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Abstract

In this article we show several convergence and extension theorems for analytic
hypersurfaces (not necessarily with normal crossings) and for closed pluripolar sets of
complex manifolds. Moreover, a generalization of theorem of Alexander to complex
spaces is given.

1. Introduction

Extending holomorphic mappings is one of the most important problems
of Analysis in several complex variables. Much attention has been given to this
problem from the viewpoint of Hyperbolic complex analysis since S. Kobayashi
introduced the notion of the Kobayashi pseudodistance and used it to study Geo-
metric function theory. In this direction, we recall here the remarkable theorem
of Noguchi (see [14] or [17]).

Let X be relatively compact hyperbolically imbedded into Y. Let M be
a complex manifold and 4 a complex hypersurface of M with only normal
crossings.

If {fi: M\Ad—X }jﬁl is a sequence of holomorphic mappings which con-
verges uniformly on compact subsets of M\A to a holomorphic mapping
[ M\A — X, then {fj}/il converges uniformly on compact subsets of M to
S, where f;: M — Y and f:M — Y are the unique holomorphic extensions
of f; and f over M.

The above theorem of Noguchi opened the new view in studying prob-
lems of extending holomorphic mappings. That is to study the Noguchi-type
convergence-extension theorems. More precisely, a “Noguchi-type convergence-
extension theorem” means a theorem on mappings analogous to the theorem of
Noguchi of extending holomorphic mappings, which would keep the local uni-
form convergence. Recently, several Noguchi-type convergence-extension theo-
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rems for analytic hypersurfaces of complex manifolds have been obtained by
various authors (see [11], [12], [14]).

The first aim of this article is to give several convergence and extension
theorems for analytic hypersurfaces (not necessarily with normal crossings) of
complex manifolds.

It is much to be regretted, therefore, that while a substantial amount of infor-
mation has been amassed concerning convergence and extension theorems for ana-
lytic hypersurfaces through the years, the present knowledge of these theorems for
pluripolar subsets, has remained extremely meagre.

For the convenient presentation, we give the following

DeFmNiTION. Let X be a complex space. We say that X has the
convergence-extension property through closed pluripolar sets (shortly X has
(PEP)) if the following holds.

Let M be any complex manifold and A be any closed pluripolar subset of M.
Let fi: M\A — X, j=1,2,... be holomorphic mappings which converge uni-
formly on compact subsets of M\A4 to a holomorphic mapping f : M\4 — X.
Then there are the unique holomorphlc extensions f;: M — X of f; and
f:M — X of f over M, and { f } | converges umformly on compact subsets of
M to f.

Up to now we only know the following three classes of complex manifolds
having (PEP)

a) Every Siegel domain of the second kind in C" has (PEP) [22]. This
result of Sibony was generalized to the Siegel domain of the second kind in a
Banach space by Thai D. D. [25].

b) Every hyperbolic compact Riemann surface has (PEP) (see [10] and [25]).

c) Every compact manifold whose universal covering is a polynomially
convex bounded domain of C”, also has (PEP) (see [23] and [25]).

The second aim of this paper is to show the new class of complex spaces
which also have (PEP). These are the class of pseudoconvex complex spaces
having the weak 1-EP.

The last aim of this paper is to generalize the theorem of Alexander [1, Thm
6.2.] to complex spaces.

Here then is a brief outline of the content of this paper.

In §2 we review some basic properties of Geometric Function Theory needed
for our purpose.

In §3 we are going to prove the following

THEOREM 1. Let X be a pseudoconvex complex space having A*-EP. Let
A be any analytic hypersurface of a complex manifold M.

Let {fj: M\A — X} be a sequence of holomorphic mappings which con-
verges uniformly on compact subsets of M\A to a holomorphic mapping f : M\A —
X. Then there are unique holomorphzc extensions f;: M — X and f : M — X of
Ji and [ over M, and {f} “, converges uniformly on compact subsets of M to f.
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THEOREM 2. Let X be a complex subspace of a hyperbolic complex space Y
such that X has A*-EP for Y. Let A be any analytic hypersurface of a complex
manifold M.

Let {f;: M\AHX}J . be a sequence of holomorphic mappings which
converges uniformly on compact subsets of M\A to a holomorphic mapping
f:M\A— X. Then there are unique holomorphlc extensions f;: M — Y and
f:M—Y of f; and [ over M, and {f} ~, converges uniformly on compact
subsets of M to f.

THEOREM 3. Let X be a weakly disc-convex complex space. Let M be a
complex manifold of dimension m, and let A be a subset which is nowhere dense
in a complex subspace B < M of dimension < m— 1. Then every holomorphic
mapping [ : M\A — X extends to a holomorphic mapping F: M — X.

In §4 we are going to prove the following

THEOREM 4. Let X be a pseudoconvex complex space having the weak 1-EP.
Then X has (PEP).

In §5 we are going to prove the following

THEOREM 5. Let M be a complex space of Stein type and # < Hol(B", M).
If the restriction of & to each complex line through the origin is a normal family,
then F is a normal family.

2. Basic notions and auxiliary results

2.1. In this article, we shall make use of properties of complex spaces as
in Gunning-Rossi [8].

2.2. We denote the Kobayashi pseudodistance on a complex space X by dy.
X is called to be hyperbolic if dy is a distance. For details concerning Hyper-
bolic complex analysis we refer the readers to the books of S. Kobayashi [14] and
S. Lang [16].

2.3. A complex space is called to be taut if whenever Y is a complex space
and f;: Y — X is a sequence of holomorphic mappings, then either there exists
a subsequence which is compactly divergent or a subsequence which converges
uniformly on compact subsets to a holomorphic mapping f : ¥ — X. It suffices
that this condition should hold when Y = A [3], where A is the unit disc in C.

2.4. A meromorphic map f from complex space X into a complex space
Y is defined by its graph Iy, which is an analytic subset of the product X x Y,
satisfying the following conditions

(i) The graph Iy is a locally irreducible analytic subset of X x ¥

(if) The restriction 7|, : Iy — X of the natural projection 7: X' x ¥ — X to
I'y is proper, surjective and generically one to one.

Kodama A. [15] showed that every meromorphic mapping from a nonsin-
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gular complex manifold X into a hyperbolic complex space Y is holomorphic
(also see [14, Thm 6.3.19, p. 288]).

2.5. Let X be a complex space. A plurisubharmonic function on X is a
function ¢ : X — [—o0, o0) having the following property. For every x € X there
exist an open neighbourhood U with a biholomorphic map 4#: U — V onto a
closed complex subspace V' of some domain G = C™ and a plurisubharmonic
function ¢ : G — [—o0, o) such that ¢|, = @oh (see Peternell [18, p. 225]).

Some remarks should be made at this point. First, the definition of pluri-
subharmonicity does not depend on the choice of local charts. Second, Fornaess
and Narasimhan proved [6] that the upper semi-continuous function ¢ : X —
[-00,00) on a complex space X is plurisubharmonic iff g of is either subhar-
monic or —oo for all holomorphic maps f : A — X.

Denote PSH(X) the set of all plurisubharmonic functions on X.

2.6. Let X be a complex space and K be a compact subset of X. The plu-
risubharmonically convex hull of K (in X) is the set Kpgyy) = {xeX:ulx) <
sup u(K) for all ue PSH(X)}.

The complex space X is said to be pseudoconvex if for each compact subset
K of X, K;SH(X) so is compact in X.

2.7. Let M be a complex manifold and S ¢ M a subset. We say that S is
pluripolar if for any xo € S there are an open neighbourhood U of xp in M and
a plurisubharmonic function ¢ : U — [—o0, 00) such that SNU < {9 = —0}. If
dim M =1, then S is polar.

2.8. Let X be a complex space. We say that X has the Hartogs extension
property (shortly X has (HEP)) if every holomorphic mapping, from a Riemann
domain D over a Stein manifold into X, can be extended holomorphically to D,
the envelope of holomorphy of D.

Let Hy(r) = {(z1,22) € A*||z1| <7 or |z3] > 1 —7r} (0 <r< 1) denote the 2-
dimensional Hartogs domain.

It is well-known ([20] or [9]) that X has (HEP) iff every holomorphic map-
ping f : Hy(r) — X extends holomorphically over A%

The class of complex spaces having (HEP) is large. This contains taut com-
plex spaces [7], complex Lie group [2], complete hermitial complex manifolds with
non-positive holomorphic sectional curvature [20]. In particular, Ivashkovich [9]
showed that a holomorphically convex Kahler manifold has (HEP) iff it con-
tains no rational curves. This was generalized to holomorphically convex Kahler
spaces by Thai D. D. [24].

29. Let X be a complex space. We say that X has the n-extension
property through closed pluripolar sets (shortly X has n-EP) if the restriction
R:H(Z,X)— H(Z\S,X) is a homeomorphism for every closed pluripolar set S
in any complex manifold Z of dimension n.
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It is easy to see that X has (PEP) if and only if X has n-EP for each n > 1.

2.10. For every positive number r, put A, ={ze C:|z| <r}, A =A.

3. Convergence-extension theorems for analytic subsets

First we give the following

3.1. Definition. Modifying the definition of the disc-convexity (see [20]
or [14]), a complex space X is called to be weakly disc-convex if every sequence
{fu} = H(A, X) converges in H(A, X) whenever the sequence {f,|,} = H(A", X)
converges in H(A",X). Here, denote H(X,Y) the space of holomorphic
mappings from a complex space X into a complex space Y equipped with the
compact-open topology and A* = A\{0}.

The theorems of Montel and Kiernan (see [19]) follow the following impli-
cations
complete hyperbolic = taut = weakly disc-convex.

The converse assertions are not true in general (see [19]).
For details concerning the (weak) disc-convexity we refer the readers to [26].

3.2. Definition. Let X be a complex subspace of a complex space Y.
We say that X has the A*-EP for Y if every holomorphic mapping f from A* into
X extends to a holomorphic mapping F from A into Y. If X has the A*-EP for
itself then X is said to have the A*-EP (shortly X has A*-EP).

Example. i) By a theorem of Kobayashi [14, Thm 6.3.7, p. 284], if X is re-
latively compact and hyperbolically imbedded into Y then X has the A*-EP for Y.

ii) It is easy to see from the Riemann extension theorem that if D is a
bounded domain in C" and Q is an open neighbourhood of D in C” then D has
the A*-EP for Q.

For details concerning the A*-EP we refer the readers to [24], [27] and [28].

3.3. Proof of Theorem 1.

(i) First we prove that X is weakly disc-convex. Indeed, let {f;} = H(A, X)
be such that the sequence {fi|,-} converges, uniformly on compact subsets, to a
mapping f € H(A",X). Let {f;,} be any subsequence of the sequence {f;}.

Put K = szlj}(/.(an), where 0 < s < 1.

By the hypothesis and by the maximum principle, it follows that (K );\,SH( x) 18
compact and szl Ji;(As) = (K)psp(x)- Since X has A"-EP, X contains no com-
plex lines (see [24]). Therefore, by the theorem of Brody [4] and Urata [29] and
Zaidenberg [30], there exists a hyperbolic neighbourhood W of (I?)?,SH(X) in X.
This implies that the family {fi |, } is equicontinuous.

On the other hand, since {f; (1)} is relatively compact for each A€ A,
by the Ascoli theorem the family {f; :j > 1} is relatively compact in H(A, X).
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Thus there exists a subsequence {/fi,} of {f,} which converges, uniformly on
compact subsets, to the mapping F in H (A, X ). The equality F|,. = f deter-
mines F uniquely, hence independently of the choices of subsequences {f;} of
the sequence {f;}. It follows that the sequence {f;} converges, uniformly on
compact sets, to the mapping F in H(A,X).

(i) We now prove that every holomorphic mapping f : M\A4 — X extends
holomorphically over M. First we note that we may assume that 4 is non-
singular; i.e., we extend f to M\S(4) then to M\S(S(4)) and so on. Here
S(Z) denote the singular locus of Z.

By localizing the mapping f, we may assume that M = A" = A”"! x A and
A=A""1x {0}

For each z’ € A", consider the holomorphic mapping f. : A* — X given
by f.(z) = f(z',z) for each ze A*. By the hypothesrs there exists a holo-
morphlc extension f-/.A—>X of f. for each z' €A™', Define the map-
ping f: A" 'xA—X by f(z/,z) = f..(z) for all (z/,z)e A" ' x A. It suf-
fices to prove that f is continuous at (z,0) € A" x A.

Indeed, assume that {(z},zx)} € A" ' x A such that {(z},zx)} — (z§,0).

Put o, = f,, for each k=1 and g9 =f,. Then the sequence {ok|a+}
converges umformly to the mapping {op|,} in' H (A", X). Since X is weakly
disc-convex, the sequence {ox} converges uniformly to the mapping ¢y in

H(AX). Therefore {ok(zk) = f(z4,2k)} — 00(0) = f(2,0) and hence, f is
continuous at (26,0).

(iti) Let {fx} €« H(M\A4,X) be such that {f;} — fo in H(M\4,X).

We will show that {f,} —f, in H(M,X).

As above, we may assume that 4 is nonsingular and by localizing the
mappings, we may assume that M = A" = A" x A and 4 = A" x {0}. Let
{(zh,z1)} A" x A be any sequence converging to (z(),zp) €A™ P A, We
now prove the sequence {f;(z},zx)} converges to fo(zf,zo0)-

Indeed, for each k>0 consider the holomorphic mapping ¢, : A — X
given by ¢k(z):fk(z,’(,z) for all ze A. Then {@ s} — @olpr In H(A™, X).
Since X is weakly disc-convex, we have {¢,} — ¢, in H(A,X). Hence {¢;(zx) =
Ji(e 2 = 9o(20) = folz5,20).  Q.E.D.

3.4. Remark. In [27] we conjectured that any complex manifold, or more
generally any complex space, having A*-EP must be pseudoconvex; but as far as
we know, this is an interesting open problem.

3.5. Proof of Theorem 2.

a) First we show that every holomorphic mapping f : M\A — X extends to
a holomorphic mapping F: M — Y.

We consider two cases.

Case 1. The singularities of 4 are normal crossings.
By assumption, we may assume that M = A" x A’ and M\A4 = (A*)" x A’
The proof is by induction on n. We do it in three steps.
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(i) If M\ A4 = A" then the assertion is deduced immediately from Definition
2.12.

(i) Assume that we can extend f when M\A4 = (A )" for some n. We
show that this implies we can extend f if M\A = (A*)" x A for any .

Let f: A" x Al - X be holomorphic. For each u let fu( )= f(t,u). Then
by assumption we can extend f, to a holomorphic mapping f A" — Y for
each u. Define the mapping F : A" x A' — Y by F(t,u) =f,(). By the Rie-
mann extension theorem, it sufficies to prove that the mapping F is continuous.

Indeed, assume that a sequence {(r*,u*)} = A" x A’ converges to a point
(0,u"). Take some sequence {7*} € A" such that lim, .. da (¢, %) =0.

We have

dY(F(tk,uk),F(O,uO))
< dy(F(t*,u"), F(f*,u")) + dy (F (%, u*), F(i*,u)) + dy (F(*,u®), F(0,u°))

= dy (fur ("), o (7)) + dy (f (7, u®), f(T,6°)) + dy (£,0(8%), £,0(0))
< dy (5, ) 4+ dy (u*, u®) + dpr (i%,0)  for all k> 1.

Thus limy ., dy(F(f5,u%), F(0,u®)) =0, ie., {F(t*,u*)} — F(0,u°) as
k — 4o0. This concludes the second step of the proof.

(ili) Assume that f can be extended if M\A =A™ x Al for any /. We
then show that f can be extended if M\A = A",

Indeed, by induction, f extends to a holomorphic mdppmg fi: A”“\{(
0,...,0)} - Y. The holomorphic mapping ¢:A" — X, glven by g¢g(z) =
f(z,...7z) for each ze A", extends to a holomorphic mapping §: A — Y.
Define the mapping F : Ay by F(0,0,...,0) = g(0) and Flym1\ (0.0, 0y =
fi. As above, it suffices to show that F is contmuous o

Assume that a sequence {(tf,25,...,t5 )} = A" converges to (0,0,...,0).
Without loss of generality we may assume that tl #0 for all k> 1.

Then

dY(F(t{(até(v'uv n+l) (0 0,. O))

gdy(F(tl,tz,...,z,’;ﬂ),F(tl,t{C,...,z{‘))+dy(F(zl,t1,.. ), F(0,0,...,0))
= dy(fi(tf 65 ) i85 05 1)) + dy (G(17), (0))
< dpesenr (0515 th0), (511 - 1)) + dy (§(2), 6(0))
< max dA( A5 4 da(2F,0)
=241
< /n;iil(dA(z ,0) + da(tK,0)) + da(2f,0)

< ( max dA(zj‘,O)> +2dp(tF,0)  for all k > 1.
j=2,n+1



186 DO DUC THAI AND PHAM NGOC MAI

Thus every subsequence of the sequence contains some subsequence con-
verging to F(0,0,...,0). Then the sequence {F(sf,1%,...,15 )} converges to
F(0,0,...,0).

CASE 2. A is any closed analytic set of M.

By the Hironaka theorem of singularities, there is (at least locally) a triple
(Z,B,0) such that B is an analytic set with normal crossings of a complex
manifolld Z and 0:Z — M 1is a proper holomorphic mapping onto M with
B=0"(A).

Define g: Z\B— X by g= fo0. By Case 1, g extends to a holomor-
phic mapping G: Z — Y. Then f extends meromorphically to M by defining
F=Go0'. By the theorem of Kodama [15] (see [14, Thm 6.3.19, p. 288]), F is
holomorphic.

b) Assume that {f;} « H(M\A,X) such that {fj} — fe H(M\A,X) in
H(M\A4,X). We will show that {f;} —f in H(M Y).

First we note that we may assume that A4 is nonsingular; i.e., our assertion
holds up to M\S(A4) then to M\S(S(4)) and so on. Here S(Z) denote the
singular locus of Z.

Let zp be an arbitrary point of 4. By localizing our assertion, we may
assume that M = A" and 4=A""'x{0} and z = (0,0). Put ay= f(z).
For a point ye Y and a positive real number r, we set By(y,r)={y' €Y :
dy(y,y") <r}. Similarly, for a point ze M and a positive real number r, we
set By(z,r)={z' e M :dy(z,z') <r}.

We first show that for an arbitrary number & > 0 there exists a neighbour-
hood V; of zp in M such that f(Vp) = By(ao,e) and f;(Vo) = By(ao,¢) for all
J = Jo-

Indeed, take a point z; € By(z9,6/3)\A. Then f(z) € By(ao,&/3). There
is an integer jo such that f;(z1) € By(ao,2¢/3) for all j>jo. Then we have
f/(BM(zl,s/3)) [ By(a(), ) Put V() BM 20,8/3) ﬂBM(Zl,8/3). Then Zp € V()
and f(Vy) < By(ao,e) and f;(Vo) = By(ao,¢) for all j > jp.

Take ¢ > 0 so small that By(ao, ¢) is contained in a holomorphic local coor-
dinate neighbourhood of ag in Y. Choose § > 0 small enough such that A < 1.
Since { f,\( oAs)" }/21 converges uniformly to f] (aa,)"» the maximum principle 1mpl1es
the uniform convergence of {f}| Am} 4 w1th limit f] AT Q.E.D.

3.6. Proof of Theorem 3.

First we also note that we may assume B is non-singular.

Take an arbitrary point « € A. By localizing the mapping f, we may assume
that M = A" = A" ' x A, 4= A’ x {0}, where A’ is a nowhere dense subset of
A" and a = (15,0) € A' x {0}. For every point z e A" denote z = (t,u) with
re A" and ueA.

Assume that a sequence {a; = (#,u;)} = (A" '\4') x A converges to a.
Consider the holomorphic mappings fj: A — X, uw fj(u) = f(tj,u) for each
j=>1,and f;, : A" = X, u fy (u) = f(t0,u). It is easy to see that {fj|,-} — Ju
in H(A",X). Since X is weakly disc-convex, the sequence {f;} converges uni-



CONVERGENCE AND EXTENSION THEOREMS 187

formly to the holomorphic mapping g € H(A, X), where g|,- = f;,- Put g(0) = p.
Then {f;(u;)} — ¢(0), ie., {f(a;)} — p. Thus, the sequence {f(a;)} converges
to p for any sequence {a;} = (A" '\4') x A converging to a (*). Choose a
relatively compact neighbourhood ¥, of p in X such that V), is contained in
a holomorphic local coordinate neighbourhood of p in Y. By (*) there
exists an open neighbourhood Ty x Uy of a = (%,0) in A" ' x A such that
ST\ X Uy) < V).

For every point u € Uy\{0}, consider the holomorphic mapping f; : A" ! —
X, tfilt) = f(t.u)

Since  f,(To\A') = V,, it follows that f,(To\A’') = fu(To) = V,. Thus
f(Ty x (Up\{0})) = V},. By the Riemann extension theorem, the mapping f
extends holomorphically to Ty x Uj. Q.E.D.

Theorem 3 contains the following results of Kobayashi [14] and Noguchi-
Ochiai [17], which were proved by different methods.

3.7. Corollary ([14, Thm 6.2.3, p. 281]).

Let X be a complete hyperbolic space. Let M be a complex manifold of
dimension m, and let A be a subset which is nowhere dense in a complex subspace
B c M of dimension <m —1. Then every holomorphic mapping f: M\A — X
extends to a holomorphic mapping F: M — X.

3.8. Corollary ([17, Thm 1.6.28, p. 35]).

Let X be a complete hyperbolic space, M a complex manifold and A = M an
analytic subset of codimension >2. Then all holomorphic mappings from M\A
into X extend holomorphically over the whole M. Furthermore, lf{/’;}fil — fin
H(M\A,X), then {fj};i] —f in H(M,X), where f] and f stand for the ex-
tended holomorphic mappings from M into X.

3.9. Remark. In [26] we showed a bounded pseudoconvex domain D in
C? such that D is not taut. Thus Theorem 3 is strictly stronger than the above-
mentioned results of Kobayashi and Noguchi-Ochiai.

4. Convergence-extension theorems for closed pluripolar sets

First we give the following

4.1. Definition. Let X be a complex space. We say that X has the weak
1-EP if every holomorphic mapping f : A\S — X extends holomorphically over
A, where S is any closed polar subset of A.

Example. Every bounded hyperconvex domain in C" has the weak 1-EP.
Indeed, let Q be a bounded hyperconvex domain in C" and f:A\S — Q
any holomorphic mapping, where S is any closed polar subset of A. Put f =
(fi,---, fu) and fj = u; + iv;, where u;, and v; are bounded harmonic on A\S.
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By the theorem on removable singularities of harmonic functions, u; and v;
extend to the harmonic functions # and #; on A. Since they are of class 4 and
satisfy the Cauchy-Riemann equations on a dense subset of A, they satisfy these
equations at each point of A. Then f; =u; +it; € H(A). Thus the mapping
f=U1- . 1) e HA Q). Let p be a plurisubharmonic exhaustion function of
Q. Put h=pof on A\S. Then / is subharmonic and negative on A\S.
Therefore s extends to a subharmonic function 4 over A and 4 <0 over A.
Suppose that there exists zg € S such that f(zp) € Q. Then h(zp) =0. The
maximum principle implies # =0 on A. This is a contradiction.

In order to prove Theorem 4 we need the following

42. Lemma. Let A be a subset of A} such that H>>*2/"(4) = 0.
Then there exists a new orthogonal coordinate system of C" with the same origin
such that in this new orthogonal coordinate system the set S":={weA;:
ATV x {wy € ANALY is empty.

Proof. Denote by {ej,...,e,} the canonical base of C".
For every a = (a1,az,...,a,-1,b) € C" we put

Hyp={(z1,22,...,20) 1 Zn =121 + -+ + ap_12,—1 + b}
H,p={z:zeH,; and |z] <1 for each i=1,....n—1}

Put B={(a,b): H,, = A5, NA}.
Consider two cases.

Case 1. H?*(B)>0

Suppose that there exist C-linear maps g;: C" — C, i =1,...,n such that
{o;} is linearly independent and H?"(c;(B)) =0, i=1,...,n (1). Choose a
new base {&,...,é,} of C" such that g, is a canonical projection onto i”-axis.
Consider the C-isomorphism ¢: C" — C" given by ¢(e;) =¢;, i=1,...,n. Put
B=¢(B). By (1), we have H*([[",0:(B))=0. Since Bc [[, 0:(B), this
follows that H?*(B) =0. Hence H?*(B)=0. This is a contradiction. Thus
H?*"(g(B)) >0 for each generic C-linear mapping o: C" — C (2). Remark
that if o satisfies (2) then co also satisfies (2) for all ce C*.

This implies that H*"(a,(B)) > 0 for almost « = (a1, ..., %, 1) € C"', where
oy(a,b) =ojay + -+ oy_1a,—1 + b =a.c+b.

For every ae C"!, consider the line d, = {(otyzn) 1z, € C}. Tt is easy
to see that d,NA>{(xz,):z,€0,(B)}. This implies that H*"(d,NA) >
H"({(0,2,) : zp € 0,(B)} = H*"(5,(B)) > 0 for almost o = (ay,...,0%, 1) € C",
and hence, H>>*2/"(4) > 0 (|5, Lemma A.6.3, p. 350]). This is a contradiction.

Cast 2. H?*(B)=0
By [5, Lemma A.6.3, p. 350], for every k > 1 there exists @ € Af/_kl such that
{ar} x C)NB=0 (3).
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For every k>1 consider a hyperplane Hj = {z, = ar.z'} = (C", {e;}).

Choose a new orthogonal coordinate system {elk), . 7e,(/()} of C" such that
{ e , R 1} c Hy
o limy_ o e](k) =e¢; for each 1 <j <n, where limitations are considered in

(C" {e}).

In (C", {e },1) we consider the polydisc Aj(k). It is easy to see that
in the set-theoretic side A” 5(k) = A, for k large enough

Consider the 1somorphlsm ¢ (C" {ej}) — (C", {e }) given by z = (zj,
Zoy ey Zpn) (zﬁk),.. zﬁlk)), where z = (zgk),.. zﬁlk)) in (C", {e<k }). Then

© @y 1 1sometr1c

< g(Hy) = (=) = 0}
« ¢, = Ide» if omiting algebralc structures in C”

Put Sli/ = {bk € Az(k) Az( )n7 X {bk} c A}

Suppose that S}/ # 0 for each k > 1. Then there is by € A>(k) such that
Ty, := Ay (k) x {by} = A. Without loss of generality we may assume that
{bk} — bo e C.

Consider the canonical projection p: (C",{¢j}; ;) — (C”*l,{ej};zll).

Then {p(Ty)} — Ay ' oA} in (C" {e}). Without loss of generality
we may assume that p(Tbk) = A” ' for all k>1 (4).

In (C", {e }j 1), we cons1der the hyperplane K, = {z,,k by =0} o Tp,.
Then in (C”", {e,} |) the set Kp, is given by {z, = @z’ + by}

Indeed since Hj con51ded 1n (cn, {ejk }i_i) is given by the equation
{zn =0}, it implies that ¢ ' ({z,, =0}) = Hy. Thus we have

¢k (21 v~~->Z£,]i)1>bk):¢kl(z(1k)7---’ ;(1 ik )+¢k (0,...,0,b)
= (21, ey Zn1, Q.2 ) + (u(k)/,u(k))
= (2 ac.2') + (u(k)',u(k)) = (' + u(k)’, ac.z" + u(k))
= (2 +u(k)', @ (2" + u(k)") + u(k) — ar.u(k)’)
= (2" +ulk)', ax.(" +u(k)') + by),
where by = u(k) — a.u(k)"
Hence in (C",{¢j}j_;) ¢: ' (Kp,) is defined by {z, = @.z' + by}. This fol-
lows that Tp < H, ; in (C",{¢};_;). From (4) we get T) > {zeH

pz) e AT
In (C" {e¢;}}_;) consider the set

by

={z:zeH, j; and |z| <1 for each 1 <j<n—1}
{z:zeH, ; and p(z) e A" ety c4

Hence I;l 5 <A R

On the other hand, we have T, < Aj(k) = A}, ie., H, ; <Aj,. Thus

Ha 5, ©A35,NA4, and hence, (dr,br) € B. This implies that ({@,} x C)NB # 0.
Thls is a contradiction. Q.E.D.

Gy, by,
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4.3. Lemma. Let X be a complex space. If X has 1-EP, then X has n-EP
for every n> 1.

Proof. This lemma was proved in [25] with some gaps. We repeat the
details here for correction and also for the reader’s convenience.

(i) First observe that X is weakly disc-convex. By a result of Shiffman [20],
X has (HEP).

(i) Given n > 2. Since the problem is local, without lost of generality we
may assume that Z = A". By the theorem of Josefson (see [13, p. 170]), there
exists u € PSH(A") such that S = S :=u"'(—0).

We put _

S'={zeA"': {z} xAc S} and

S"={weA: A" x {w} =S}

Then S’ and S” are pluripolar in A"~! and A respectively. By Lemma 4.2,
without loss of generality we may assume that S” = (.

We put S" = {ze A" ' : (z,w)e S} foreach we Aand S. = {weA: (z,w) e
S} for each ze A" !,

Then S" is closed pluripolar in A"~! for each w € A and S. is closed polar in
A for z ¢ S'.

(ili) Now assume that f is a holomorphic mapping from (A" x A)\S
into X.

For each weA, consider the holomorphic mapping f": A" \§" — X
given by fV(z) = f(z,w) for all ze A" '\S”. By the inductive hypothesis,
" is extended to the mapping /" € H(A""', X). Similarly, for each z ¢ S, the
holomorphic mapping f. : A\S. — X given by f:(w) = f(z,w) for all we A\S., is
extended to the mapping f, € H(A,X). Thus we can define the mappings

fi: (A"N\S") x A — X by fi(z,w) =f.(w) and
fr A"V XA — X by fo(z,w) =f"(2).

We now prove that f; is continuous on (A"'\S’) x A.

Indeed, assume that {(zx,wx)} < (A"\S") x A, {(zx, W)} — (20, W0) €
(A"\S") x A.

Put P=(J,S-)US,. Then P is closed polar in A. Since the
sequence {f, } converges uniformly to f, in H(A\P,X), by the inductive
hypothesis, we see that the sequence {f, } converges uniformly to f, in H(A,X).
Hence f. (wi) = fi(zk, wr) — fo(wo) = fi(z0,w0). Thus f; is continuous on
(A"1\S") x A.

Similarly, /> is continuous on A"' x A.

Since (A" x A)\S is dense in (A" '\S') x A and f; = f> on (A"' x A)\S,
we have fi = f» on (A"'\S') x A. ~

This implies that the mapping /> satisfies the following: (/)" =f"¢€
H(A"' X) for all weA and (f2). =f. € H(A,X) for all ze A" '\S, where
()" and (f>). are given by (/)" (z) = (f2).(w) = fa(z,w). By a theorem
of Shiffman [21], f; is holomorphic.
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(iv) Now assume that the sequence {fi} < H((A" ! x ANS, X)  con-

verges uniformly to f e H((A"™' x A)\S,X). We must prove that {f,} — f in

H(A" ' x A, X), ie, we must prove that if {(zx,ws)} = A" x A such that
{(zrswi)} — (zo,wo) e A" A then {f(zx, wx)} — £ (20, o).

As before, we consider the following holomorphic mappings
flwe AIhsme X, 2 = fi(z,we) and - f70 AT NS — X,z f(z,w)
and fk”’ A" S X, z fi(z,w) and f”’0 A S X, z»—>f(z wo)

Put P = (Uk S”A) US"™. Then P is a closed plurlpolar set in A""!

Since {f kwcl — fwin H(A" '\ P, X), by the inductive hypothesis, we have
{fEm} — foin H(A™ !, X). )

Thus {f*"(z) = fk(zk,wk)} — f"(z0) = £ (20, wo). Q.E.D.

4.4. Proof of Theorem 4.

By Lemma 4.3, it suffices to show that X has 1-EP, i.e., the restriction
R:H(A X)— H(A\S,X) is homeomorphic for every closed polar set S in A.

By the hypothesis, X has A"-EP and hence, X contains no complex lines
[24]. Then every compact subset of X has a hyperbolic neighbourhood in X (see
4], [29], [30]).

Let {fi} = H(A\S,X) be such that {fj} — f e H(A\S,X) in H(A\S,X).
By the hypothesis, there are unique holomorphic extensions f;: A — X of f; and
f:A— X of f over A. We will show that {f]} —f in H(A X).

Given zp € S. Since S is closed polar in A, there exists a neighbourhood U
of zo in A such that dUNS =0. Then the set K = U1>1 f (0U) is relatively
compact in X. By the hypothesis and by the maximum pr1n01ple it follows that
(K)psp(x) is compact and U L S(U) = (K)psu(x)- Take a hyperbolic neigh-
bourhood W of (K)j psH(x) 1D X. Then the family {f;|,,} is equicontinuous. On
the other hand, since {f;(4)} is relatively compact for each /€ U, by the Ascoli
theorem, the family { f,} is relatively compact in H(U,X). This implies that
every subsequence {f;};2; of the sequence { f } ~, contains a subsequence
{ Lk }2, which converges, uniformly on compact subsets to the mapping F in

(U X). The equality F|,g=/ implies F = f on U. This follows that
{fly} =71y in H(U,X). Thus {f} -7 in H(A,X). QED.

5. Generalization of Alexander theorem to complex spaces

First of all we give the following

5.1. Definition. Let M be a complex space.

i) An open subset 4 of M is said to be of type (S) if there exists a biho-
lomorphic mapping from A onto an analytic subset of C™.

ii) The space M is said to be Stein-type if for each p e M there exist a
neighbourhood W, of p and r, > 0 and a neighbourhood S, of p being of type
(S) such that, for each f e H(A, M), if f(0) e W, then f(A,) = S,.
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The class of complex spaces of Stein-type is rather large. It is easy to see
that one contains Stein complex spaces and hyperbolic complex spaces.

We now give some notations

Put

z=(z',2,) e C"' x C for each ze C"
B'={zeC":|z||<r}, B{=B"
Bla,r)={ze C": ||z—a| <r} for each ac C",r>0
P(a,R) ={z=(z1,...,2,) € C" 1 |zj — aj| < R; for each 1 <j <n}

for each R=(Ry,...,R,) e R and a = (ay,...,a,) e C"
Reasoning as in [13, p. 60], we have the following

52. Lemma. Let f: P(z,R) — C be a mapping satisfying the following:

There exists o < r, < R, such that f is holomorphic in P(z',R") X P(z,,r,)
and f(2',.) is holomorphic in P(z,,R,) for each z’' € P(z',R’).

Then f is holomorphic in P(z, R).

We now prove the following proposition which is a generalization of the
theorem of Forelli to complex spaces (see [19, p. 49]).

5.3. Proposition. Let M be a complex space of Stein type. Let f: B" —
M be such that the restriction of f to each complex line through the origin is
holomorphic and f is a C*-mapping in an open neighbourhood of the origin.
Then f is holomorphic in B".

Proof. StEP 1. Assume that f is holomorphic in B} _, for some 0 < a < 1
and f(B(z,a)) is included in a subset of type (S) of M for each ze B}_,.

It is easy to see that f(B(z,ry)) is also included in a subset of type (S) of M
for each 0 < h <1, z e B}, where r;, = min(l — h,a).

Put B! = B"\{z, =0}. Consider the holomorphic mapping ¢ : B! — C"
given by o(z1,...,z,) = (z21/2ny .-, Zn-1/2n,zn). Put @(B') =T and ¢, : B! —
T given by ¢,(z) =¢(z) for each zeB" Then ¢, is biholomorphic.
Put g=fop;':T =M and Tru={t=(,z)eT: || <R 0<|z|" <
h/(1+ R*)} for each R>0 and 0 < h < 1.

It is easy to see that {T}, is a sequence of open sets which is increasing
when £ is increasing and 7 = | J{Trs: R>0,0 <h < 1}.

Take R>0, 0 <h <1 and we prove that g is holomorphic in Tg .

Indeed, we have the following assertions

< ¢, (Tr) < B € B

< V0 < e< /(14 R?), 30, =u(e) >0, V(t',z,) € Tr, with h/(1+ R?) —e <
za> < h/(1 4+ R2) : g(P((',2,),03)) is included in a set of type (S).

Indeed, put D, = {(¢',z,) e T : ||| <R, h/(1+ R2) —e < |z,|> < h/(1+ R?)}.
Then D, is compact and D. <= T and ¢;!(D.) < Bj'. On the other hand,
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since D, is a compact subset of the open set T, it implies that there is
"> 0 such that P(D,u) = | J{P((¢',zs), 1) : (',24) e D} ET. This follows that
o1 (P(De,p) € CB” Hence there is 0<h <1 such that ¢;'(P(D.pn)) E
Bj . Thus U{(/)l (z r;,l)) ze B} } > P(D,u), where B.(z,r) = B(z, 1)\
{zn =0}. Bya theorem on the Lebesgue number, there is v > 0 such that, for
each z e P(D.,u), B(z,v)NP(D,, 1) < B,(Z,ry,) for some z = z(z z) e By

Put J;, = min(v/v/n, w).

Consider (#,z,) € Int D.. Then ¢ (P((¢',z,),01)) = B.(Z,rs,) for some
Ze B, and hence, fo o7 (P((1',24),01)) = f(B.(Z,,)) = a subset of type (S).
Since gol’l(TR,l,“) c B{’ ,» it implies that g is holomorphic in T 1.

« If A <1—o then g is holomorphic in Ty

« If 1 —a<h then hy:=sup{h <h: g is holomorphic in T, ;} <h. We
now prove that sy = h. ho h— h '

Suppose that /g <h. Choose €= mm{z(1 T R) TR

}. Put ¢; =

. h h—h

mm{éh,z(l +0R2) T Roz} >0. Take (f/,z,) such that ||//|| <R, |z,)*=
ho d . . .

m — 3 Consider the pOlydlSC P(Z,,mlnj:m (R — |t/‘)) X P(Zn,él). Note

that g is holomorphic in P(t’,minj:m(R— |tj])) x P(z,4,01/2) and, for each
i e P(t, min,_~— (R = [1])), g(?, Zn) is holomorphic in P(zn,él) since f* is holo-
morphic on every complex line passmg through the origin. By Lemma 5.2, we

have ¢ is holomorphic in P(¢',min,_i——= (R —[f])) x P(z4,01) for each (7',z,)
. h 0 . .
with ||{']| < R, |z, :TORZ—EI. Thus g is holomorphic in Ty 415 (1+82)/2-

This is a contradiction. Hence g is holomorphic in T, i.e., g is holomorphic
on 7. Thus g is holomorphic in B/, ie., f is holomorphic in B!. Since
B" = U (B”\{zj =0})UBf_,, it implies that f is holomorphic in B”".

STEP 2 Assume that there exists r; € (0,1) such that f is holomorphic
in B

Take po€dB!'. For the point f(po) e M take Wo= Wy, To = Tr(py)s
So = Sy(p,) as the definition of Stein-type, i.e., for each ¢ € H(A, M), if p(0) € Wy
then (p(Am) = So. n(l —a)

Since  lim,_,;-o =0<ry, there exists ope(0,1) such that

7'1(1 ) —O(Vlz
ﬁ <1 and f(O(()po) e W.
ol — o) (1 =)

Since lim,_,, < ry, there exists B(po,d) < B" such

T gl T 0]

% <ry for each peB(py,0) and  f(09.B(po,0)) =

i — Oo-||p

S (B(owpo, 00)) = Wo.
We now prove that f(B(po,9)) = S. Indeed, take p € B(py,d). Consider

the Mobius map ¥ : A — A given by y(z) = ||||oc0;|7|| . Put y(|lpl) =

that
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Consider the map ¢: A — B" given by ¢(z) = and the composite map

z.p
Il
pi=fopoy ™ :A— M. Then §(0)=f(aop)e W, ¢$(p')=f(p). On the

other hand, since |p’| = M

o) = () e  1—olpl
For each p e B”, put

< rp, it implies that p’ € A,,, and hence,

>’
0p = sup{d : f(B(p,0)) is included in a subset of type (S)}.

Then 6, >0. It is easy to see that [0, —J,|<|po—pi| for all
po, p1 € B, This implies that the function J: B} — R} is continuous. Thus
there is minpeBn o(p) =0, >0. Then f(B(p,d,/2)) is included in a subset
of type (S) for 'each peB.

Choose ¢eR such that try+t.(0,,/2) =1. Consider the biholomorphic
mapping y, : B" — B! ;. 2 given by z — z/t. Then y*I(B") =B, 1 (B(’; /2)
B,

(0 /2) to

Clearly, S o (1 B ) is  holomorphic and foy, (B( P, 2")) =

S,
f(B(%?‘)) is included in a subset of type (S) for all p e B}, . By Step 1, we
have f is holomorphic in B, e

Step 3. By the theorem of Forelli [19, p. 49], there exists ry > 0 such that
S is holomorphic in B. Put r*=sup{re (0,1): f is holomorphic in By}.
Then f is holomorphic in B..

Suppose r* < 1. By Step 2, there is d,» > 0 such that f is holomorphic in
This is a contradiction. Q.E.D.

Bl s
5.4. Proposition. Let R be a positive real number. Assume that a family
{f;i} € H(P(0,R),C) satisfies the following:

There exist 0 <r < R and f e H(P(0,R),C) such that {f;} converges uni-
formly on compact subsets to f in P(0',R) x P(0,,r) and {f( )} converges
uniformly on compact subsets to f(z',.) in P(On,R) for each z eP(O/,R).

Then {f;} converges uniformly on compact subsets to f in P(0,R).

Proof Put g; = f; —f. Then {g;} converges uniformly on compact subsets
to 0 in P(0’,R) x P(0,,r) (1) and {g;(z’,.)} converges uniformly on compact
subsets to 0 in P(On,R) for each z’ eP(O’,R) (2).

Take 0 <rj <r<R; <R.

By (1), it follows that Ve > 0, Jjy(e), Vi > jo(e), Yze P(0',Ry) x P(0,,r1) :
lgi(z)| < e (3). Consider the Hartogs expansion of g;:

From (3) we have |\ (z')] < —, Vj >jo(e), Yk =0, Vz/ € P(0',R) (4).



CONVERGENCE AND EXTENSION THEOREMS 195

Take r<R2<R1. We now prove that 3Ing=no(Ry), Vk,j = no,
Vz' e P(0',Ry) : |Ck (z").R¥| <1 (5).

Indeed, suppose this does not hold. Then there exist sequences {k;},{/i},
{z} € P(0',Ry) such that |c)(z)).R¥|>1 for all i>1 (6). Put v;(z')=

1 3 .
E.log|c,(q’)(z’)|, vz' € P(0’,R)). From (4) we get v; < —logr, in P(0',R;) for
i

all i>jo(e) (7). Fix z' e P(0',R;). By (2), there is jj :jl(e z') such that

lgi(z',.)] < e in P(0,,R;) for each j>j. Hence |c§ (N < — R for all j > jj,
1

1 1
k >0. Thus, for each i>jj, v;(z') < E.log Rif‘ Okg, ¢
and hence, lim sup;_, v;(z) < —log R; < —log R, (8). From (7), (8) and by
Hartogs Lemma, it follows that Jng, Vi > ng, Vz e P(0',R;) : v;(z') < —log Ry.

—log R < —log Ry,

Hence v;(z]) < —log R, for all i>ny, ie., log|c<” (z/)] < —log R, for all

k;
i > ng. This follows that |c(” (z ;)R§| < 1forall i >ng. This contradicts to (6).
. R\’
Take r < R3 < R;. From (5) we get |c§{j)(z’).R§| < (R—3) , Vk,j = no,
2
Vz' € P(0',Ry) (9). Let ¢ be any positive number. Take j» = j2(Ra2, R3,¢€0)

R J
large enough such that 377, <R3> <§ (10). Choose j* = max(ng(ep), j2). Put
2

€
61:é>0

20 o(Rs /1))
From (4) and by the above-mentioned argument, there exists jyo = jo(e1)
such that |\ (z)] < ;—,L Yj > jo, Vk =0, ¥z/ € P(0',R) (11). By (10) and (11),
1
we have, for all j > j,, ze P(0,R3),
J

lg;(2)] < | 2)|-RS + Z |Ck )| RS

k=0

Hence |g;(z)| < ey Vj = jo, Vz € P(0, R3). Q.E.D.

5.5. Remark. It is easy to see that Proposition 5.4 holds for general
polydiscs in C”. Namely, we have the following
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Given R= (Ry,...,R,) e R". Assume that a family {f;} = H(P(z,R),C)
satisfies the following:

There exist 0 <r, <R, and f e H(P(z,R),C) such that {f;} converges
uniformly on compact subsets to f in P(z',R") X P(z,,1,) and {fj(z',.)} converges
uniformly on compact subsets to f(z',.) in P(z,,R,) for each z' € P(z',R’).

Then {f;} converges uniformly on compact subsets to f in P(z,R).

5.6. Proof of Theorem 5.

Take any sequence { f]}/ | S T

Step 1. Without loss of generality we may assume that {f;j(0)} — pe M.
Choose W,,r,,S, as in the definition of Stein-type. Without loss of generality
we may assume that f;(0) € W, for all j>1. Then fj(B}) =S, for all j>1.
By Alexander theorem [1, Thm 6.2.], it follows that the sequence {f;} contains
a subsequence which converges uniformly to fe H (B” M) in H (B, M ).
Without loss of generahty we may assume that the sequence {fi} converges
uniformly to f'e H(B;, M) in H(B}, M).

For each zy € B" cons1der the holomorphlc mapping ¢, : A — B" given by

20

—

HmW
hand, we have {fjog. } converges uniformly to F, € H(A,M). This follows
that F.0|A =fo ((p,olA ) and hence, F,, = fog¢,. Define the holomorphic
mapping F:B"— M, z+— F.(||z||) Then Fgy = f and F is holomorphic on
each complex line through the origin. By Proposition 5.3, it implies that F is
holomorphic in B".

STeP 2. Assume that {f;} converges uniformly on compact subsets to F in
By_, for some 0 <o < 1. Assume that, for each z e B]_,, there exist j(z) > 1

1—a>

and a subset S. of type (S) such that F(B(z,2)) < S. and fj(B(z,2)) — S. for each
J=j(z).

Then {f;} converges uniformly on compact subsets to F on every complex
line passing through the origin (¥).

From (*) and by the same argument as in Step 1 of the proof of Proposition
5.3, it implies that the sequence {f;j} converges uniformly to F in B”.

We now prove the assertion (*). Indeed, suppose that there is a complex
line 7 passing through the origin such that {f;|/} does not converge uniformly
on compact subsets to F|/. Then there exist {z;} < /, zg € /, {z;} — zo such that
the sequence {fj(z;)} does not converge to F(zp). Hence there are a neigh-
bourhood Uy of F(zo) and an infinite subset Ny of N such that fj(z;) ¢ Up for
all jeNy. Take an infinite subset Ny of Ny such that the sequence {fj|/};.y,
converges uniformly on compact subsets to G, where G is a holomorphic map-
ping defined on /. Then G|mBn =F| /By > ie., G=F|/. This follows that
the sequence {fj|/};.y, converges unlformly on compact subsets to F|/, i.e.,
{/i(z))};cn, converges to F(zp). This is impossible.

STEP 3. Assume that the sequence {f;} converges uniformly to F in B
for some 0 <r; <1. We now prove that there exist r{ € (r;,1) such that {f;}
converges uniformly to F in B,”1

Then f;o ((P:O\A,.p) converges uniformly to f o (‘ﬂZO\A,,,)' On the other
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Indeed, take poedBy. For the point F(py) e M take Wy= Wy,
Yo = I'E(py)> S0 = Sk(p,) as the definition of Stein-type. Repeating as in Step 2
of the proof of Proposition 5.3, it follows that there are J,, > 0 and j(py) >1
such that f;j(B(po,0p,)) = So for all j > j(po) and F(B(po,0p,)) < So.

For each p € B} put d, = sup{d > 0: 3 a subset S, of type (S), 3j(0) > 1 such
that F(B(p,0)) = S, and f;(B(p,0)) = S, for all j >j(6)}. Then ¢ is continuous
on B}, and hence, there exists min _z, 6(p) =0, > 0. Thus Vze B!, 3 a subset
S. of type (S), j(z) > 1 such that F(B(z,5,/2)) = S. and f;(B(z,5,/2)) = S. for
all j>j(z).

Reasoning again as in Step 2 of the proof of Proposition 5.3, it follows that
{/j} converges uniformly to Fin By .

StEP 4. Put :

r* =sup{r e (0,1): the sequence {f;} converges uniformly to F in B]}.

Then the sequence {f;} converges uniformly to F in B..
If »* <1 then, by Step 3, there is ro € (r*,1) such that the sequence {f;}
converges uniformly to F in B}. This is a contradiction. Q.E.D.
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