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ON THE EXISTENCE OF SPHERICALLY BENT SUBMANIFOLDS,

AN ANALOGUE OF A THEOREM OF E. CARTAN

Knut Pawel and Helmut Reckziegel

Abstract

In this article an analogue of E. Cartan’s theorem about the existence of (local)

totally geodesic submanifolds with a prescribed tangent plane is proved, namely for the

existence of spherically bent submanifolds (¼extrinsic spheres); also a global version is

deduced.

Introduction

In a riemannian manifold M the simplest submanifolds are the totally
geodesic ones. An inhabitant of M will consider them as uncurved. The one-
dimensional examples are the geodesics. However the examples of proper totally
geodesic submanifolds of dimensions b2 may be very rare. Already E. Cartan
has investigated this situation: Starting from a point p A M, a linear subspace
U YTpM of dimension b2 and some e > 0 such that UeðpÞ is a normal neigh-
bourhood he obtained the following

Theorem. If SðUÞ denotes the unit sphere in U and cu : ��e; e½ ! M the
geodesic t 7! exppðtuÞ for every u A SðUÞ, then the ‘‘geodesic e-umbrella’’

Neðp;UÞ :¼ 6
u ASðUÞ

cuð��e; e½Þð1Þ

is a totally geodesic submanifold of M if and only if for every u A SðUÞ and every
t A ��e; e½ the parallel translate

UuðtÞ :¼ ðk
t

0

cuÞðUÞHTcuðtÞM of U along cu; see ð5Þ;

is curvature invariant, that means

Ev; v 0; v 00 A UuðtÞ: Rðv; v 0Þv 00 A UuðtÞ:

The most famous special case of this theorem is the well known relation
between Lie triple systems and totally geodesic submanifolds in the theory of
symmetric spaces.
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In this article we solve the analogous problem for spherical submanifolds,
known also as extrinsic spheres from the article [NY] of Nomizu and Yano. In
the euclidean space the open parts of linear subspaces and of ordinary spheres (of
any dimension) are the spherical submanifolds. In an arbitrary riemannian space
M the spherical submanifolds are those which are bent uniformally, that means,
they are totally umbilical and have a parallel mean curvature normal (see Def-
inition 1). If N is a spherical submanifold, p A N a fixed point and z the mean
curvature normal of N at p, then every normal e-neighbourhood of N about p is
uniquely determined by the data ðp;U :¼ TpN; zÞ, because the unit speed geo-
desics c of N through p are circular arcs of M, that means, they satisfy the third
order di¤erential equation

‘q‘q _ccþ h‘q _cc;‘q _cci � _cc ¼ 0

(q denotes the canonical unit vector field of R), and the solutions of this equa-
tion are uniquely determined by their initial values cð0Þ; _ccð0Þ and ð‘q _ccÞð0Þ (see the
Propositions 1(f ), 2 and 3).

This observation has led us to construct ‘‘circular e-umbrellas’’ Neðp;U ; zÞ
for prescribed data ðp;U ; zÞ analogously to (1) (see Proposition 5); they are
locally (the only possible) candidates for spherical submanifolds of M associated
to ðp;U ; zÞ. In fact, we will prove in section 6:

Theorem 1 (Main result). Let be given a point p A M, a non-trivial linear
subspace U YTpM and a vector z A U?nf0gHTpM; furthermore, let SðUÞ denote
the unit sphere in U and cu : Ju ! M the maximal circular arc with the initial data
cuð0Þ ¼ p, _ccuð0Þ ¼ u and ð‘q _ccuÞð0Þ ¼ z for every u A SðUÞ, choose an e > 0 such
that the circular e-umbrella

Neðp;U ; zÞ :¼ 6
u ASðUÞ

cuð��e; e½Þð2Þ

is defined and put V :¼ U lRz. For every u A SðUÞ and t A ��e; e½ we define

VuðtÞ :¼ ðk
t

0

cuÞðVÞ; zuðtÞ :¼ ð‘q _ccuÞðtÞ A VuðtÞ and

UuðtÞ :¼ fv A VuðtÞ j v ? zuðtÞg;
ð3Þ

and suppose for all v; v 0; v 00 A UuðtÞ

Rðv; v 0Þv 00 A UuðtÞ and Rðv; v 0ÞzuðtÞ ¼ 0:ð4Þ

Then Neðp;U ; zÞ is a spherical submanifold of M.

The proof of this theorem is inspired by a discovery of K. Tsukada (see [T]),
namely that n-dimensional totally geodesic submanifolds are related to the inte-
gral manifolds of a canonical (horizontal) distribution defined on the Grassmann
bundle GnðTMÞ over the riemannian manifold M. Already in [PR] we used this
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idea for a short proof of E. Cartan’s theorem. Here in this article we present an
analogue to Tsukada’s result by constructing such a horizontal distribution D on
a submanifold ÊE of the fibre product Gnþ1ðTMÞ �M TM that the n-dimensional
spherical (not totally geodesic) submanifolds are related to the integral manifolds
of D (Theorem 2). Furthermore, we prove that D is involutive in ðU lRz; zÞ A
ÊE if and only if ðU ; zÞ satisfies condition (4) appropriately modified (see Proposi-
tion 9(e)); here the curvature form of a horizontal structure on Gnþ1ðTMÞ �M TM
is the essential tool. After that the proof of Theorem 1 is similar to our short
proof of Cartan’s theorem: Over the circular e-umbrella Neðp;U ; zÞ we construct
a submanifold Seðp;U ; zÞH ÊE built up by horizontal lifts of the circular arcs
cu (used in Theorem 1). As these lifts are tangential to D, we call Seðp;U ; zÞ a
D-umbrella (see Definition 3). Since condition (4) implies the involutivity of D
at all points of Seðp;U ; zÞ, this D-umbrella is an integral manifold of D accord-
ing to Theorem 3 (a theorem usefull also in di¤erent situations), and therefore
Neðp;U ; zÞ is a spherical submanifold of M.

Of course, maximal connected integral manifolds of D give rise to max-
imally extended spherical manifolds of M, possibly with selfintersections; they
are described correctly by maximally extended spherical immersions f : N ! M.
Theorem 4 shows that they are geodesically closed under suitable hypotheses
(see Definition 4); in particular, if in this situation M is complete, then N is
complete, too.

1. Notations and general basic facts

At first we remark that all manifolds, maps etc. are assumed to be Cy

di¤erentiable if not otherwise stated.
In this article M always denotes a connected riemannian manifold of dimen-

sion m; pM : TM ! M, h� ; �i, ‘ and R denote its tangent bundle, riemannian
metric, Levi-Civita connection and curvature tensor, respectively. For all other
(riemannian) manifolds the analogous geometric objects will be marked by an
appropriate index. Furthermore, for any curve a : J ! M and any t1; t2 A J let

k
t2

t1

a : Taðt1ÞM ! Taðt2ÞMð5Þ

denote the parallel displacement in M along a. In this article an essential geo-
metric object will be the connection map K : TTM ! TM of M (see [D], [P], [L]
p. 284). It is a vector bundle morphism along the projection pM ; in particular,
the following diagram

TTM ���!K TM

pTM

???y
???ypM

TM ���!
pM

M
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commutes. K is defined by1

Kw :¼ ‘widTM ;ð6Þ
where idTM is considered as a vector field of M along the projection pM .
Consequently, for every curve x : J ! TM we have

K � _xx ¼ ‘qx;ð7Þ
for q and TvpM see the end of this section. If for p A M and v A TpM the
vertical subspace kerðTvpMÞ ¼ TvðTpMÞ is denoted by Vv ðpMÞ, we obtain that the
restriction

K jVv ðpMÞ coincides with the canonical isomorphism TvðTpMÞ ! TpM:ð8Þ
Furthermore, the restriction

ðTpM ;KÞ jTvTM : TvTM ! TpMlTpM is an isomorphism:ð9Þ
Therefore one obtains: If g : L ! TM is some di¤erentiable map and
Y1;Y2 : L ! TM are two vector fields along pM � g, then there exists one and
only one vector field X : L ! TTM (of TM) along g such that

ðTpMÞ � X ¼ Y1 and K � X ¼ Y2:ð10Þ
For any di¤erentiable map f : N ! M its di¤erential is denoted by f� or Tf and
its restriction to TpN sometimes by Tp f . A submanifold N of M is said to be
regular, if its topology is induced by the topology of M. At last, by q we denote
the canonical unit vector field of R; thus, ‘qx denotes the covariant derivative of
a vector field x : J ! TM with respect to t A J.

2. Basic properties of spherical maps and submanifolds

Definition 1.
(a) An isometric immersion f : N ! M is said to be spherical if it is totally

umbilical, i.e., there exists a normal vector field H along f such that the
second fundamental form h of f is given by

hðX ;Y Þ ¼ hX ;Yi �H for all X ;Y A XðNÞ;ð11Þ
and if this field H is parallel in the normal bundle of f , i.e.,

‘vH A f�TpN for every v A TpN ðp A NÞ:ð12Þ
H is the so called mean curvature normal of f . We put

0ð f Þ :¼ hH;Hi:

(b) A 1-dimensional isometric immersion, i.e., a unit speed curve c : J ! M
from an open interval, is called a circular arc if it is spherical.

1For the covariant di¤erentiation of vector fields along maps see [P] p. 36.
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(c) A submanifold N of M is said to be spherical, if its inclusion map
N ,! M is spherical.

Remark 1. (a) Spherical submanifolds (with non-vanishing mean curvature
normal) were introduced by Nomizu and Yano in [NY] under the name
extrinsic spheres. In fact, they were treated already before, e.g., in [LN]
and [No].

(b) Every totally geodesic map (resp. submanifold) is also a spherical map
(resp. submanifold), namely with H1 0.

(c) If M is a space of constant curvature, then condition (4) of Theorem 1 is
satisfied automatically. Thus, every initial data ðp;U ; zÞ are induced by
a spherical submanifold of M. In the euclidean space the linear sub-
spaces and ordinary spheres of any dimension are the complete spherical
submanifolds. In the euclidean sphere Sm the complete spherical sub-
manifolds are the intersections of Sm with a‰ne subspaces of Rmþ1.
If we describe the hyperbolic space Hm by the hyperboloid model in
the Lorentzian vector space Rmþ1

1 (see [O’N] p. 111), then the complete
spherical submanifolds are obtained as the analogous intersections.

(d) If M is a symmetric space and dim U b 2, then the circular e-umbrella
Neðp;U ; zÞ of Theorem 1 is a spherical submanifold if and only if there
exists a c A R such that for all vectors v; v 0; v 00 A V :¼ U lRz we have

Rðv; v 0Þv 00 ¼ c � ðhv 0; v 00i � v� hv; v 00i � v 0Þ:ð13Þ

Proof. If condition (13) is satisfied, then V and every parallel translate of
V is curvature invariant (because of ‘R ¼ 0). According to the theorem of E.
Cartan (mentioned in the introduction) there exists a totally geodesic submanifold
~NN of M with p A ~NN and Tp

~NN ¼ V ; moreover, ~NN is a space of constant curvature
c. Applying the last remark (c) we see that there exists a spherical submani-

fold N of ~NN adapted to the initial data ðp;U ; zÞ and which therefore contains
Neðp;U ; zÞ as open part. — Conversely, according to a result of B. Y. Chen
every spherical, not totally geodesic submanifold N of M with dim Nb 2 is a
hypersurface of a totally geodesic submanifold ~NN of M, which has constant
curvature (see [Ch]). Therefore condition (13) is satisfied. r

Proposition 1. Every spherical immersion f : N ! M with mean curvature
normal H and shape operator A has the following properties for all X ;Y ;Z A XðNÞ:

(a) AHX ¼ 0ð f Þ � X
(b) ‘XH ¼ �0ð f Þ � f�X
(c) Rð f�X ; f�YÞ f�Z ¼ f�ðRNðX ;YÞZ � 0ð f Þ � ðhY ;ZiX � hX ;ZiY ÞÞ
(d) Rð f�X ; f�YÞH ¼ 0
(e) f�TNlRH is a parallel subbundle of TM along f , that means: if

a : J ! N is any curve, then we have

ðk
t2

t1

f � aÞð f�Taðt1ÞNlRHaðt1ÞÞ ¼ ð f�Taðt2ÞNlRHaðt2ÞÞ:
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(f ) The image c :¼ f � a of any unit speed geodesic a : J ! N in N is
a circular arc in M with mean curvature normal ‘q _cc ¼ H � a; hence
0ðcÞ ¼ 0ð f Þ (see Definition 1(b)).

Proof. (a) is deduced from (11) by use of the relation between h and A.
From (a) and (12) one obtains (b) immediately with the Weingarten identity. (c)
and (d) are obtained by repeating the proof for the curvature equations of Gauss
and Codazzi. For (e) and (f ) the formulas (11) and (12) are used again. r

3. Circular arcs and circular e-umbrellas

At first we quote a result from Leung and Nomizu, see §1 in [LN].

Proposition 2. A unit speed curve c : J ! M is a circular arc if and only if
it satisfies the di¤erential equation

‘q‘q _ccþ h‘q _cc;‘q _cci � _cc ¼ 0:

The term ‘q _cc is the mean curvature normal of c, and hence we have h‘q _cc;‘q _cci1
0ðcÞ for circular arcs.

In order to make full use of Proposition 2 we consider di¤erential equations
of this type more generally.

Proposition 3. Let a vector field Y : TM �M TM ! TM along the canon-
ical projection TM �M TM ! M be given. Then the following holds:2

(a) For every ðv; aÞ A TM �M TM there exists a solution a ¼ aðv;aÞ : Jðv;aÞ !
M of the di¤erential equation

‘q‘q _aa ¼ Yð _aa;‘q _aaÞð14Þ
defined on an open interval Jðv;aÞ, satisfying the initial conditions 0 A Jðv;aÞ,
_aaðv;aÞð0Þ ¼ v and ð‘q _aaðv;aÞÞð0Þ ¼ a, and which is unique and maximal in the

following sense: If ~aa : ~JJ ! M is another solution of (14) with the same
initial data, then ~JJH Jðv;aÞ and ~aa ¼ aðv;aÞj ~JJ.

(b) If a : J ! M is a solution of (14), then also b : sþ J ! M, t 7! aðt� sÞ is
a solution of (14).

(c) If in the situation (a) d :¼ sup Jðv;aÞ < y (resp. d :¼ inf Jðv;aÞ > �y),
then for every compact subset CHTM �M TM there exists a parameter
t0 A Jðv;aÞ such that

ð _aaðv;aÞ;‘q _aaðv;aÞÞð�t0; d½ÞVC ¼ j ðresp: ð _aaðv;aÞ;‘q _aaðv;aÞÞð�d; t0½ÞVC ¼ jÞ:

2The results keep valid, if M is only equipped with a linear connection ‘, and also (with obvious

modifications) if Y is only defined on an open subset GHTM �M TM.
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(d) The subset

DY :¼ fðt; v; aÞ A R� ðTM �M TMÞ j t A Jðv;aÞg
is an open neighbourhood of the set f0g � ðTM �M TMÞ in R�
ðTM �M TMÞ, and the map

FY : DY ! M; ðt; v; aÞ 7! aðv;aÞðtÞ
is di¤erentiable.

Proof. Let Pi : TM �M TM ! TM denote the canonical projection
ðv1; v2Þ 7! vi for i ¼ 1; 2. Then there exists one and only one vector field X A
XðTM �M TMÞ such that its components Xi :¼ Pi�X : TM �M TM ! TTM
satisfy

pM�X1 ¼ pM�X2 ¼ P1; KX1 ¼ P2 and KX2 ¼ Y ;

see (10). Using these formulas one easily checks:
. If a is a solution of the di¤erential equation (14), then ð _aa;‘q _aaÞ is an integral
curve of X .

. If x is an integral curve of X , then a :¼ pM � P1 � x ¼ pM � P2 � x is a
solution of the di¤erential equation (14).

Therefore, the theory of integral curves of vector fields implies all assertions (e.g.,
see [W]). r

Let us apply Proposition 3 to get some information on circular arcs. For
that we fix a value 0 A R and introduce the vector field3

Y0 : TM �M TM ! TM; ðv; aÞ 7! �0 � hv; vi � v;
which via (14) is associated to the di¤erential equation

‘q‘q _aaþ 0 � h _aa; _aai � _aa ¼ 0:ð15Þ

Proposition 4.
(a) Let c : J ! M be a curve with the initial data 0 A J, u :¼ _ccð0Þ,

a :¼ ð‘q _ccÞð0Þ, kuk ¼ 1, u ? a and ha; ai ¼ 0. Then c is a circular arc if
and only if it is a solution of the di¤erential equation (15).

(b) If c : J ! M is a maximal circular arc (see the following Remark) and
d :¼ sup J < y (resp. d :¼ inf J > �y), then cðtÞ tends to the boundary
of M for t ! d, that means: for every compact subset CHM there exists
a parameter t0 A J such that

cð�t0; d½ÞVC ¼ j ðresp: cð�d; t0½ÞVC ¼ jÞ:
Therefore, every maximal circular arc is defined on the entire real line R,
if M is complete.

3The vector field Y : ðv; aÞ 7! �ha; ai � v would represent the di¤erential equation of circular arcs

(see Proposition 2) exactly; but with respect to the proof for Proposition 5 the choice of Y0 is more

convenient.
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Remark 2. The assertion (a) and Proposition 3(a) show that for any initial
data ðu; aÞ A TM �M TM with kuk ¼ 1 and u ? a there exists a circular arc
c : J ! M satisfying 0 A J, _ccð0Þ ¼ u and ð‘q _ccÞð0Þ ¼ a, which is unique and maxi-
mal in the sense of Proposition 3(a). So we know what is meant by maximal
circular arcs.

Proof. The ‘‘only if part’’ of (a) is clear. Because of Proposition 2, for the
‘‘if part’’ we have to prove only that c :¼ aðu;aÞ is a unit speed curve with
m :¼ h‘q _cc;‘q _cci ¼ 0 under the prescribed initial assumptions. For that we put
l :¼ h _cc; _cci in addition and calculate that l and m satisfy the di¤erential equations

l 00 ¼ 2ðm� 0l2Þ and m 0 ¼ �0ll 0ð16Þ

and the initial conditions lð0Þ ¼ 1, l 0ð0Þ ¼ 0 and mð0Þ ¼ 0; since ðl1 1, m1 0Þ
also solves (16), we get h _cc; _cci1 1 and h‘q _cc;‘q _cci ¼ 0.

For (b): Let be given a maximal circular arc c : J ! M and a compact
subset C of M and assume d :¼ sup J < y. We may assume 0 A J. We put
u :¼ _ccð0Þ, a :¼ ð‘q _ccÞð0Þ and 0 :¼ ha; ai. From (a) we obtain that c is the
maximal solution aðu;aÞ of (15). As the curve x :¼ ð _cc;‘q _ccÞ runs in the subset
S :¼ fðv; bÞ A TM �M TM j kvk ¼ 1 and kbk2 ¼ 0g and ~CC :¼ fðv; bÞ A S j pMðvÞ A
Cg is a compact subset of TM �M TM, according to Proposition 3(c) there exists
a parameter t0 A J such that xð�t0; d½ÞV ~CC ¼ j. But this situation can only occur,
if cð�t0; d½ÞVC ¼ j. — If in the foregoing situation M would be complete, then
C :¼ fp A M j dðp; cð0ÞÞa dg would be compact (according to the theorem of
Hopf-Rinow) and cð½0; d½Þ could not leave C in contradiction to the last statement;
hence d < y is impossible for complete M. — The case d :¼ inf J > �y is
proved analogously. r

Proposition 5. Let be given a point p A M, a non-trivial linear subspace
U YTpM and a vector z A U? HTpM; furthermore, for every unit vector u A U
let cu : Ju ! M denote the maximal circular arc with the initial data cuð0Þ ¼ p,
_ccuð0Þ ¼ u and ð‘q _ccuÞð0Þ ¼ z. Then there exists an e > 0 such that each of these
circular arcs is defined at least on the interval ��e; e½ and

Neðp;U ; zÞ :¼ 6
u AU ;kuk¼1

cuð��e; e½Þ

is a regular submanifold of M (see section 1), which we will call the circular e-
umbrella associated to the data ðp;U ; zÞ.

Proof. We will mimic the construction of the exponential map of a rie-
mannian manifold at a point, where the geodesics are replaced by circular arcs.
For that we apply Proposition 3 to the di¤erential equation (15) with 0 ¼ hz; zi,
it means to the vector field Y :¼ Y0 and the associated di¤erentiable map
FY : DY ! M. Since for every unit vector u A U we have 0ðcuÞ ¼ hz; zi ¼ 0,
Proposition 4(a) implies (with the notations of Proposition 3)

Ju ¼ Jðu; zÞ and cu ¼ aðu; zÞ:
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Therefore, we may abbreviate Ju :¼ Jðu;hu;ui�zÞ and cu :¼ aðu;hu;ui�zÞ for arbitrary
vectors u A U . Obviously we have J0 ¼ R and c0 1 p. Furthermore, for every

u A U and every s A Rnf0g the curve t 7! cuðstÞ t A
1

s
� Ju

� �
is seen to be a solu-

tion of the di¤erential equation (15), too; hence we obtain

Jsu ¼
1

s
� Ju and csu : t 7! cuðstÞ:ð17Þ

Therefore,

D :¼ fu A U j ð1; u; hu; ui � zÞ A DYg
is a star shaped open neighbourhood of 0 in U ,

F : D ! M; u 7! FY ð1; u; hu; ui � zÞ ¼ cuð1Þ
is a di¤erentiable map with the special value Fð0Þ ¼ p, and

FðtuÞ ¼ cuðtÞ for every vector u A U and every t A Ju:ð18Þ
Hence the di¤erential T0F : T0U ! TpM is the inclusion map U ,! TpM, if T0U
is canonically identified with U . Therefore, there exists an e > 0 such that the e-
neighbourhood Ueð0Þ of the euclidean space ðU ; h� ; �ipÞ is imbedded into M by
F. Because of (17) and (18) we have ��e; e½H Ju for every unit vector u A U and
FðUeð0ÞÞ ¼ Neðp;U ; zÞ. Thus the proof is complete. r

Remark 3. (a) In case z ¼ 0 the map F is the restriction of the exponential
map expp to DHU .

(b) Although we have FðuÞ ¼ cu=kukðkukÞ for u A Ueð0Þnf0g, where cu=kuk is a
simple circle arc, we can not use this formula for a definition of F; it is
the purpose of the above construction to remove the ‘‘singularity’’ at
u ¼ 0. Quite a similar situation will occur in section 6 when we prove
Theorem 1.

(c) In [NY] the theory of circular arcs is based on the development of
curves. But this method would not simplify the proof of Proposition 5.

4. Horizontal structures

Let p : E ! M be an arbitrary fibre bundle4 and V :¼ kerðTpÞ its vertical
subbundle. If Ep denotes the fibre of p over p A M, then Ve ¼ TeEp for every
e A Ep.

Definition 2. By a horizontal structure of p we understand a subbundle
HHTE, which is complementary to V, i.e., TE ¼ VlH, and by its curvature
form the tensor field W of type ð1; 2Þ on E characterized by the equation

4The theory of horizontal structures can be developed for arbitrary surjective submersions as well.

on the existence of spherically bent submanifolds 207



EX ;Y A XðEÞ: WðX ;YÞ ¼ �½XH;YH�V;

the indizes H and V mean that one has to regard the horizontal resp. vertical
part of the respective vector field. Furthermore, a Cy map g : L ! E is said to
be horizontal if it satisfies

g�TqLHHgðqÞ for every q A L:

Remark 4. The restriction ðTepÞ jHe : He ! TpM is an isomorphism for
every e A Ep, and for every X ;Y A GðHÞ we have

½X ;Y �ðeÞ A He , WðXðeÞ;YðeÞÞ ¼ 0:ð19Þ

Di¤erential geometers are familiar with special horizontal structures: In the
article [E] C. Ehresmann introduced connections, which are horizontal structures
with a further property (see Remark 5); the best known examples are the con-
nections on principal fibre bundles and the induced connections on bundles which
are associated to them (see [KN]). Other examples appear in the theory of rie-
mannian submersions (see [O’N]). With the methods of the latter book one can
prove:

Proposition 6. If H is a horizontal structure of p, g : L ! E a Cy map and
X : L ! TM a vector field along p � g, then there exists one and only one vector
field ~XX : L ! TE along g such that

p� ~XX ¼ X and ~XXq A HgðqÞ for every q A L:

~XX is called the horizontal lift of X.

For X A XðMÞ the horizontal lift of X � p is simply called the horizontal lift
of X .

Proposition 7. For any horizontal structure H of p the following is true:
(a) For every curve a : J ! M defined on an open interval J and every

initial data ðs; eÞ A J � E with pðeÞ ¼ aðsÞ there exists a horizontal curve

~aa : ~JJ ! E defined on an open interval ~JJ satisfying

s A ~JJH J; ~aaðsÞ ¼ e and p � ~aa ¼ aj ~JJ;
which is unique and maximal in the sense of Proposition 3(a). The curve
~aa will be called the maximal horizontal lift of a with the initial data ðs; eÞ.

(b) Let L be a further manifold, B an open neighbourhood of f0g � L in
R� L and F : B ! M resp. g : L ! E Cy maps satisfying p � gðpÞ ¼
Fð0; pÞ for all p A L. We assume that Jp :¼ ft A R j ðt; pÞ A Bg is an
interval for every p A L. If ~aap : ~JJp ! E denotes the maximal horizontal
lift of the curve ap : Jp ! M, t ! F ðt; pÞ satisfying ~aapð0Þ ¼ gðpÞ, then
~BB :¼ fðt; pÞ A B j t A ~JJpg is an open neighbourhood of f0g � L in B and the

map ~FF : ~BB ! E, ðt; pÞ 7! ~aapðtÞ is Cy di¤erentiable.
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Remark 5. A horizontal structure H is a connection in the sense of
Ehresmann, if in the situation of Proposition 7(a) we always have ~JJ ¼ J.

Proof. Accepting assertion (a) we first prove (b). For that we pull back
the fibre bundle p by means of the map F and get the fibre bundle ~EE ! B shown
in the diagram

~EE :¼ B�M E ���!prE
E

prB

???y
???yp

B ���!F M:

Analogously to the pullback of connections (see [P] p. 57) we can define the

pullback ~HH of the horizontal structure H; it is characterized by

~HHðq; eÞ ¼ fw A Tðq; eÞ ~EE j prE�w A Heg for all ðq; eÞ A ~EE:

Now let X A Xð ~EEÞ be the horizontal lift of the canonical vector field q=qt A XðBÞ
(notice BHR� L) and F : D ! ~EE its maximal flow. If for p A L we put ~pp :¼
ðð0; pÞ; gðpÞÞ A ~EE and denote the maximal integral curve of X starting at ~pp by
x~pp, then prE � x~pp is the maximal horizontal lift ~aap of the assertion (b). Therefore,

we get ~BB ¼ fðt; pÞ A B j ðt; ~ppÞ A Dg and ~FF : ðt; pÞ 7! prE �Fðt; ~ppÞ. Hence ~BB and ~FF
have the stated properties.

Assertion (a) is proved with the same methods; work with the diagram

~EE :¼ J �M E ���!prE
E

prJ

???y
???yp

J ���!a M

and use the horizontal lift X of q A XðJÞ (compare [P] p. 59). r

Proposition 8. Let be given a second fibre bundle ~pp : ~EE ! M with a horizon-
tal structure ~HH and a fibre bundle morphism F : E ! ~EE and assume F�He H ~HHF ðeÞ
for every e A E. Then the curvature forms W and ~WW of H resp. ~HH are related to
each other by

F�WðX ;YÞ ¼ ~WWðF�X ;F�Y Þ for all X ;Y A XðEÞ:

For the proof one uses similar arguments as for the proof of the structure
equation for the curvature tensor (e.g., see [P] p. 83).

We give now three examples of horizontal structures, which will become
important for our investigation.

Example 1. A horizontal structure of the tangent bundle related to circular
arcs. We modify the construction of the canonical connection of the tangent

on the existence of spherically bent submanifolds 209



bundle over the riemannian manifold M (see [P] p. 77): If K denotes the con-
nection map of M (see (6)–(10)), then the kernels

Hc
z ðpMÞ :¼ kerðTzTM ! TM;w 7! Kwþ hz; zi � pM�wÞ for z A TM

define a horizontal structure HcðpMÞ of the tangent bundle pM , as is easily seen.
If a : J ! M is a curve with 0 A J and z A Tað0ÞM, then

za denotes the maximal HcðpMÞ-horizontal lift of a with zað0Þ ¼ z;ð20Þ
according to (7) it is the maximal solution z of the di¤erential equation

‘qzþ hz; zi � _aa ¼ 0 with zð0Þ ¼ z:ð21Þ
Therefore, Proposition 2 shows that for a circular arc c : J ! M with 0 A J and
z :¼ ð‘q _ccÞð0Þ its mean curvature normal ‘q _cc is the maximal HcðpMÞ-horizontal
lift zc; hence in this case zc is defined over the entire interval J. But nevertheless,
HcðpMÞ is no connection in the sense of Ehresmann (see Remark 5); in par-
ticular, it can not be induced by a covariant derivative of M. Now we show
that the curvature form Wc

TM of HcðpMÞ is given by

KWc
TMðw;w 0Þð22Þ
¼ RðpM�w; pM�w

0Þzþ 2hz; zi � ðhpM�w
0; zipM�w� hpM�w; zipM�w

0Þ

for all w;w 0 A TzðTMÞ ðz A TMÞ; notice (9) and that pM�W
c
TM 1 0 is satisfied

automatically. For the proof of (22) let two vector fields X ;Y A XðMÞ be given,
denote their horizontal lifts by ~XX and ~YY and abbreviate i :¼ idTM , H :¼ HcðpMÞ
and p :¼ pM . Then ½ ~XX ; ~YY �H is the horizontal lift of ½X ;Y � because of p�½ ~XX ; ~YY � ¼
½X ;Y � � p. Now we calculate

‘~XX i ¼ K ~XX ¼ �hi; ii � X � p
and

‘½ ~XX ; ~YY �i ¼ Kð½ ~XX ; ~YY �V þ ½ ~XX ; ~YY �HÞ ¼ �KWc
TMð ~XX ; ~YY Þ � hi; ii � ½X ;Y � � p:

With this expressions we continue using the structure equation for the curvature
tensor (e.g., see [P] p. 83):

Rðp� ~XX ; p� ~YYÞi ¼ ‘~XX‘~YY i� ‘~YY‘~XX i� ‘½ ~XX ; ~YY �i

¼ 2hi; ii � ðhX � p; ii � Y � p� hY � p; ii � X � pÞ þ KWc
TMð ~XX ; ~YYÞ:

From this formula (22) can easily be derived.

Example 2. The canonical connection of a Grassmann bundle over a rie-
mannian manifold. For each point p A M let LpM be the set of frames of TpM,
which we describe by isomorphisms u : Rm ! TpM as in [KN] p. 56 (remember
m ¼ dim M); by p : LM ! M we denote the entire frame bundle.

For some fixed number r A f1; . . . ;mg let gr : GrðTMÞ ! M denote the
Grassmann bundle; its fibre over p is the Grassmann manifold GrðTpMÞ of the
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r-dimensional subspaces V HTpM. This bundle is associated to the frame
bundle via the map

% : LM �GrðRmÞ ! GrðTMÞ; ðu;VÞ 7! uðVÞ;
see [B] sect. 6.5.1. For each u A LpM the map %u : GrðRmÞ ! GrðTpMÞ,
V 7! uðVÞ is a di¤eomorphism; and if V A GrðRmÞ denotes the subspace which is
spanned by the first canonical unit vectors e1; . . . ; er A Rm, then the fibre bundle
morphism

%V : LM ! GrðTMÞ; u 7! uðVÞ ¼ spanfuðe1Þ; . . . ; uðerÞgð23Þ
is a surjective submersion (even a principal fibre bundle). The linear connection
HðLMÞ of LM corresponding to ‘ induces a connection HðgrÞ (in the sense of
Ehresmann, see Remark 5) on the Grassmann bundle (see [KN] p. 87); it is given
by

H%ðu;VÞðgrÞ ¼ %V� HuðLMÞHT%ðu;VÞðGrðTMÞÞ ðu A LMÞ:ð24Þ
If a : J ! M is a (broken) curve with 0 A J and V A GrðTað0ÞMÞ, then

Va denotes the maximal HðgrÞ-horizontal lift of a with Vað0Þ ¼ V ;ð25Þ
it is exactly the parallel displacement of V in the riemannian manifold M along
the curve a:

VaðtÞ ¼ ðk
t

0

aÞðVÞ:ð26Þ

In [PR] section 5 we have calculated the curvature form WGrðTMÞ at an arbitrary
point V A GrðTMÞ for w;w 0 A TVGrðTMÞ

WGrðTMÞðw;w 0Þ ¼
_dd

dt

����
t¼0

ðexpðt � Rðv; v 0ÞÞðVÞÞ with v :¼ gr�w and v 0 :¼ gr�w
0;

here Rðv; v 0Þ is considered as an endomorphism of TpM; hence, t 7!
expðt � Rðv; v 0ÞÞ is a 1-parameter subgroup of GLðTpMÞ and t 7!
expðt � Rðv; v 0ÞÞðVÞ a curve in GrðTpMÞ. From this result we have derived for
arbitrary w;w 0 A TVGrðTMÞ

WGrðTMÞðw;w 0Þ ¼ 0 , Rðgr�w; gr�w 0ÞðVÞHV :ð27Þ
We bring this example to an end by mentioning a canonical Cy distribution
T ¼ Tr on GrðTMÞ introduced by K. Tsukada in [T] p. 400 in order to inves-
tigate totally geodesic submanifolds (in his paper it is denoted by D). For every
point V A GrðTMÞ the linear subspace TV HTVGrðTMÞ is characterized by

TV HHV ðgrÞ and gr�TV ¼ V :

Example 3. The essential horizontal structure of the article. Now we glue
together the foregoing examples. For some fixed number n A f1; . . . ;m� 1g we
take the fibre product of gnþ1 : Gnþ1ðTMÞ ! M and pM : TM ! M
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t : E :¼ Gnþ1ðTMÞ �M TM ! M;

it is also associated to the frame bundle of M, namely via the map

~%% : LM � ðGnþ1ðRmÞ � RmÞ ! E; ðu;V ; vÞ 7! ðuðVÞ; uðvÞÞ:
Furthermore we introduce the canonical projections P1 : E ! Gnþ1ðTMÞ and
P2 : E ! TM and define a horizontal structure HðtÞ of t in canonical way,
namely by

HðV ; zÞðtÞ :¼ fw A TðV ; zÞE jP1�w A HV ðgnþ1Þ and P2�w A Hc
z ðpMÞg

G fðw1;w2Þ A HV ðgnþ1Þ �Hc
z ðpMÞ j gnþ1�w1 ¼ pM�w2g

for all ðV; zÞ A E. From this construction the following is clear: If a : J ! M is
a curve with 0 A J and e ¼ ðV ; zÞ A Eað0Þ :¼ t�1ðað0ÞÞ, and if Va : J ! Gnþ1ðTMÞ
and za : ~JJ ! TM denote the maximal horizontal lifts described in (26) and the
remark behind (21), then

ð28Þ
ea :¼ ðVa; zaÞ : ~JJ ! E is the maximal HðtÞ-horizontal lift of a with eað0Þ ¼ e:

Furthermore, using Proposition 8 we can calculate the curvature form WE

of HðtÞ, namely for e A E and w;w 0 A TeE we obtain P1�WEðw;w 0Þ ¼
WGnþ1ðTMÞðP1�w;P1�w

0Þ and P2�WEðw;w 0Þ ¼ Wc
TMðP2�w;P2�w

0Þ, or more loosely
speaking

WEðw;w 0ÞG ðWGnþ1ðTMÞðw1;w
0
1Þ;Wc

TMðw2;w
0
2ÞÞ;

if wG ðw1;w2Þ; w 0 G ðw 0
1;w

0
2Þ:

(29)

5. A characterization of spherical isometric immersions

By t : E ! M and HðtÞ we denote the fibre bundle and horizontal structure
of Example 3.

Proposition 9.
(a) The set

ÊE :¼ fðV ; zÞ A E j z A Vnf0gg

is a regular submanifold of E (see section 1), and the restriction
tjÊE : ÊE ! M is a subbundle of t : E ! M with typical fibre

F̂F :¼ fðV ; vÞ A Gnþ1ðRmÞ � Rm j v A Vnf0gg

associated to the frame bundle of M via the restriction ~%% j ðLM � F̂FÞ of
the map ~%% described in Example 3. In the following we will shortly write
t instead of tjÊE. In addition we introduce the vector field

ĤH : ÊE ! TM; ðV ; zÞ 7! z
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in M along t and the fibre bundle morphism

G : ÊE ! GnðTMÞ; ðV ; zÞ 7! fv A V j v ? zg:

(b) There exists a subbundle D of the tangent bundle TÊE of rank n, which is
characterized by

De HHeðtÞ and t�De ¼ GðeÞ for all e A ÊE:ð30Þ

(c) If c : J ! M is a circular arc with 0 A J, z :¼ ð‘q _ccÞð0Þ0 0 and V A
Gnþ1ðTcð0ÞMÞ a subspace containing _ccð0Þ and z, then x :¼ ðVc; zc :¼ ‘q _ccÞ is
a D-integral curve in ÊE (see the following Remark).

(d) For all sections X ;Y A GðDÞ and all points e ¼ ðV ; zÞ A ÊE the following
formulas hold:

‘X ðeÞt�Y A V ; h‘XðeÞt�Y ; zi ¼ hz; zi � ht�XðeÞ; t�YðeÞi andð31Þ
‘XĤH ¼ �hĤH; ĤHi � t�X :ð32Þ

(e) The distribution D is involutive at e A ÊE, that means

½X ;Y �ðeÞ A De for all sections X ;Y A GðDÞ;

if and only if for all v; v 0; v 00 A GðeÞ the following is true

Rðv; v 0Þv 00 A GðeÞ and Rðv; v 0ÞĤHðeÞ ¼ 0:ð33Þ

Remark 6. (a) It is intended that the notations ĤH and G remind the reader
to ‘‘mean curvature normal’’ (see Definition 1(a)) and ‘‘Gauss map’’.

(b) A di¤erentiable map g : L ! ÊE is said to be D-integral, if g�TpLHDgðpÞ
for every p A L.

Proof. For (a): We put F :¼ fðV ; vÞ A Gnþ1ðRmÞ � Rm j v A Vg and con-
sider the canonical vector bundle F ! Gnþ1ðRmÞ, ðV ; vÞ 7! V as subbundle of the
trivial vector bundle Gnþ1ðRmÞ � Rm ! Gnþ1ðRmÞ. It is well known that F is a
regular submanifold of Gnþ1ðRmÞ � Rm. This result is carried over to F̂F , because
this set is open in F . And so also ÊE is seen to be a regular submanifold of E
via local trivializations of the bundle t : E ! M constructed by means of the
map ~%%; notice that F̂F is invariant under the action GLðmÞ � ðGnþ1ðRmÞ � RmÞ !
Gnþ1ðRmÞ � Rm, ðA;V ; vÞ 7! ðAðVÞ;AðvÞÞ; obviously tjÊE is a subbundle of t.

For (b): Let ~TT denote the inverse image of the Tsukada distribution Tnþ1

by the vector bundle morphism TP1 jHðtÞ : HðtÞ ! Hðgnþ1Þ, where TP1 is the
di¤erential of the canonical projection P1 : E ! Gnþ1ðTMÞ (see the Examples 2
and 3). It is a di¤erentiable subbundle of the horizontal structure HðtÞ, namely

~TTðV ; zÞ ¼ fw A HðV ; zÞðtÞ j t�w A Vg for all ðV ; zÞ A E:

Now we prove

~TTe HTeÊE for all e A ÊE;ð34Þ
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that means, ~TTjÊE is a distribution on ÊE of rank nþ 1. For the proof of (34) let
a point e ¼ ðV ; zÞ A ÊE and a vector w A ~TTe be given. Then there exists a ~TT-
integral curve x : J ! E with _xxð0Þ ¼ w. If we put a :¼ t � x, then we get x ¼
ðVa; zaÞ from Example 3, because x is horizontal. Moreover, _xxðtÞ A ~TTxðtÞ implies
_aaðtÞ ¼ t� _xxðtÞ A VaðtÞ. Since z ¼ za satisfies the di¤erential equation (21) we find
ð‘qzaÞðtÞ A VaðtÞ; as Va is a parallel subbundle of TM along a according to
Example 2 and the initial value zað0Þ ¼ z lies in Vnf0g ¼ Vað0Þnf0g, one can
easily derive zaðtÞ A VaðtÞnf0g for every t in some interval ��e; e½. Therefore,

x j ��e; e½ is a curve in ÊE and therefore w A TeÊE. So (34) is proved. Now the
proof of assertion (b) is quickly completed, namely D is the kernel of the linear

vector bundle map ~TT ! R, w 7! hĤHðeÞ; t�wi if w A ~TTe .
For (c): From the remark behind (21) and the formulas (25) and (28) we

know that x is horizontal. Furthermore, t 7! hðtÞ :¼ R _ccðtÞlRð‘q _ccÞðtÞ is a
parallel subbundle of TM along c with hð0ÞHV ; therefore we get zcðtÞ A
hðtÞHVcðtÞ, t� _xxðtÞ ¼ _ccðtÞ A hðtÞHVcðtÞ and t� _xxðtÞ ? zcðtÞ for every t. Thus we
see that x is a curve in ÊE, which is D-integral.

For (d): If X ;Y A GðDÞ and e ¼ ðV ; zÞ A ÊE are given, let x : J ! ÊE be the
integral curve of X with xð0Þ ¼ e and put a :¼ t � x. Then we have x ¼ ðVa; zaÞ
and _aa ¼ t� _xx. Since in particular x is horizontal, we get:

ðiÞ the parallelity of Va ðsee ð26ÞÞ and ðiiÞ ‘qza þ hza; zai � _aa ¼ 0 ðsee ð21ÞÞ:

On the other hand, since Y � x is tangential to D, formula (30) shows in
particular t�Y � xðtÞ A VaðtÞ for every t. Because of (i) we obtain therefore also
ð‘qt�Y � xÞðtÞ A VaðtÞ, particularly: ‘XðeÞt�Y ¼ ð‘qt�Y � xÞð0Þ A Vað0Þ ¼ V ; this
is the first part of (31). Next we prove (32) by means of (ii):

‘X ðeÞĤH ¼ ð‘qĤH � xÞð0Þ ¼ ð‘qzaÞð0Þ ¼ �hz; zi � _aað0Þ ¼ �ðhĤH; ĤHi � t�X Þje:

After this result we continue using the Ricci identity and obtain the second
identity of (31):

h‘XðeÞt�Y ; ĤHðeÞi ¼ X ðeÞ ht�Y ; ĤHi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

� ht�Y ðeÞ;‘XðeÞĤHi

¼
ð32Þ

hĤHðeÞ; ĤHðeÞi � ht�X ðeÞ; t�YðeÞi:

For (e): We continue with the data given in the proof of (d). According to the
structure equation for the torsion (see [P] p. 101) and using (31) we obtain

t�½X ;Y �ðeÞ A GðeÞ for all e A ÊE:

Therefore, D is involutive in e ¼ ðV ; zÞ if and only if ½X ;Y �ðeÞ A HeðtÞ for all
X ;Y A GðDÞ. Because of (19) and (29) this property is equivalent to

WGnþ1ðTMÞðw1;w
0
1Þ ¼ 0 and Wc

TMðw2;w
0
2Þ ¼ 0

for all wG ðw1;w2Þ; w 0 G ðw 0
1;w

0
2Þ A De:ð35Þ
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Now we use (27) and (22), take notice of gnþ1�w1 ¼ pM�w2 ¼ t�w A GðeÞ and get
that (35) is equivalent to

Rðv; v 0ÞV HV and Rðv; v 0Þz ¼ 0 for all v; v 0 A GðeÞ:
With hRðv; v 0Þv 00; zi ¼ �hRðv; v 0Þz; v 00i we finaly obtain the statement (e). r

Theorem 2.
(a) If SH ÊE is an integral manifold of the distribution D, then there exists

a riemannian metric h� ; �iS on S such that tjS : S ! M is an isometric
immersion; in fact, it is spherical and ĤHjS is its mean curvature normal.

(b) If f : N ! M is a spherical isometric immersion from a connected n-
dimensional riemannian manifold with mean curvature normal H0 0, then

f̂f : p 7! ð f�TpNlRHp;HpÞ
is a D-integral map into ÊE (see Remark 6(b)) with the following properties

t � f̂f ¼ f ; ĤH � f̂f ¼ H and G � f̂f is the Gauss map of f :ð36Þ
Furthermore, S :¼ f̂f ðNÞ is an integral manifold of D and f̂f is a local
isometry onto S, if S is equipped with the riemannian metric h� ; �iS
described in (a).

Proof. For (a): Because of Remark 4 tjS is an immersion into M. Thus
h� ; �iS can be defined in the appropriate way. In order to show that tjS is
spherical, let vector fields X ;Y A XðSÞ ¼ GðDjSÞ and e ¼ ðV ; zÞ A S be given.
Then we calculate the second fundamental form h of tjS using the Gauss equa-
tion and Proposition 9(d): Because we have

t�‘
S
X ðeÞY þ hðXðeÞ;YðeÞÞ ¼ ‘XðeÞt�Y A V with t�‘

S
X ðeÞY A t�TeS ¼ t�De ¼ GðeÞ;

where hðXðeÞ;YðeÞÞ is perpendicular to GðeÞ, the second identity of (31) implies
hðX ðeÞ;Y ðeÞÞ ¼ ht�XðeÞ; t�Y ðeÞi � z ¼ hX ðeÞ;Y ðeÞiS � ĤHðeÞ. Eventually the par-

allelity of ĤHjS follows from (32).
For (b): Obviously f̂f is a di¤erentiable map into ÊE with the properties

stated in (36). For the D-integrability of f̂f it su‰ce to prove: For every point
p A N and every unit vector v A TpN the image f̂f�v lies in De with e :¼ ðV ; zÞ :¼
f̂f ðpÞ. For that let a : J ! N denote the maximal geodesic with _aað0Þ ¼ v and put
c :¼ f � a. According to Proposition 1(f ) c is a circular arc in M with ð‘q _ccÞð0Þ ¼
Hp ¼ z. Obviously V contains the vectors _ccð0Þ and z. Then Proposition 9(c)
implies that ec ¼ ðVc; zcÞ is a D-integral curve; and from Proposition 1(e), (f ) we
derive ec ¼ f̂f � a. Therefore f̂f�v ¼ _eecð0Þ A De. The further assertions of (b) are
obvious. r

6. Proof of Theorem 1

Since in Proposition 5 the existence of the circular umbrella Neðp;U ; zÞ
already was proved, it remains to show that it is a spherical submanifold under
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the hypothesis (4). For that we put n :¼ dim U and continue with the notations
used in the proof of Proposition 5. If V ;SðUÞ;Vu; zu and Uu have the meaning
of Theorem 1, then ðVu; zuÞ is the horizontal lift eu : Ju ! ÊE of cu with euð0Þ ¼
e :¼ ðV ; zÞ for every vector u A SðUÞ; according to Proposition 9(c) eu is D-
integral.

Furthermore, for every s A R the curve esu : Jsu ! ÊE defined by esuðtÞ ¼ euðstÞ
is also D-integral; in addition it is the horizontal lift of csu with esuð0Þ ¼ e. If
we put B :¼ fðt; uÞ A R�U j t A Jug, then F : B ! M, ðt; uÞ 7! cuðtÞ ¼ FY ðt; u;
hu; ui � zÞ is a di¤erentiable map. Applying Proposition 7(b) (with g1 e) we get
that ~FF : B ! ÊE, ðt; uÞ 7! euðtÞ is di¤erentiable, too. Consequently,

~FF : Ueð0Þ ! ÊE; u 7! euð1Þ is a di¤erentiable map with t � ~FF ¼ F:

As F jUeð0Þ is an embedding, the same is true for ~FF. In particular,

~FFðUeð0ÞÞ ¼ 6
u ASðUÞ

euð��e; e½Þ;

is a regular submanifold of ÊE. Because for every u A SðUÞ the curve t 7!
~FFðtuÞ ¼ euðtÞ was proved to be D-integral, ~FF is a D-umbrella in the sense of the
following Definition 3. Moreover, since GðeuðtÞÞ ¼ UuðtÞ, according to Propo-
sition 9(e) the assumption (4) says that the distribution D is involutive at all
points of S :¼ ~FFðUeð0ÞÞ. Therefore, the following Theorem 3 shows that ~FF is
D-integral; that means, S is an integral manifold of D, and according to Theo-
rem 2(a) tjS is a spherical immersion with the mean curvature normal ĤHjS.
Consequently the image tðSÞ ¼ Neðp;U ; zÞ is a spherical submanifold with tan-
gent space GðeÞ ¼ U and mean curvature normal ĤHðeÞ ¼ z at the point p. Thus
the proof is complete. r

For the end of this section let D be a Cy distribution on a manifold E.

Definition 3. If U is a linear space, BHU a star shaped neighbourhood of
0 in U , Ju :¼ ft A R j tu A Bg for every u A U and j : B ! E a Cy imbedding such
that all curves Ju ! E, t 7! jðtuÞ are D-integral, then we call j a D-umbrella.

Theorem 3. If j : B ! E is a D-umbrella and D is involutive at all points of
jðBÞ, then the entire map j is D-integral.

This theorem was proved in the last section of [PR] by using a result of Blu-
menthal and Hebda (see [BH] p. 165).

7. A global theorem

If in the foregoing proof S is replaced by the maximal connected integral
manifold ~SS containing S, then tj ~SS describes a maximally extended spherical
submanifold (with selfintersections, if tj ~SS is not injective). It is the purpose of
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the following theorem to show that tj ~SS has some completeness property under
suitable hypotheses. In order to formulate them we define:

Definition 4. A totally geodesic resp. spherical immersion f : N ! M is
said to be geodesically closed, if the image f � ~aa of any maximal unit speed
geodesic ~aa is

(a) a maximal geodesic in case that f is totally geodesic, and
(b) a maximal circular arc in case that f is spherical (see Remark 2).

Remark 7. If M is complete, then f is geodesically closed if and only if N,
too, is complete (see Proposition 4(b)).

Let again be given a point p A M, a linear subspace U YTpM and a vector
z A U?nf0gHTpM and put V :¼ U lRz and e :¼ ðV ; zÞ A ÊE. Under these
assumptions we introduce a special class of broken circular curves: A broken
unit speed curve c : ½0; bc� ! M with the ‘‘break points’’ 0 < t1 < � � � < tn < bc is
called a broken circular curve, if every ‘‘section’’ ci :¼ c j ½ti; tiþ1� (with t0 :¼ 0,
tnþ1 :¼ bc) is a circular arc and if the mean curvature normals ‘q _cci add to a
continuous vector field along c, which we will denote by ‘q _cc. Now, by Cðp;U ; zÞ
we denote the set of all such broken circular curves with cð0Þ ¼ p and
ð‘q _ccÞð0Þ ¼ z such that _cciðtiÞ A VcðtiÞ holds for every i, where Vc : ½0; bc� !
Gnþ1ðTMÞ denotes the Hðgnþ1Þ-horizontal lift of c (see (25) and (26)); then
automatically one has _cciðtÞ, ð‘q _ccÞðtÞ A VcðtÞ for every t A ½ti; tiþ1�, ‘q _cc coincides
with the HcðpMÞ-horizontal lift zc of c (see Example 1) and ðVc; zcÞ is the HðtÞ-
horizontal lift ec of c (see (28)); it is a (continuous) broken curve in ÊE such that
every section ec j ½ti; tiþ1� is D-integral. Of course every simple circular arc with
the prescribed initial data belongs to Cðp;U ; zÞ.

Remark 8. If f : N ! M is a spherical immersion with mean curvature
normal H and q A N a point such that f ðqÞ ¼ p, f�TqN ¼ U and HðqÞ ¼ z and if
a : ½0; b� ! N is a broken unit speed geodesic of N with að0Þ ¼ p, then the image
c :¼ f � a is an element of Cðp;U ; zÞ.

Theorem 4. If in the above situation for every broken circular curve
ðc : ½0; bc� ! MÞ A Cðp;U ; zÞ and every t A ½0; bc� we have

Ev; v 0; v 00 A GðecðtÞÞ : ðRðv; v 0Þv 00 A GðecðtÞÞ and Rðv; v 0ÞzcðtÞ ¼ 0Þ;ð37Þ
then there exists one (and up to an isometry exactly one) geodesically closed, spher-
ical immersion F : N ! M with mean curvature normal H from a simply connected
riemannian manifold N and a point q A N such that FðqÞ ¼ p, F�TqN ¼ U and
HðqÞ ¼ z.

In the special case of a complete riemannian manifold M Theorem 4 is an
analogue of a result of R. Hermann [H] on the existence of complete totally
geodesic submanifolds.
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Proof. At first we see from (37) that the assumptions (4) of Theorem 1 are
satisfied for some circular e-umbrella Neðp;U ; zÞ; hence we find that Neðp;U ; zÞ
is a spherical submanifold of M. Applying Theorem 2(b) with the inclusion map
f :¼ ðNeðp;U ; zÞ ,! MÞ we get an integral manifold f̂f ðNeðp;U ; zÞÞ of D con-
taining e ¼ ðV ; zÞ. Let ~SS be the maximal connected integral manifold of D

which contains f̂f ðNeðp;U ; zÞÞ (see [Nu, Theorem 4] or [BH, Theorem 1.3 and
1.4], a proof of the paracompactness of ~SS can be found in [LR] p. 94). Because

of Theorem 2(a) tj ~SS is a spherical immersion with respect to the induced rie-
mannian metric h� ; �i ~SS. Of course, we have e A ~SS, tðeÞ ¼ p, t�Te

~SS ¼ t�De ¼
GðeÞ ¼ U and z is its mean curvature normal at e.

Now the crucial point is to prove that tj ~SS is geodesically closed. For that,
let a maximal unit speed geodesic ~aa : ~JJ ! ~SS be given. As t � ~aa is a circular arc in
M, it can be extended to a maximal circular arc a : J ! M. Let us assume d :¼
sup ~JJ < sup J. Then we choose some broken unit speed geodesic ~bb : ½0; d � ! ~SS
starting from ~bbð0Þ ¼ e with ~bbðdÞ A ~aað ~JJÞ. We may assume ~bbðdÞ ¼ ~aaðdÞ. As

~cc : ½0; d½ ! ~SS; t 7!
~bbðtÞ for t A ½0; d �
~aaðtÞ for t A �d; d½

�

is a broken unit speed geodesic, the curve

c : ½0; d� ! M; t 7! t � ~bbðtÞ for t A ½0; d �
aðtÞ for t A �d; d�

�

is an element of Cðp;U ; zÞ according to Remark 8. Its horizontal lift ec : ½0; d� !
ÊE is D-integral and it satisfies ec j ½0; d½ ¼ ~cc. Thus e 0 :¼ ecðdÞ is a good candidate
in order to continue ~aa.

For realizing this idea we put p 0 :¼ cðdÞ, U 0 :¼ Gðe 0Þ and z 0 :¼ ĤHðe 0Þ.
Then there exists a suitable e 0 > 0 such that the circular e 0-umbrella N 0 :¼
Ne 0 ðp 0;U 0; z 0Þ exists. In particular, for every unit vector u A U 0 the circular arc
cu : ��e 0; e 0½ ! N 0 with initial values _ccuð0Þ ¼ u and ð‘q _ccuÞð0Þ ¼ z 0 exists, and the
curve

½0; dþ e 0� ! M; t 7! cðtÞ for ta d

cuðt� dÞ for t > d

�

is an element of Cðp;U ; zÞ. Because of (37) Theorem 1 can be applied in order
to obtain that N 0 is a spherical submanifold of M, too.

Now we show that the curves cu (with u A U 0) are geodesics of N 0: Apply-
ing the Gauss equation (combined with Definition 1(a)) and Proposition 1(b) we
get

�0 � _ccu ¼ ‘q‘q _ccu ¼ ‘N 0

q ‘N 0

q _ccu � 0 � _ccu with 0 :¼ 0ðcuÞ ¼ hz; zi:

Hence, ‘N 0

q _ccu is a parallel vector field in N 0 along cu; it vanishes identically,
because ð‘q _ccuÞð0Þ ¼ z 0 ? Tp 0N 0. So we have seen that cu is a geodesic of N 0.
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Of course, we may assume e 0 < d� d. Because u 0 :¼ _aaðdÞ ¼ _ccðdÞ A U 0 and
ð‘q _aaÞðdÞ ¼ ð‘q _ccÞðdÞ ¼ z 0, we get aðtÞ ¼ cu 0 ðt� dÞ for every t A �d� e 0; d�. Hence
we even obtain �d� e 0; dþ e 0½H J and aðtÞ ¼ cu 0 ðt� dÞ for every t A �d� e 0; dþ e 0½.
Consequently, a j �d� e 0; dþ e 0½ is a geodesic arc of N 0.

With the inclusion map f 0 :¼ ðN 0 ,! MÞ of the spherical submanifold N 0

we get a further integral manifold S 0 :¼ bf 0f 0ðN 0Þ; it contains bf 0f 0ðp 0Þ ¼ e 0 ¼ ecðdÞ.
Moreover, bf 0f 0 � a j �d� e 0; d� and ec j �d� e 0; d� are HðtÞ-horizontal lifts of

a j �d� e 0; d� with bf 0f 0 � aðdÞ ¼ ecðdÞ. Therefore we get

bf 0f 0 � að�d� e 0; d½Þ ¼ ecð�d� e 0; d½Þ ¼ ~ccð�d� e 0; d½Þ ¼ ~aað�d� e 0; d½ÞHS 0 V ~SS:

Consequently S 0 is a subset of ~SS; bf 0f 0 an isometry into ~SS and bf 0f 0 � a j �d� e 0; dþ e 0½
a geodesic in ~SS continuing ~aa beyond d in contradiction to the maximality of
~aa. Thus we have proved sup ~JJ ¼ sup J. In the same way we get inf ~JJ ¼ inf J,
hence ~JJ ¼ J.

In order to define the spherical immersion F : N ! M of Theorem 4 we use
the universal covering j : N ! ~SS of ~SS, put F :¼ ðtj ~SSÞ � j and choose some point
q A j�1ðfegÞ. Let us now prove the uniqueness of F . For that let f : ~NN ! M
be another spherical immersion from a simply connected riemannian manifold
~NN and ~qq A ~NN a point which have the same properties as F and q. According to

Theorem 2(b) the induced map f̂f : ~NN ! ÊE satisfies (36); in particular we have
f̂f ð~qqÞ ¼ e ¼ jðqÞ. Hence, f̂f is a local isometry into ~SS. Since ~NN is simply
connected, there exists a local isometry C : ~NN ! N such that j �C ¼ f̂f and
Cð~qqÞ ¼ q. From the construction we get F �C ¼ f . As f is geodesically
closed, C is geodesically closed, too. Therefore, according to the following
Lemma C is a covering map, in fact even an isometry because of the simple
connectedness of N. r

Lemma. If N and ~NN are connected riemannian manifolds of the same dimen-
sion, then each geodesically closed local isometry f : ~NN ! N is a covering map.

This lemma is a generalization of Theorem 4.6(1) in [KN] p. 176, in which ~NN
is assumed to be complete. One can follow the proof of [KN]; where they use
the completeness of ~NN the argumentation keeps valid if instead of that we use
that f is geodesically closed.
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