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Abstract

In this article we show several convergence and extension theorems for analytic

hypersurfaces (not necessarily with normal crossings) and for closed pluripolar sets of

complex manifolds. Moreover, a generalization of theorem of Alexander to complex

spaces is given.

1. Introduction

Extending holomorphic mappings is one of the most important problems
of Analysis in several complex variables. Much attention has been given to this
problem from the viewpoint of Hyperbolic complex analysis since S. Kobayashi
introduced the notion of the Kobayashi pseudodistance and used it to study Geo-
metric function theory. In this direction, we recall here the remarkable theorem
of Noguchi (see [14] or [17]).

Let X be relatively compact hyperbolically imbedded into Y. Let M be
a complex manifold and A a complex hypersurface of M with only normal
crossings.

If f fj : MnA ! Xgyj¼1 is a sequence of holomorphic mappings which con-
verges uniformly on compact subsets of MnA to a holomorphic mapping
f : MnA ! X , then f fjg

y
j¼1 converges uniformly on compact subsets of M to

f , where fj : M ! Y and f : M ! Y are the unique holomorphic extensions
of fj and f over M.

The above theorem of Noguchi opened the new view in studying prob-
lems of extending holomorphic mappings. That is to study the Noguchi-type
convergence-extension theorems. More precisely, a ‘‘Noguchi-type convergence-
extension theorem’’ means a theorem on mappings analogous to the theorem of
Noguchi of extending holomorphic mappings, which would keep the local uni-
form convergence. Recently, several Noguchi-type convergence-extension theo-
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rems for analytic hypersurfaces of complex manifolds have been obtained by
various authors (see [11], [12], [14]).

The first aim of this article is to give several convergence and extension
theorems for analytic hypersurfaces (not necessarily with normal crossings) of
complex manifolds.

It is much to be regretted, therefore, that while a substantial amount of infor-
mation has been amassed concerning convergence and extension theorems for ana-
lytic hypersurfaces through the years, the present knowledge of these theorems for
pluripolar subsets, has remained extremely meagre.

For the convenient presentation, we give the following

Definition. Let X be a complex space. We say that X has the
convergence-extension property through closed pluripolar sets (shortly X has
(PEP)) if the following holds.

Let M be any complex manifold and A be any closed pluripolar subset of M.
Let fj : MnA ! X , j ¼ 1; 2; . . . be holomorphic mappings which converge uni-
formly on compact subsets of MnA to a holomorphic mapping f : MnA ! X .
Then there are the unique holomorphic extensions fj : M ! X of fj and
f : M ! X of f over M, and f fjg

y
j¼1 converges uniformly on compact subsets of

M to f .

Up to now we only know the following three classes of complex manifolds
having (PEP)

a) Every Siegel domain of the second kind in C n has (PEP) [22]. This
result of Sibony was generalized to the Siegel domain of the second kind in a
Banach space by Thai D. D. [25].

b) Every hyperbolic compact Riemann surface has (PEP) (see [10] and [25]).
c) Every compact manifold whose universal covering is a polynomially

convex bounded domain of C n, also has (PEP) (see [23] and [25]).
The second aim of this paper is to show the new class of complex spaces

which also have (PEP). These are the class of pseudoconvex complex spaces
having the weak 1-EP.

The last aim of this paper is to generalize the theorem of Alexander [1, Thm
6.2.] to complex spaces.

Here then is a brief outline of the content of this paper.
In §2 we review some basic properties of Geometric Function Theory needed

for our purpose.
In §3 we are going to prove the following

Theorem 1. Let X be a pseudoconvex complex space having D�-EP. Let
A be any analytic hypersurface of a complex manifold M.

Let f fj : MnA ! Xgyj¼1 be a sequence of holomorphic mappings which con-
verges uniformly on compact subsets of MnA to a holomorphic mapping f : MnA !
X . Then there are unique holomorphic extensions fj : M ! X and f : M ! X of
fj and f over M, and f fjg

y
j¼1 converges uniformly on compact subsets of M to f .
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Theorem 2. Let X be a complex subspace of a hyperbolic complex space Y
such that X has D�-EP for Y. Let A be any analytic hypersurface of a complex
manifold M.

Let f fj : MnA ! Xgyj¼1 be a sequence of holomorphic mappings which
converges uniformly on compact subsets of MnA to a holomorphic mapping
f : MnA ! X . Then there are unique holomorphic extensions fj : M ! Y and
f : M ! Y of fj and f over M, and f fjg

y
j¼1 converges uniformly on compact

subsets of M to f .

Theorem 3. Let X be a weakly disc-convex complex space. Let M be a
complex manifold of dimension m, and let A be a subset which is nowhere dense
in a complex subspace BHM of dimension a m� 1. Then every holomorphic
mapping f : MnA ! X extends to a holomorphic mapping F : M ! X :

In §4 we are going to prove the following

Theorem 4. Let X be a pseudoconvex complex space having the weak 1-EP.
Then X has (PEP).

In §5 we are going to prove the following

Theorem 5. Let M be a complex space of Stein type and FHHolðBn;MÞ.
If the restriction of F to each complex line through the origin is a normal family,
then F is a normal family.

2. Basic notions and auxiliary results

2.1. In this article, we shall make use of properties of complex spaces as
in Gunning-Rossi [8].

2.2. We denote the Kobayashi pseudodistance on a complex space X by dX .
X is called to be hyperbolic if dX is a distance. For details concerning Hyper-
bolic complex analysis we refer the readers to the books of S. Kobayashi [14] and
S. Lang [16].

2.3. A complex space is called to be taut if whenever Y is a complex space
and fj : Y ! X is a sequence of holomorphic mappings, then either there exists
a subsequence which is compactly divergent or a subsequence which converges
uniformly on compact subsets to a holomorphic mapping f : Y ! X . It su‰ces
that this condition should hold when Y ¼ D [3], where D is the unit disc in C.

2.4. A meromorphic map f from complex space X into a complex space
Y is defined by its graph Gf , which is an analytic subset of the product X � Y ,
satisfying the following conditions

(i) The graph Gf is a locally irreducible analytic subset of X � Y
(ii) The restriction pjGf : Gf ! X of the natural projection p : X � Y ! X to

Gf is proper, surjective and generically one to one.
Kodama A. [15] showed that every meromorphic mapping from a nonsin-
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gular complex manifold X into a hyperbolic complex space Y is holomorphic
(also see [14, Thm 6.3.19, p. 288]).

2.5. Let X be a complex space. A plurisubharmonic function on X is a
function j : X ! ½�y;yÞ having the following property. For every x A X there
exist an open neighbourhood U with a biholomorphic map h : U ! V onto a
closed complex subspace V of some domain GHC m and a plurisubharmonic
function ~jj : G ! ½�y;yÞ such that jjU ¼ ~jj � h (see Peternell [18, p. 225]).

Some remarks should be made at this point. First, the definition of pluri-
subharmonicity does not depend on the choice of local charts. Second, Fornaess
and Narasimhan proved [6] that the upper semi-continuous function j : X !
½�y;yÞ on a complex space X is plurisubharmonic i¤ j � f is either subhar-
monic or �y for all holomorphic maps f : D ! X .

Denote PSHðXÞ the set of all plurisubharmonic functions on X.

2.6. Let X be a complex space and K be a compact subset of X. The plu-
risubharmonically convex hull of K (in X ) is the set K5

PSHðX Þ ¼ fx A X : uðxÞa
sup uðKÞ for all u A PSHðXÞg.

The complex space X is said to be pseudoconvex if for each compact subset
K of X, K5

PSHðXÞ so is compact in X.

2.7. Let M be a complex manifold and SHM a subset. We say that S is
pluripolar if for any x0 A S there are an open neighbourhood U of x0 in M and
a plurisubharmonic function j : U ! ½�y;yÞ such that S VU H fj ¼ �yg. If
dim M ¼ 1, then S is polar.

2.8. Let X be a complex space. We say that X has the Hartogs extension
property (shortly X has (HEP)) if every holomorphic mapping, from a Riemann
domain D over a Stein manifold into X, can be extended holomorphically to D̂D,
the envelope of holomorphy of D.

Let H2ðrÞ ¼ fðz1; z2Þ A D2 j jz1j < r or jz2j > 1� rg ð0 < r < 1Þ denote the 2-
dimensional Hartogs domain.

It is well-known ([20] or [9]) that X has (HEP) i¤ every holomorphic map-
ping f : H2ðrÞ ! X extends holomorphically over D2.

The class of complex spaces having (HEP) is large. This contains taut com-
plex spaces [7], complex Lie group [2], complete hermitial complex manifolds with
non-positive holomorphic sectional curvature [20]. In particular, Ivashkovich [9]
showed that a holomorphically convex Kahler manifold has (HEP) i¤ it con-
tains no rational curves. This was generalized to holomorphically convex Kahler
spaces by Thai D. D. [24].

2.9. Let X be a complex space. We say that X has the n-extension
property through closed pluripolar sets (shortly X has n-EP) if the restriction
R : HðZ;X Þ ! HðZnS;XÞ is a homeomorphism for every closed pluripolar set S
in any complex manifold Z of dimension n.
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It is easy to see that X has (PEP) if and only if X has n-EP for each nb 1.

2.10. For every positive number r, put Dr ¼ fz A C : jzj < rg, D1 ¼ D.

3. Convergence-extension theorems for analytic subsets

First we give the following

3.1. Definition. Modifying the definition of the disc-convexity (see [20]
or [14]), a complex space X is called to be weakly disc-convex if every sequence
f fngHHðD;X Þ converges in HðD;XÞ whenever the sequence f fnjD�gHHðD�;XÞ
converges in HðD�;XÞ. Here, denote HðX ;YÞ the space of holomorphic
mappings from a complex space X into a complex space Y equipped with the
compact-open topology and D� ¼ Dnf0g.

The theorems of Montel and Kiernan (see [19]) follow the following impli-
cations

complete hyperbolic ) taut ) weakly disc-convex.

The converse assertions are not true in general (see [19]).
For details concerning the (weak) disc-convexity we refer the readers to [26].

3.2. Definition. Let X be a complex subspace of a complex space Y.
We say that X has the D�-EP for Y if every holomorphic mapping f from D� into
X extends to a holomorphic mapping F from D into Y. If X has the D�-EP for
itself then X is said to have the D�-EP (shortly X has D�-EP).

Example. i) By a theorem of Kobayashi [14, Thm 6.3.7, p. 284], if X is re-
latively compact and hyperbolically imbedded into Y then X has the D�-EP for Y.

ii) It is easy to see from the Riemann extension theorem that if D is a
bounded domain in C n and W is an open neighbourhood of D in C n then D has
the D�-EP for W.

For details concerning the D�-EP we refer the readers to [24], [27] and [28].

3.3. Proof of Theorem 1.
(i) First we prove that X is weakly disc-convex. Indeed, let f fkgHHðD;XÞ

be such that the sequence f fkjD�g converges, uniformly on compact subsets, to a
mapping f A HðD�;XÞ. Let f fkjg be any subsequence of the sequence f fkg.

Put K ¼ 6
jb1

fkj ðqDsÞ, where 0 < s < 1.

By the hypothesis and by the maximum principle, it follows that ðKÞ5PSHðXÞ is
compact and 6

jb1
fkj ðDsÞH ðKÞ5PSHðXÞ. Since X has D�-EP, X contains no com-

plex lines (see [24]). Therefore, by the theorem of Brody [4] and Urata [29] and
Zaidenberg [30], there exists a hyperbolic neighbourhood W of ðKÞ5PSHðXÞ in X.
This implies that the family f fkj jDs

g is equicontinuous.

On the other hand, since f fkj ðlÞg is relatively compact for each l A Ds,
by the Ascoli theorem the family f fkj : jb 1g is relatively compact in HðDs;X Þ.
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Thus there exists a subsequence f fkjl g of f fkjg which converges, uniformly on
compact subsets, to the mapping F in HðD;XÞ. The equality F jD� ¼ f deter-
mines F uniquely, hence independently of the choices of subsequences f fkjg of
the sequence f fkg. It follows that the sequence f fkg converges, uniformly on
compact sets, to the mapping F in HðD;XÞ.

(ii) We now prove that every holomorphic mapping f : MnA ! X extends
holomorphically over M. First we note that we may assume that A is non-
singular; i.e., we extend f to MnSðAÞ then to MnSðSðAÞÞ and so on. Here
SðZÞ denote the singular locus of Z.

By localizing the mapping f , we may assume that M ¼ Dm ¼ Dm�1 � D and
A ¼ Dm�1 � f0g.

For each z 0 A Dm�1, consider the holomorphic mapping fz 0 : D
� ! X given

by fz 0 ðzÞ ¼ f ðz 0; zÞ for each z A D�. By the hypothesis, there exists a holo-
morphic extension fz 0 : D ! X of fz 0 for each z 0 A Dm�1. Define the map-
ping f : Dm�1 � D ! X by f ðz 0; zÞ ¼ fz 0 ðzÞ for all ðz 0; zÞ A Dm�1 � D. It suf-
fices to prove that f is continuous at ðz 00; 0Þ A Dm�1 � D.

Indeed, assume that fðz 0k; zkÞg A Dm�1 � D such that fðz 0k; zkÞg ! ðz 00; 0Þ.
Put sk ¼ fz 0

k
for each kb 1 and s0 ¼ fz 0

0
. Then the sequence fskjD�g

converges uniformly to the mapping fs0jD�g in HðD�;X Þ. Since X is weakly
disc-convex, the sequence fskg converges uniformly to the mapping s0 in
HðD;XÞ. Therefore, fskðzkÞ ¼ f ðz 0k; zkÞg ! s0ð0Þ ¼ f ðz 00; 0Þ and hence, f is
continuous at ðz 00; 0Þ.

(iii) Let f fkgHHðMnA;XÞ be such that f fkg ! f0 in HðMnA;X Þ.
We will show that f fkg ! f0 in HðM;XÞ.
As above, we may assume that A is nonsingular and by localizing the

mappings, we may assume that M ¼ Dm ¼ Dm�1 � D and A ¼ Dm�1 � f0g. Let
fðz 0k; zkÞgHDm�1 � D be any sequence converging to ðz 00; z0Þ A Dm�1 � D. We
now prove the sequence f fkðz 0k; zkÞg converges to f0ðz 00; z0Þ.

Indeed, for each kb 0 consider the holomorphic mapping jk : D ! X
given by jkðzÞ ¼ fkðz 0k; zÞ for all z A D. Then fjkjD�g ! j0jD� in HðD�;X Þ.
Since X is weakly disc-convex, we have fjkg ! j0 in HðD;XÞ. Hence fjkðzkÞ ¼
fkðz 0k; zkÞg ! j0ðz0Þ ¼ f0ðz 00; z0Þ. Q.E.D.

3.4. Remark. In [27] we conjectured that any complex manifold, or more
generally any complex space, having D�-EP must be pseudoconvex; but as far as
we know, this is an interesting open problem.

3.5. Proof of Theorem 2.
a) First we show that every holomorphic mapping f : MnA ! X extends to

a holomorphic mapping F : M ! Y .
We consider two cases.

Case 1. The singularities of A are normal crossings.
By assumption, we may assume that M ¼ Dn � Dl and MnA ¼ ðD�Þn � Dl .

The proof is by induction on n. We do it in three steps.
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(i) If MnA ¼ D� then the assertion is deduced immediately from Definition
2.12.

(ii) Assume that we can extend f when MnA ¼ ðD�Þn for some n. We
show that this implies we can extend f if MnA ¼ ðD�Þn � Dl for any l.

Let f : D�n � Dl ! X be holomorphic. For each u let fuðtÞ ¼ f ðt; uÞ. Then
by assumption we can extend fu to a holomorphic mapping ~ffu : D

n ! Y for
each u. Define the mapping F : Dn � Dl ! Y by Fðt; uÞ ¼ ~ffuðtÞ. By the Rie-
mann extension theorem, it su‰cies to prove that the mapping F is continuous.

Indeed, assume that a sequence fðtk; ukÞgHDn � Dl converges to a point
ð0; u0Þ. Take some sequence f~tt kg A D�n such that limn!þy dDnðtk; ~tt kÞ ¼ 0.

We have

dY ðF ðtk; ukÞ;F ð0; u0ÞÞ

a dY ðFðtk; ukÞ;F ð~ttk; ukÞÞ þ dY ðF ð~ttk; ukÞ;F ð~ttk; u0ÞÞ þ dY ðFð~ttk; u0Þ;Fð0; u0ÞÞ

¼ dY ð ~ffuk ðtkÞ; ~ffuk ð~ttkÞÞ þ dY ð f ð~tt k; ukÞ; f ð~ttk; u0ÞÞ þ dY ð ~ffu0ð~tt kÞ; ~ffu0ð0ÞÞ

a dDnðtk; ~ttkÞ þ dDl ðuk; u0Þ þ dDnð~ttk; 0Þ for all kb 1:

Thus limk!þy dY ðF ðtk; ukÞ;Fð0; u0ÞÞ ¼ 0, i.e., fFðtk; ukÞg ! Fð0; u0Þ as
k ! þy. This concludes the second step of the proof.

(iii) Assume that f can be extended if MnA ¼ D�n � Dl for any l. We
then show that f can be extended if MnA ¼ D�nþ1.

Indeed, by induction, f extends to a holomorphic mapping f1 : D
nþ1nfð0;

0; . . . ; 0Þg ! Y . The holomorphic mapping g : D� ! X , given by gðzÞ ¼
f ðz; . . . ; zÞ for each z A D�, extends to a holomorphic mapping ~gg : D ! Y .
Define the mapping F : Dnþ1 ! Y by Fð0; 0; . . . ; 0Þ ¼ ~ggð0Þ and F jDnþ1nfð0;0;...;0Þg ¼
f1. As above, it su‰ces to show that F is continuous.

Assume that a sequence fðtk1 ; tk2 ; . . . ; tknþ1ÞgHDnþ1 converges to ð0; 0; . . . ; 0Þ.
Without loss of generality we may assume that tk1 0 0 for all kb 1.

Then

dY ðF ðtk1 ; tk2 ; . . . ; tknþ1Þ;F ð0; 0; . . . ; 0ÞÞ

a dY ðF ðtk1 ; tk2 ; . . . ; tknþ1Þ;F ðtk1 ; tk1 ; . . . ; tk1 ÞÞ þ dY ðF ðtk1 ; tk1 ; . . . ; tk1 Þ;F ð0; 0; . . . ; 0ÞÞ

¼ dY ð f1ðtk1 ; tk2 ; . . . ; tknþ1Þ; f1ðtk1 ; tk1 ; . . . ; tk1 ÞÞ þ dY ð~ggðtk1 Þ; ~ggð0ÞÞ

a dD��Dnððtk1 ; tk2 ; . . . ; tknþ1Þ; ðtk1 ; tk1 ; . . . ; tk1 ÞÞ þ dY ð~ggðtk1 Þ; ~ggð0ÞÞ

a max
j¼2;nþ1

dDðtkj ; tk1 Þ þ dDðtk1 ; 0Þ

a max
j¼2;nþ1

ðdDðtkj ; 0Þ þ dDðtk1 ; 0ÞÞ þ dDðtk1 ; 0Þ

a max
j¼2;nþ1

dDðtkj ; 0Þ
 !

þ 2dDðtk1 ; 0Þ for all kb 1:
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Thus every subsequence of the sequence contains some subsequence con-
verging to F ð0; 0; . . . ; 0Þ. Then the sequence fF ðtk1 ; tk2 ; . . . ; tknþ1Þg converges to
F ð0; 0; . . . ; 0Þ.

Case 2. A is any closed analytic set of M.
By the Hironaka theorem of singularities, there is (at least locally) a triple

ðZ;B; yÞ such that B is an analytic set with normal crossings of a complex
manifold Z and y : Z ! M is a proper holomorphic mapping onto M with
B ¼ y�1ðAÞ.

Define g : ZnB ! X by g ¼ f � y. By Case 1, g extends to a holomor-
phic mapping G : Z ! Y . Then f extends meromorphically to M by defining
F ¼ G � y�1. By the theorem of Kodama [15] (see [14, Thm 6.3.19, p. 288]), F is
holomorphic.

b) Assume that f fjgHHðMnA;XÞ such that f fjg ! f A HðMnA;XÞ in
HðMnA;XÞ. We will show that f fjg ! f in HðM;YÞ.

First we note that we may assume that A is nonsingular; i.e., our assertion
holds up to MnSðAÞ then to MnSðSðAÞÞ and so on. Here SðZÞ denote the
singular locus of Z.

Let z0 be an arbitrary point of A. By localizing our assertion, we may
assume that M ¼ Dm and A ¼ Dm�1 � f0g and z0 ¼ ð0; 0Þ. Put a0 ¼ f ðz0Þ.
For a point y A Y and a positive real number r, we set BY ðy; rÞ ¼ fy 0 A Y :
dY ðy; y 0Þ < rg. Similarly, for a point z A M and a positive real number r, we
set BMðz; rÞ ¼ fz 0 A M : dMðz; z 0Þ < rg.

We first show that for an arbitrary number e > 0 there exists a neighbour-
hood V0 of z0 in M such that f ðV0ÞHBY ða0; eÞ and fjðV0ÞHBY ða0; eÞ for all
jb j0.

Indeed, take a point z1 A BMðz0; e=3ÞnA. Then f ðz1Þ A BY ða0; e=3Þ. There
is an integer j0 such that fjðz1Þ A BY ða0; 2e=3Þ for all jb j0. Then we have
fjðBMðz1; e=3ÞÞHBY ða0; eÞ. Put V0 ¼ BMðz0; e=3ÞVBMðz1; e=3Þ. Then z0 A V0

and f ðV0ÞHBY ða0; eÞ and fjðV0ÞHBY ða0; eÞ for all jb j0.
Take e > 0 so small that BY ða0; eÞ is contained in a holomorphic local coor-

dinate neighbourhood of a0 in Y. Choose d > 0 small enough such that D
m

d HV0.
Since f fjjðqDdÞmg

y
j¼1 converges uniformly to f jðqDdÞm , the maximum principle implies

the uniform convergence of f fjjDm
d
gyj¼1 with limit f jDm

d
. Q.E.D.

3.6. Proof of Theorem 3.
First we also note that we may assume B is non-singular.
Take an arbitrary point a A A. By localizing the mapping f , we may assume

that M ¼ Dm ¼ Dm�1 � D, A ¼ A0 � f0g, where A0 is a nowhere dense subset of
Dm�1, and a ¼ ðt0; 0Þ A A0 � f0g. For every point z A Dm denote z ¼ ðt; uÞ with
t A Dm�1 and u A D.

Assume that a sequence faj ¼ ðtj; ujÞgH ðDm�1nA0Þ � D converges to a.
Consider the holomorphic mappings fj : D ! X , u 7! fjðuÞ ¼ f ðtj; uÞ for each
jb 1, and ft0 : D

� ! X , u 7! ft0ðuÞ ¼ f ðt0; uÞ. It is easy to see that f fjjD�g ! ft0
in HðD�;XÞ. Since X is weakly disc-convex, the sequence f fjg converges uni-
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formly to the holomorphic mapping g A HðD;XÞ, where gjD� ¼ ft0 . Put gð0Þ ¼ p.
Then f fjðujÞg ! gð0Þ, i.e., f f ðajÞg ! p. Thus, the sequence f f ðajÞg converges
to p for any sequence fajgH ðDm�1nA0Þ � D converging to a (*). Choose a
relatively compact neighbourhood Vp of p in X such that Vp is contained in
a holomorphic local coordinate neighbourhood of p in Y. By (*) there
exists an open neighbourhood T0 �U0 of a ¼ ðt0; 0Þ in Dm�1 � D such that
f ððT0nA0Þ �U0ÞHVp.

For every point u A U0nf0g, consider the holomorphic mapping fu : D
m�1 !

X , t 7! fuðtÞ ¼ f ðt; uÞ.
Since fuðT0nA0ÞHVp, it follows that fuðT0nA0Þ ¼ fuðT0ÞHVp. Thus

f ðT0 � ðU0nf0gÞÞHVp. By the Riemann extension theorem, the mapping f
extends holomorphically to T0 �U0. Q.E.D.

Theorem 3 contains the following results of Kobayashi [14] and Noguchi-
Ochiai [17], which were proved by di¤erent methods.

3.7. Corollary ([14, Thm 6.2.3, p. 281]).
Let X be a complete hyperbolic space. Let M be a complex manifold of

dimension m, and let A be a subset which is nowhere dense in a complex subspace
BHM of dimension am� 1. Then every holomorphic mapping f : MnA ! X
extends to a holomorphic mapping F : M ! X .

3.8. Corollary ([17, Thm 1.6.28, p. 35]).
Let X be a complete hyperbolic space, M a complex manifold and AHM an

analytic subset of codimension b2. Then all holomorphic mappings from MnA
into X extend holomorphically over the whole M. Furthermore, if f fjgyj¼1 ! f in

HðMnA;XÞ, then f fjg
y
j¼1 ! f in HðM;X Þ, where fj and f stand for the ex-

tended holomorphic mappings from M into X.

3.9. Remark. In [26] we showed a bounded pseudoconvex domain D in
C 2 such that D is not taut. Thus Theorem 3 is strictly stronger than the above-
mentioned results of Kobayashi and Noguchi-Ochiai.

4. Convergence-extension theorems for closed pluripolar sets

First we give the following

4.1. Definition. Let X be a complex space. We say that X has the weak
1-EP if every holomorphic mapping f : DnS ! X extends holomorphically over
D, where S is any closed polar subset of D.

Example. Every bounded hyperconvex domain in C n has the weak 1-EP.
Indeed, let W be a bounded hyperconvex domain in C n and f : DnS ! W

any holomorphic mapping, where S is any closed polar subset of D. Put f ¼
ð f1; . . . ; fnÞ and fj ¼ uj þ ivj, where uj, and vj are bounded harmonic on DnS.
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By the theorem on removable singularities of harmonic functions, uj and vj
extend to the harmonic functions ~uuj and ~vvj on D. Since they are of class C2 and
satisfy the Cauchy-Riemann equations on a dense subset of D, they satisfy these
equations at each point of D. Then ~ffj ¼ ~uuj þ i~vvj A HðDÞ. Thus the mapping
~ff ¼ ð ~ff1; . . . ; ~ffnÞ A HðD;WÞ. Let r be a plurisubharmonic exhaustion function of
W. Put h ¼ r � ~ff on DnS. Then h is subharmonic and negative on DnS.
Therefore h extends to a subharmonic function ~hh over D and ~hha 0 over D.
Suppose that there exists z0 A S such that ~ff ðz0Þ A qW. Then ~hhðz0Þ ¼ 0. The
maximum principle implies ~hh ¼ 0 on D. This is a contradiction.

In order to prove Theorem 4 we need the following

4.2. Lemma. Let A be a subset of Dn
2n such that H 2n�2þ2=nðAÞ ¼ 0.

Then there exists a new orthogonal coordinate system of C n with the same origin
such that in this new orthogonal coordinate system the set S 00 :¼ fw A D2 :
Dn�1

2 � fwgHAVDn
2g is empty.

Proof. Denote by fe1; . . . ; eng the canonical base of C n.
For every a ¼ ða1; a2; . . . ; an�1; bÞ A C n we put

Ha;b ¼ fðz1; z2; . . . ; znÞ : zn ¼ a1z1 þ � � � þ an�1zn�1 þ bg
~HHa;b ¼ fz : z A Ha;b and jzij < 1 for each i ¼ 1; . . . ; n� 1g

Put B ¼ fða; bÞ : ~HHa;b HDn
2n VAg.

Consider two cases.

Case 1. H 2ðBÞ > 0
Suppose that there exist C-linear maps si : C

n ! C , i ¼ 1; . . . ; n such that
fsig is linearly independent and H 2=nðsiðBÞÞ ¼ 0, i ¼ 1; . . . ; n (1). Choose a
new base f~ee1; . . . ; ~eeng of C n such that si is a canonical projection onto i th-axis.
Consider the C-isomorphism f : C n ! C n given by fðeiÞ ¼ ~eei, i ¼ 1; . . . ; n. Put
~BB ¼ fðBÞ. By (1), we have H 2ð

Qn
i¼1 sið ~BBÞÞ ¼ 0. Since ~BBH

Qn
i¼1 sið ~BBÞ, this

follows that H 2ð ~BBÞ ¼ 0. Hence H 2ðBÞ ¼ 0. This is a contradiction. Thus
H 2=nðsðBÞÞ > 0 for each generic C-linear mapping s : C n ! C (2). Remark
that if s satisfies (2) then cs also satisfies (2) for all c A C �.

This implies that H 2=nðsaðBÞÞ > 0 for almost a ¼ ða1; . . . ; an�1Þ A C n�1, where
saða; bÞ ¼ a1a1 þ � � � þ an�1an�1 þ b ¼ a:aþ b.

For every a A C n�1, consider the line da ¼ fða; znÞ : zn A Cg. It is easy
to see that da VAI fða; znÞ : zn A saðBÞg. This implies that H 2=nðda VAÞb
H 2=nðfða; znÞ : zn A saðBÞg ¼ H 2=nðsaðBÞÞ > 0 for almost a ¼ ða1; . . . ; an�1Þ A C n�1,
and hence, H 2n�2þ2=nðAÞ > 0 ([5, Lemma A.6.3, p. 350]). This is a contradiction.

Case 2. H 2ðBÞ ¼ 0
By [5, Lemma A.6.3, p. 350], for every kb 1 there exists ~aak A Dn�1

1=k such that
ðf~aakg � CÞVB ¼ j (3).
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For every kb 1 consider a hyperplane Hk ¼ fzn ¼ ~aak:z
0gH ðC n; fejgÞ.

Choose a new orthogonal coordinate system feðkÞ1 ; . . . ; e
ðkÞ
n g of C n such that

. feðkÞ1 ; . . . ; e
ðkÞ
n�1gHHk

. limk!y e
ðkÞ
j ¼ ej for each 1a ja n, where limitations are considered in

ðC n; fejgÞ.
In ðC n; feðkÞj gnj¼1Þ, we consider the polydisc Dn

2ðkÞ. It is easy to see that
in the set-theoretic side Dn

2ðkÞHDn
2n for k large enough.

Consider the isomorphism fk : ðC n; fejgÞ ! ðC n; feðkÞj gÞ given by z ¼ ðz1;
z2; . . . ; znÞ 7! ðzðkÞ1 ; . . . ; z

ðkÞ
n Þ, where z ¼ ðzðkÞ1 ; . . . ; z

ðkÞ
n Þ in ðC n; feðkÞj gÞ. Then

. fk is isometric

. fkðHkÞ ¼ fzðkÞn ¼ 0g

. fk ¼ IdC n if omiting algebraic structures in C n

Put S 00
k ¼ fbk A D2ðkÞ : D2ðkÞn�1 � fbkgHAg.

Suppose that S 00
k 0j for each kb 1. Then there is bk A D2ðkÞ such that

Tbk :¼ Dn�1
2 ðkÞ � fbkgHA. Without loss of generality we may assume that

fbkg ! b0 A C .
Consider the canonical projection p : ðC n; fejgnj¼1Þ ! ðC n�1; fejgn�1

j¼1 Þ.
Then fpðTbk Þg ! Dn�1

2 IDn�1
1 in ðC n; fejgÞ. Without loss of generality

we may assume that pðTbk ÞIDn�1
1 for all kb 1 (4).

In ðC n; feðkÞj gnj¼1Þ, we consider the hyperplane Kbk ¼ fzðkÞn � bk ¼ 0gITbk .

Then in ðC n; fejgnj¼1Þ the set Kbk is given by fzn ¼ ~aak:z
0 þ ~bbkg

Indeed, since Hk consided in ðC n; feðkÞj gnj¼1Þ is given by the equation
fzðkÞn ¼ 0g, it implies that f�1

k ðfzðkÞn ¼ 0gÞ ¼ Hk. Thus we have

f�1
k ðzðkÞ1 ; . . . ; z

ðkÞ
n�1; bkÞ ¼ f�1

k ðzðkÞ1 ; . . . ; z
ðkÞ
n�1; 0Þ þ f�1

k ð0; . . . ; 0; bkÞ
¼ ðz1; . . . ; zn�1; ~aak:z

0Þ þ ðuðkÞ0; uðkÞÞ
¼ ðz 0; ~aak:z 0Þ þ ðuðkÞ0; uðkÞÞ ¼ ðz 0 þ uðkÞ0; ~aak:z 0 þ uðkÞÞ
¼ ðz 0 þ uðkÞ0; ~aak:ðz 0 þ uðkÞ0Þ þ uðkÞ � ~aak:uðkÞ0Þ

¼ ðz 0 þ uðkÞ0; ~aak:ðz 0 þ uðkÞ0Þ þ ~bbkÞ;
where ~bbk ¼ uðkÞ � ~aak:uðkÞ0.

Hence in ðC n; fejgnj¼1Þ f�1
k ðKbk Þ is defined by fzn ¼ ~aak:z

0 þ ~bbkg. This fol-
lows that Tbk HH~aak ;~bbk

in ðC n; fejgnj¼1Þ. From (4) we get Tbk I fz A H~aak ;~bbk
:

pðzÞ A Dn�1
1 g.

In ðC n; fejgnj¼1Þ consider the set

~HH~aak ;~bbk
¼ fz : z A H~aak ;~bbk

and jzjj < 1 for each 1a ja n� 1g
fz : z A H~aak ;~bbk

and pðzÞ A Dn�1
1 gHTbk HA

Hence ~HH~aak ;~bbk
HA.

On the other hand, we have Tbk HDn
2ðkÞHDn

2n, i.e., ~HH~aak ;~bbk
HDn

2n. Thus
~HH~aak ;~bbk

HDn
2n VA, and hence, ð~aak; ~bbkÞ A B. This implies that ðf~aakg � CÞVB0j.

This is a contradiction. Q.E.D.
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4.3. Lemma. Let X be a complex space. If X has 1-EP, then X has n-EP
for every nb 1.

Proof. This lemma was proved in [25] with some gaps. We repeat the
details here for correction and also for the reader’s convenience.

(i) First observe that X is weakly disc-convex. By a result of Shi¤man [20],
X has (HEP).

(ii) Given nb 2. Since the problem is local, without lost of generality we
may assume that Z ¼ Dn. By the theorem of Josefson (see [13, p. 170]), there
exists u A PSHðDnÞ such that SH ~SS :¼ u�1ð�yÞ.

We put
S 0 ¼ fz A Dn�1 : fzg � DH ~SSg and

S 00 ¼ fw A D : Dn�1 � fwgH ~SSg:
Then S 0 and S 00 are pluripolar in Dn�1 and D respectively. By Lemma 4.2,
without loss of generality we may assume that S 00 ¼ j.

We put Sw ¼ fz A Dn�1 : ðz;wÞ A Sg for each w A D and Sz ¼ fw A D : ðz;wÞ A
Sg for each z A Dn�1.

Then Sw is closed pluripolar in Dn�1 for each w A D and Sz is closed polar in
D for z B S 0.

(iii) Now assume that f is a holomorphic mapping from ðDn�1 � DÞnS
into X.

For each w A D, consider the holomorphic mapping f w : Dn�1nSw ! X
given by f wðzÞ ¼ f ðz;wÞ for all z A Dn�1nSw. By the inductive hypothesis,
f w is extended to the mapping ~ff w A HðDn�1;XÞ. Similarly, for each z B S 0, the
holomorphic mapping fz : DnSz ! X given by fzðwÞ ¼ f ðz;wÞ for all w A DnSz, is
extended to the mapping ~ffz A HðD;X Þ. Thus we can define the mappings

f1 : ðDn�1nS 0Þ � D ! X by f1ðz;wÞ ¼ ~ffzðwÞ and

f2 : D
n�1 � D ! X by f2ðz;wÞ ¼ ~ff wðzÞ:

We now prove that f1 is continuous on ðDn�1nS 0Þ � D.
Indeed, assume that fðzk;wkÞgH ðDn�1nS 0Þ � D, fðzk;wkÞg ! ðz0;w0Þ A

ðDn�1nS 0Þ � D.
Put P ¼ ð6y

k¼1
Szk ÞUSz0 . Then P is closed polar in D. Since the

sequence f ~ffzkg converges uniformly to ~ffz0 in HðDnP;X Þ, by the inductive
hypothesis, we see that the sequence f ~ffzkg converges uniformly to ~ffz0 in HðD;X Þ.
Hence ~ffzk ðwkÞ ¼ f1ðzk;wkÞ ! fz0ðw0Þ ¼ f1ðz0;w0Þ. Thus f1 is continuous on
ðDn�1nS 0Þ � D.

Similarly, f2 is continuous on Dn�1 � D.

Since ðDn�1 � DÞnS is dense in ðDn�1nS 0Þ � D and f1 ¼ f2 on ðDn�1 � DÞnS,
we have f1 ¼ f2 on ðDn�1nS 0Þ � D.

This implies that the mapping f2 satisfies the following: ð f2Þw ¼ ~ff w A
HðDn�1;XÞ for all w A D and ð f2Þz ¼ ~ffz A HðD;X Þ for all z A Dn�1nS, where
ð f2Þw and ð f2Þz are given by ð f2ÞwðzÞ ¼ ð f2ÞzðwÞ ¼ f2ðz;wÞ. By a theorem
of Shi¤man [21], f2 is holomorphic.
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(iv) Now assume that the sequence f fkgHHððDn�1 � DÞnS;XÞ con-

verges uniformly to f A HððDn�1 � DÞnS;X Þ. We must prove that f f̂fkg ! f̂f in
HðDn�1 � D;X Þ, i.e., we must prove that if fðzk;wkÞgHDn�1 � D such that
fðzk;wkÞg ! ðz0;w0Þ A Dn�1 � D then f f̂fkðzk;wkÞg ! f̂f ðz0;w0Þ.

As before, we consider the following holomorphic mappings
f k;wk : Dn�1nSwk ! X , z 7! fkðz;wkÞ and f w0 : Dn�1nSw0 ! X , z 7! f ðz;w0Þ
and f̂f k;wk : Dn�1 ! X , z 7! f̂fkðz;wkÞ and f̂f w0 : Dn�1 ! X , z 7! f̂f ðz;w0Þ.

Put P ¼ ð6y
k¼1

Swk ÞUSw0 . Then P is a closed pluripolar set in Dn�1.
Since f f k;wkg ! f w0 in HðDn�1nP;XÞ, by the inductive hypothesis, we have

f f̂f k;wkg ! f̂f w0 in HðDn�1;XÞ.
Thus f f̂f k;wk ðzkÞ ¼ f̂fkðzk;wkÞg ! f̂f w0ðz0Þ ¼ f̂f ðz0;w0Þ. Q.E.D.

4.4. Proof of Theorem 4.
By Lemma 4.3, it su‰ces to show that X has 1-EP, i.e., the restriction

R : HðD;XÞ ! HðDnS;XÞ is homeomorphic for every closed polar set S in D.
By the hypothesis, X has D�-EP and hence, X contains no complex lines

[24]. Then every compact subset of X has a hyperbolic neighbourhood in X (see
[4], [29], [30]).

Let f fjgHHðDnS;XÞ be such that f fjg ! f A HðDnS;XÞ in HðDnS;X Þ.
By the hypothesis, there are unique holomorphic extensions fj : D ! X of fj and
f : D ! X of f over D. We will show that f fjg ! f in HðD;XÞ.

Given z0 A S. Since S is closed polar in D, there exists a neighbourhood U
of z0 in D such that qU VS ¼ j. Then the set K ¼ 6

jb1
fjðqUÞ is relatively

compact in X. By the hypothesis and by the maximum principle, it follows that
ðKÞ5PSHðXÞ is compact and 6

jb1
fjðUÞH ðKÞ5PSHðX Þ. Take a hyperbolic neigh-

bourhood W of ðKÞ5PSHðXÞ in X. Then the family f fjjUg is equicontinuous. On

the other hand, since f fjðlÞg is relatively compact for each l A U , by the Ascoli

theorem, the family f fjg is relatively compact in HðU ;XÞ. This implies that

every subsequence f fjkg
y
k¼1 of the sequence f fjg

y
j¼1 contains a subsequence

f fjkl g
y
l¼1 which converges, uniformly on compact subsets, to the mapping F in

HðU ;X Þ. The equality F jUnS ¼ f implies F ¼ f on U. This follows that

f fjjUg ! f jU in HðU ;X Þ. Thus f fjg ! f in HðD;XÞ. Q.E.D.

5. Generalization of Alexander theorem to complex spaces

First of all we give the following

5.1. Definition. Let M be a complex space.
i) An open subset A of M is said to be of type (S) if there exists a biho-

lomorphic mapping from A onto an analytic subset of C m.
ii) The space M is said to be Stein-type if for each p A M there exist a

neighbourhood Wp of p and rp > 0 and a neighbourhood Sp of p being of type
(S) such that, for each f A HðD;MÞ, if f ð0Þ A Wp then f ðDrpÞHSp.
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The class of complex spaces of Stein-type is rather large. It is easy to see
that one contains Stein complex spaces and hyperbolic complex spaces.

We now give some notations
Put

z ¼ ðz 0; znÞ A C n�1 � C for each z A C n

Bn
r ¼ fz A C n : kzk < rg; Bn

1 ¼ Bn

Bða; rÞ ¼ fz A C n : kz� ak < rg for each a A C n; r > 0

Pða;RÞ ¼ fz ¼ ðz1; . . . ; znÞ A C n : jzj � aj j < Rj for each 1a ja ng

for each R ¼ ðR1; . . . ;RnÞ A Rþn
� and a ¼ ða1; . . . ; anÞ A C n

Reasoning as in [13, p. 60], we have the following

5.2. Lemma. Let f : Pðz;RÞ ! C be a mapping satisfying the following:
There exists o < rn < Rn such that f is holomorphic in Pðz 0;R 0Þ � Pðzn; rnÞ

and f ð~zz 0; :Þ is holomorphic in Pðzn;RnÞ for each ~zz 0 A Pðz 0;R 0Þ.
Then f is holomorphic in Pðz;RÞ.

We now prove the following proposition which is a generalization of the
theorem of Forelli to complex spaces (see [19, p. 49]).

5.3. Proposition. Let M be a complex space of Stein type. Let f : Bn !
M be such that the restriction of f to each complex line through the origin is
holomorphic and f is a Cy-mapping in an open neighbourhood of the origin.
Then f is holomorphic in Bn.

Proof. Step 1. Assume that f is holomorphic in Bn
1�a for some 0 < a < 1

and f ðBðz; aÞÞ is included in a subset of type (S) of M for each z A Bn
1�a.

It is easy to see that f ðBðz; rhÞÞ is also included in a subset of type (S) of M
for each 0 < h < 1, z A Bn

h , where rh ¼ minð1� h; aÞ.
Put Bn

� ¼ Bnnfzn ¼ 0g. Consider the holomorphic mapping j : Bn
� ! C n

given by jðz1; . . . ; znÞ ¼ ðz1=zn; . . . ; zn�1=zn; znÞ. Put jðBn
� Þ ¼ T and j1 : B

n
� !

T given by j1ðzÞ ¼ jðzÞ for each z A Bn
� . Then j1 is biholomorphic.

Put g ¼ f � j�1
1 : T ! M and TR;h ¼ ft ¼ ðt 0; znÞ A T : kt 0k < R, 0 < jznj2 <

h=ð1þ R2Þg for each R > 0 and 0 < h < 1.
It is easy to see that fTR;hgh is a sequence of open sets which is increasing

when h is increasing and T ¼ 6fTR;h : R > 0; 0 < h < 1g.
Take R > 0, 0 < h < 1 and we prove that g is holomorphic in TR;h.
Indeed, we have the following assertions
. j�1

1 ðTR;hÞHBn
h TBn

. E0 < � < h=ð1þ R2Þ, bdh ¼ dhð�Þ > 0, Eðt 0; znÞ A TR;h with h=ð1þ R2Þ � � <
jznj2 < h=ð1þ R2Þ : gðPððt 0; znÞ; dhÞÞ is included in a set of type (S).

Indeed, put D� ¼ fðt 0; znÞ A T : kt 0kaR, h=ð1þR2Þ� �a jznj2ah=ð1þR2Þg.
Then D� is compact and D� HT and j�1

1 ðD�ÞHBn
h . On the other hand,
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since D� is a compact subset of the open set T, it implies that there is
m > 0 such that PðD�; mÞ ¼ 6fPððt 0; znÞ; mÞ : ðt 0; znÞ A D�gTT . This follows that
j�1
1 ðPðD�; mÞÞTBn

� . Hence, there is 0 < h1 < 1 such that j�1
1 ðPðD�; mÞÞT

Bn
h1
. Thus 6fj1ðB�ðz; rh1ÞÞ : z A Bn

h1
gIPðD�; mÞ, where B�ðz; rh1Þ ¼ Bðz; rh1Þn

fzn ¼ 0g. By a theorem on the Lebesgue number, there is n > 0 such that, for

each z A PðD�; mÞ, Bðz; nÞVPðD�; mÞHB�ð~zz; rh1Þ for some ~zz ¼ ~zzðzÞ A Bn
h1
.

Put dh ¼ minðn=
ffiffiffi
n

p
; mÞ.

Consider ðt 0; znÞ A Int D�. Then j�1
1 ðPððt 0; znÞ; dhÞÞHB�ð~zz; rh1Þ for some

~zz A Bn
h1
, and hence, f � j�1

1 ðPððt 0; znÞ; dhÞÞH f ðB�ð~zz; rh1ÞÞH a subset of type (S).

Since j�1
1 ðTR;1�aÞHBn

1�a, it implies that g is holomorphic in TR;1�a.
. If ha 1� a then g is holomorphic in TR;h
. If 1� a < h then h0 :¼ supf~hha h: g is holomorphic in TR;~hhga h. We

now prove that h0 ¼ h.
Suppose that h0 < h. Choose � ¼ min

h0

2ð1þ R2Þ ;
h� h0

1þ R2

� �
. Put d1 ¼

min dh;
h0

2ð1þ R2Þ ;
h� h0

1þ R2

� �
> 0. Take ðt 0; znÞ such that kt 0k < R, jznj2 ¼

h0

1þ R2
� d1

2
. Consider the polydisc Pðt 0;min

j¼1;n�1ðR� jtjjÞÞ � Pðzn; d1Þ. Note

that g is holomorphic in Pðt 0;min
j¼1;n�1

ðR� jtjjÞÞ � Pðzn; d1=2Þ and, for each
~tt 0 A Pðt 0;min

j¼1;n�1ðR� jtj jÞÞ, gð~tt 0; ~zznÞ is holomorphic in Pðzn; d1Þ since f is holo-
morphic on every complex line passing through the origin. By Lemma 5.2, we
have g is holomorphic in Pðt 0;min

j¼1;n�1ðR� jtjjÞÞ � Pðzn; d1Þ for each ðt 0; znÞ

with kt 0k < R, jznj ¼
h0

1þ R2
� d1

2
. Thus g is holomorphic in TR;h0þd1ð1þR2Þ=2.

This is a contradiction. Hence g is holomorphic in TR;h, i.e., g is holomorphic
on T. Thus g is holomorphic in Bn

� , i.e., f is holomorphic in Bn
� . Since

Bn ¼ 6n

j¼1
ðBnnfzj ¼ 0gÞUBn

1�a, it implies that f is holomorphic in Bn.
Step 2. Assume that there exists r1 A ð0; 1Þ such that f is holomorphic

in Bn
r1
.

Take p0 A qBn
r1
. For the point f ðp0Þ A M take W0 ¼ Wf ð p0Þ, r0 ¼ rf ðp0Þ,

S0 ¼ Sf ðp0Þ as the definition of Stein-type, i.e., for each j A HðD;MÞ, if jð0Þ A W0

then jðDr0ÞHS0.
Since lima!1�0

r1ð1� aÞ
1� a:r21

¼ 0 < r0, there exists a0 A ð0; 1Þ such that
r1ð1� a0Þ
1� a0:r

2
1

< r0 and f ða0p0Þ A W0.

Since limp!p0

kpk:ð1� a0Þ
1� a0:kpk2

¼ r1ð1� a0Þ
1� a0:r

2
1

< r0, there exists Bðp0; dÞHBn such

that
kpk:ð1� a0Þ
1� a0:kpk2

< r0 for each p A Bðp0; dÞ and f ða0:Bðp0; dÞÞ ¼

f ðBða0p0; a0dÞÞHW0.
We now prove that f ðBðp0; dÞÞHS0. Indeed, take p A Bðp0; dÞ. Consider

the Mobius map c : D ! D given by cðzÞ ¼ z� ka0pk
1� ka0pk:z

. Put cðkpkÞ ¼ p 0.
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Consider the map j : D ! Bn given by jðzÞ ¼ z:p

kpk and the composite map

f :¼ f � j � c�1 : D ! M. Then fð0Þ ¼ f ða0pÞ A W0, fðp 0Þ ¼ f ðpÞ. On the

other hand, since jp 0j ¼ kpk:ð1� a0Þ
1� a0:kpk2

< r0, it implies that p 0 A Dr0 , and hence,
fðp 0Þ ¼ f ðpÞ A S0.

For each p A Bn
r1
, put

dp ¼ supfd : f ðBðp; dÞÞ is included in a subset of type (S)g.
Then dp > 0. It is easy to see that jdp0 � dp1 ja kp0 � p1k for all

p0; p1 A Bn
r1
. This implies that the function d : Bn

r1
! Rþ

� is continuous. Thus

there is minp ABn
r1

dðpÞ ¼ dr1 > 0. Then f ðBðp; dr1=2ÞÞ is included in a subset

of type (S) for each p A Bn
r1
.

Choose t A R such that t:r1 þ t:ðdr1=2Þ ¼ 1. Consider the biholomorphic
mapping wt : B

n ! Bn
r1þdr1=2

given by z 7! z=t. Then w�1
t ðBn

r1
Þ ¼ Bn

t:r1
, w�1

t ðBn
dr1=2

Þ ¼
Bn
t:ðdr1=2Þ

.

Clearly, f � ðwt jBn
t:r1

Þ is holomorphic and f � wt B p;
tdr1
2

� �� �
¼

f B
p

t
;
dr1
2

� �� �
is included in a subset of type (S) for all p A Bn

tr1
. By Step 1, we

have f is holomorphic in Bn
r1þdr1=2

.

Step 3. By the theorem of Forelli [19, p. 49], there exists r0 > 0 such that
f is holomorphic in Bn

r0
. Put r� ¼ supfr A ð0; 1Þ: f is holomorphic in Bn

r g.
Then f is holomorphic in Bn

r� .
Suppose r� < 1. By Step 2, there is dr � > 0 such that f is holomorphic in

Bn
r�þdr�=2

. This is a contradiction. Q.E.D.

5.4. Proposition. Let R be a positive real number. Assume that a family
f fjgHHðPð0;RÞ;CÞ satisfies the following:

There exist 0 < r < R and f A HðPð0;RÞ;CÞ such that f fjg converges uni-
formly on compact subsets to f in Pð0 0;RÞ � Pð0n; rÞ and f fjðz 0; :Þg converges
uniformly on compact subsets to f ðz 0; :Þ in Pð0n;RÞ for each z 0 A Pð0 0;RÞ.

Then f fjg converges uniformly on compact subsets to f in Pð0;RÞ.

Proof. Put gj ¼ fj � f . Then fgjg converges uniformly on compact subsets
to 0 in Pð0 0;RÞ � Pð0n; rÞ (1) and fgjðz 0; :Þg converges uniformly on compact
subsets to 0 in Pð0n;RÞ for each z 0 A Pð0 0;RÞ (2).

Take 0 < r1 < r < R1 < R.
By (1), it follows that E� > 0, bj0ð�Þ, Ejb j0ð�Þ, Ez A Pð0 0;R1Þ � Pð0n; r1Þ :

jgjðzÞj < � (3). Consider the Hartogs expansion of gj:

gj ¼
Xy
k¼0

c
ð jÞ
k ðz 0Þ:zkn

From (3) we have jcð jÞk ðz 0Þja �

rk1
, Ejb j0ð�Þ, Ekb 0, Ez 0 A Pð0 0;RÞ (4).
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Take r < R2 < R1. We now prove that bn0 ¼ n0ðR2Þ, Ek; jb n0,

Ez 0 A Pð0 0;R2Þ : jcð jÞk ðz 0Þ:Rk
2 ja 1 (5).

Indeed, suppose this does not hold. Then there exist sequences fkig; f jig;
fz 0igHPð0 0;R2Þ such that jcð jiÞki

ðz 0i Þ:R
ki
2 j > 1 for all ib 1 (6). Put viðz 0Þ ¼

1

ki
:logjcð jiÞki

ðz 0Þj, Ez 0 A Pð0 0;R1Þ. From (4) we get vi a�log r1 in Pð0 0;R1Þ for

all ib j0ð�Þ (7). Fix z 0 A Pð0 0;R1Þ. By (2), there is j1 ¼ j1ð�; z 0Þ such that

jgjðz 0; :Þj < � in Pð0n;R1Þ for each jb j1. Hence jcð jÞk ðz 0Þja �

Rk
1

for all jb j1,

kb 0. Thus, for each ib j1, viðz 0Þa
1

ki
:log

�

Rki
1

 !
¼ log �

ki
� log R1 < �log R1,

and hence, lim supi!y viðz 0Þa�log R1 < �log R2 (8). From (7), (8) and by
Hartogs Lemma, it follows that bn0, Eib n0, Ez 0 A Pð0 0;R2Þ : viðz 0Þ < �log R2.

Hence viðz 0i Þ < �log R2 for all ib n0, i.e.,
1

ki
:logjcð jiÞki

ðz 0i Þj < �log R2 for all

ib n0. This follows that jcð jiÞki
ðz 0i Þ:R

ki
2 j < 1 for all ib n0. This contradicts to (6).

Take r < R3 < R2. From (5) we get jcð jÞk ðz 0Þ:Rk
3 ja

R3

R2

� �j

, Ek; jb n0,

Ez 0 A Pð0 0;R2Þ (9). Let �0 be any positive number. Take j2 ¼ j2ðR2;R3; �0Þ

large enough such that
Py

j¼j2

R3

R2

� �j

<
�

2
(10). Choose j � ¼ maxðn0ð�0Þ; j2Þ. Put

�1 ¼
�0

2ð
P j �

j¼0ðR3=r1Þ jÞ
> 0

From (4) and by the above-mentioned argument, there exists j0 ¼ j0ð�1Þ

such that jcð jÞk ðz 0Þja �1

rk1
, Ejb j0, Ekb 0, Ez 0 A Pð0 0;RÞ (11). By (10) and (11),

we have, for all jb j0, z A Pð0;R3Þ,

jgjðzÞja
Xj �
k¼0

jcð jÞk ðz 0Þj:Rk
3 þ

Xy
k¼j �

jcð jÞk ðz 0Þj:Rk
3

a
Xj �
k¼0

jc j
kðz

0Þ:rk1 j:
R3

r1

� �k
þ �0

2

a
Xj �
k¼0

�1:
R3

r1

� �k
þ �0

2
¼ �0

2
þ �0

2
¼ �0:

Hence jgjðzÞj < �0 Ejb j0, Ez A Pð0;R3Þ. Q.E.D.

5.5. Remark. It is easy to see that Proposition 5.4 holds for general
polydiscs in C n. Namely, we have the following
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Given R ¼ ðR1; . . . ;RnÞ A Rþn
� . Assume that a family f fjgHHðPðz;RÞ;CÞ

satisfies the following:
There exist 0 < rn < Rn and f A HðPðz;RÞ;CÞ such that f fjg converges

uniformly on compact subsets to f in Pðz 0;R 0Þ � Pðzn; rnÞ and f fjðz 0; :Þg converges
uniformly on compact subsets to f ðz 0; :Þ in Pðzn;RnÞ for each z 0 A Pðz 0;R 0Þ.

Then f fjg converges uniformly on compact subsets to f in Pðz;RÞ.
5.6. Proof of Theorem 5.
Take any sequence f fjgyj¼1 HF.
Step 1. Without loss of generality we may assume that f fjð0Þg ! p A M.

Choose Wp; rp;Sp as in the definition of Stein-type. Without loss of generality
we may assume that fjð0Þ A Wp for all jb 1. Then fjðBn

rp
ÞHSp for all jb 1.

By Alexander theorem [1, Thm 6.2.], it follows that the sequence f fjg contains
a subsequence which converges uniformly to f A HðBn

rp
;MÞ in HðBn

rp
;MÞ.

Without loss of generality we may assume that the sequence f fjg converges
uniformly to f A HðBn

rp
;MÞ in HðBn

rp
;MÞ.

For each z0 A Bn consider the holomorphic mapping jz0 : D ! Bn given by

z 7! z:z0
kz0k

. Then fj � ðjz0jDrp
Þ converges uniformly to f � ðjz0jDrp

Þ. On the other

hand, we have f fj � jz0g converges uniformly to Fz0 A HðD;MÞ. This follows
that Fz0jDrp

¼ f � ðjz0jDrp
Þ, and hence, Fz0 ¼ f � jz0 . Define the holomorphic

mapping F : Bn ! M, z 7! FzðkzkÞ. Then FjBn
rp
¼ f and F is holomorphic on

each complex line through the origin. By Proposition 5.3, it implies that F is
holomorphic in Bn.

Step 2. Assume that f fjg converges uniformly on compact subsets to F in
Bn
1�a for some 0 < a < 1. Assume that, for each z A Bn

1�a, there exist jðzÞb 1
and a subset Sz of type (S) such that FðBðz; aÞÞHSz and fjðBðz; aÞÞHSz for each
jb jðzÞ.

Then f fjg converges uniformly on compact subsets to F on every complex
line passing through the origin (*).

From (*) and by the same argument as in Step 1 of the proof of Proposition
5.3, it implies that the sequence f fjg converges uniformly to F in Bn.

We now prove the assertion (*). Indeed, suppose that there is a complex
line l passing through the origin such that f fjjlg does not converge uniformly
on compact subsets to F jl. Then there exist fzjgH l, z0 A l, fzjg ! z0 such that
the sequence f fjðzjÞg does not converge to Fðz0Þ. Hence there are a neigh-
bourhood U0 of F ðz0Þ and an infinite subset N0 of N such that fjðzjÞ B U0 for
all j A N0. Take an infinite subset N1 of N0 such that the sequence f fjjlgj AN1

converges uniformly on compact subsets to G, where G is a holomorphic map-
ping defined on l. Then GjlVBn

1�a
¼ F jlVBn

1�a
, i.e., G ¼ F jl. This follows that

the sequence f fjjlgj AN1
converges uniformly on compact subsets to F jl, i.e.,

f fjðzjÞgj AN1
converges to F ðz0Þ. This is impossible.

Step 3. Assume that the sequence f fjg converges uniformly to F in Bn
r1

for some 0 < r1 < 1. We now prove that there exist r 01 A ðr1; 1Þ such that f fjg
converges uniformly to F in Bn

r 0
1
.
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Indeed, take p0 A qBn
r1
. For the point F ðp0Þ A M take W0 ¼ WFðp0Þ,

r0 ¼ rFðp0Þ, S0 ¼ SFðp0Þ as the definition of Stein-type. Repeating as in Step 2
of the proof of Proposition 5.3, it follows that there are dp0 > 0 and jðp0Þb 1
such that fjðBðp0; dp0ÞÞHS0 for all jb jðp0Þ and F ðBðp0; dp0ÞÞHS0.

For each p A Bn
r1
put dp ¼ supfd > 0: b a subset Sp of type (S), bjðdÞb 1 such

that F ðBðp; dÞÞHSp and fjðBðp; dÞÞHSp for all jb jðdÞg. Then d is continuous
on Bn

r1
, and hence, there exists minp ABn

r1

dðpÞ ¼ dr1 > 0. Thus Ez A Bn
r1
, b a subset

Sz of type (S), bjðzÞb 1 such that FðBðz; dr1=2ÞÞHSz and fjðBðz; dr1=2ÞÞHSz for
all jb jðzÞ.

Reasoning again as in Step 2 of the proof of Proposition 5.3, it follows that
f fjg converges uniformly to F in Bn

r1þdr1=2
.

Step 4. Put

r� ¼ supfr A ð0; 1Þ: the sequence f fjg converges uniformly to F in Bn
r g.

Then the sequence f fjg converges uniformly to F in Bn
r � .

If r� < 1 then, by Step 3, there is r0 A ðr�; 1Þ such that the sequence f fjg
converges uniformly to F in Bn

r0
. This is a contradiction. Q.E.D.
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