29,...,29) is at least three
(see [1] for the definition of multiplicity of zero), then in a neighborhood of z°,
we can expand f as a convergent series of homogeneous polynomials in z — z°:

fE) =3 Pz,

m=r
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where r is a positive integer with r > 3. By the homogeneity of P"(z — z%), we
have

Z(zj - ZJQ)P;';(Z ) =mP"(z -2, m=rr+1,....

Hence we see

D)= 5f(2) = (5= f () + > 20, (2)
j=1 j=1 j=1
_ ium(z _ ZO) + ZOO: Gmfl(z _ ZO)
_ zx: Pm(z
m=r—1

where G”(z —z°) and P"(z — z°) are either identically zero or a homogeneous
polynomials in z — z° of degree m, respectively. By the same way we have

Df(z) = ZP (z -2

where f’m(z—zo) is either identically zero or a homogeneous polynomial in
z— 2% of degree m (m=r—2,r—1,r,...). Therefore, the zero multiplicity of
D*f at 2 is at least r — 2.

Hence by the definition of the counting function, we have

Ny (r,0) — Np2s(r,0) < 2N¢(r,0) + O(log r).
Thus, by Theorem 3.1, we have
I Tp(r) < Ny(r,0) + Nps(r, 1) = Np2y(r, 0) + O(log Ty (r))
< 2Ny(r,0) + Nps(r, 1) + O(log rT;(r)).
This completes the proof. O

4. Proofs of Theorems

Proof of Theorem 1.1. First we prove that f is a polynomial. Assume the
contrary. Then f is a transcendental entire function ([1] or [5]), and hence

F(z) = fi(zl_ ¢

is a transcendental entire function. By Theorem 3.1, we have

| Tr(r) < Np(r,0) + Npip(r, 1) + O(log rTr(r)).
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Since DXF = DXf/b, Ty(r) = Tr(r) + O(1) and the assumptions, we deduce from
above inequality that

1) |l Tp(r) < Ny(r;a) + Npis(r, b) + O(log rTy(r)) = O(log rTy (r)).

Now f is transcendental, we can get a contradiction by (4.1).
Therefore f is a polynomial ([1] or [5]). Since f # a, f must be constant.
Ul

Proof of Theorem 1.2. First we prove that f is a polynomial. Assume the
contrary. Then f is a transcendental entire function, and hence

fkﬂ(z)
F(z) =
G =18
is also a transcendental entire function. Obviously, DF(z) =f*(z)- Df(z)/b,

and the zero multiplicity at each point of 0-divisor of F is at least kK + 1 > 3.
Hence

— 1
Np(r,0) < gNF(r, 0) + O(log 7).

By the assumption we deduce that DF(z) # 1, and from Theorem 3.2 we have
|| TF(}’) < 2NF(V, 0) + NDF(V, 1) + 0(10g rTF(r))

< %Np(r, 0) + O(log rTr(r)) < %Tp(r) + O(log rTr(r)).

Hence we see

(42) | 3Tr(r) < Ollog rTe(r).

Now F is transcendental, (4.2) gives a contradiction. Therefore f is a poly-
nomial, so is f%.Df. Since fX.Df # b, fX.Df must be constant. Since the
degree of f*.Df is not less than the degree of Df, then Df is constant. By
Lemma 2.4, we conclude that f is constant. O

The following example shows that Theorems 1.1 and 1.2 are not valid if the
total derivative is replaced by the partial derivative.

Example 4.1. Let f(z),z2) = e®. Itis clear that f # 0. Since f; (z,22) =
0, then f., # 1 and for any positive integer k, f*-f., # 1. However f is not
constant.
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