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ON THE REGULAR LEAF SPACE OF THE CAULIFLOWER

Tomoki Kawahira*

Abstract

We construct a pinching semiconjugacy from a quadratic polynomial fcðzÞ ¼ z2 þ c

with c A ð0; 1=4Þ to f1=4ðzÞ ¼ z2 þ 1=4 on the sphere. By lifting this semiconjugacy to

their natural extensions, we investigate the structure of the regular leaf space of f1=4 in

detail.

1. Introduction

As an analogy to hyperbolic 3-orbifolds associated with Kleinian groups,
Lyubich and Minsky [1] introduced hyperbolic orbifold 3-laminations associated
with rational maps. For a given rational map of degree b2, considering its
natural extension and regular leaf space is the first step to the construction of
such a hyperbolic orbifold 3-lamination.

However, the global structures of the regular leaf spaces of rational maps are
not precisely known except only a few examples. Here is one of such examples.
For fcðzÞ ¼ z2 þ c with c in the main cardioid of the Mandelbrot set, all regular
leaf spaces of fc are topologically the same as that of f0ðzÞ ¼ z2, which is 2-
dimensional extension of 2-adic solenoid [2, Example 2] [1, §11].

Now we may expect the simplest deformation of these regular leaf spaces
as c tends to 1=4 along the real axis. Then the dynamics inside the Julia sets
degenerate from ‘‘hyperbolic’’ to ‘‘parabolic’’, though the dynamics on and out-
side the Julia sets are still topologically the same as f0. In this paper, we
describe the structure of the regular leaf space of f1=4ðzÞ ¼ z2 þ 1=4, whose Julia
set is called the cauliflower, by using a pinching semiconjugacy from fc with
c A ð0; 1=4Þ to f1=4. We will see that the transversal structure of those regular
leaf spaces are preserved, however, the dynamics on the invariant leaves cor-
responding to the fixed points are change from ‘‘hyperbolic’’ to ‘‘parabolic’’.

In this section, we first survey some basic notion of complex dynamics
of quadratic maps and their natural extensions. In §2, we construct tessellation
(or tiling) of the interior of the filled Julia sets of fc with c A ð0; 1=4� in a
dynamically natural way. In §3, we construct a pinching semiconjugacy from fc
with c A ð0; 1=4Þ to f1=4 by gluing tile-to-tile homeomorphisms and the conjugacy
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on and outside the Julia sets. In §4, we lift such a semiconjugacy to their regular
leaf spaces and describe their degeneration.

1.1. Preliminaries

The Julia set. Let us set fcðzÞ ¼ z2 þ c ðc A CÞ and consider it as a rational
map on the Riemann sphere C ¼ C U fyg with fcðyÞ ¼ y. The filled Julia set
Kc of fc is defined by

Kc :¼ fz A C : f f n
c ðzÞg

y
n¼0 is boundedg:

The Julia set Jc of fc is the boundary of Kc. One can easily check that those sets
are forward and backward invariant under the action of fc.

Now suppose that Kc is connected. (Thus so is Jc.) We denote the unit
disk by D. For the outside of Kc, there exists a unique conformal map fc :
C � Kc ! C �D such that

. fcð fcðzÞÞ ¼ fcðzÞ
2; and

. fcðzÞ=z ! 1 as z ! y.
Moreover, if Jc is a Jordan curve, fc continuously extends to fc : C � K�

c !
C �D.

Now let us restrict our interest to the case of c A ð0; 1=4�. In our particular
situation, it is known that Jc are Jordan curves. Thus by looking through the
map fc, the dynamics on and outside the Julia sets are topologically the same
as z 7! z2. For y A R=Z, set gcðyÞ :¼ f�1

c ðe2piyÞ. Then points on Jc are para-
meterized by angles in R=Z. See [3, §18] for more details.

We define some more notation:
. ac :¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4c
p

Þ=2 which is the attracting (or parabolic i¤ c ¼ 1=4)

fixed point of fc with multiplier lc ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4c
p

.
. bc :¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4c
p

Þ=2 which is the repelling (or parabolic i¤ c ¼ 1=4) fixed

point of fc with multiplier l 0
c ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4c
p

.

The natural extension. Next we follow [1, §3]. For fc as above, let us
consider the set of all possible backward orbits

Nc :¼ fẑz ¼ ðz0; z�1; . . .Þ : z0 A C ; fcðz�n�1Þ ¼ z�ng:
This set is called the natural extension of fc, and is equipped with a topology
from C � C � � � � : On this natural extension, the lift of fc and a natural pro-
jection are defined by

f̂fcðẑzÞ :¼ ð fcðz0Þ; z0; z�1; . . .Þ and

pcðẑzÞ :¼ z0:

It is clear that f̂fc is a homeomorphism, and satisfies pc � f̂fc ¼ fc � pc. For a fixed
point a A C of fc, set âa :¼ ða; a; . . .Þ A Nc .

The regular leaf space. An element ẑz ¼ ðz0; z�1; . . .Þ A Nc is regular if there
exists a neighborhood U0 of z0 such that its pull-back U�n along the backward
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orbit ẑz are eventually univalent. For example, ŷy ¼ ðy;y; . . .Þ is not regular for
any c A C .

Let Rc denote the set of regular points in Nc . Rc is called the regular leaf
space of fc. A leaf of Rc is a path connected component of Rc. By [1, Lemma
3.1], leaves of Rc are Riemann surfaces:

Lemma 1.1. Leaves of Rc have the following properties:
. For each leaf L, we can introduce a complex structure such that pc : L ! C
is an analytic map.

. pc branches at ẑz ¼ ðz0; z�1; . . .Þ if and only if ẑz contains a critical point in
fz�ng.

. f̂fc maps a leaf to a leaf isomorphically.

This lemma holds for any c A C . In our case, we have:

Proposition 1.2. If c A ð0; 1=4�, Rc has the following properties:
. Rc ¼ Nc � fŷy; âacg.
. Each leaf of Rc is isomorphic to C .

This proposition is immediate from lemmas in [1, §3].

2. Making tiles

For the first step, we will decompose the interior K�
c of Kc with c A ð0; 1=4�

into countably many tiles and describe their relations.
Before making tiles, we introduce some notation. For c A ð0; 1=4�, let

Icð0Þ denote the interval ½ac; bc�HR. In particular, I1=4ð0Þ ¼ f1=2g. Since Icð0Þ
contains no critical orbit, preimages of Icð0Þ by fc are univalently spread out
with one of their endpoints on the Julia set. Set Ic :¼ 6

ib0
f �i
c ðIcð0ÞÞ. For

y A Q=Z of the form k=2n, we denote the connected component of Ic

containing gcðyÞ by IcðyÞ. As c ! 1=4, Ic degenerates into I1=4 which is the
grand orbit of the parabolic fixed point 1=2.

2.1. Tiles of K�
c with c A ð0; 1=4Þ

Suppose c A ð0; 1=4Þ. Then ac is an attracting fixed point and K�
c is its

attracting basin. On a neighborhood of ac, there exists a linearizing coordinate
Fc which analytically conjugates the action of fc near ac to w 7! lcw near the
origin. Moreover, we can extend this map to Fc : K

�
c ! C , and it is unique up

to multiplication by a constant [3].
For the purpose of better understanding the di¤erence between the cases

of c A ð0; 1=4Þ and c ¼ 1=4, let us take an additional conjugation by w 7! wþ
1=ð1� lcÞ on C . Then we can uniquely define Fc : K

�
c ! C such that

. Fcð fcðzÞÞ ¼ lcFcðzÞ þ 1;

. FcðacÞ ¼ 1=ð1� lcÞ, Fcð0Þ ¼ 0; and

. Fc is infinitely branched covering whose branch points are 6
ib0

f �i
c ðf0gÞ.

Now let us set ac :¼ 1=ð1� lcÞ, which tends to þy as c ! 1=4.
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For m A Z, set

Acðm;þÞ :¼ fw A C : lmþ1
c ac a jw� acja lm

c ac; Im wb 0g
Acðm;�Þ :¼ fw A C : lmþ1

c ac a jw� acja lm
c ac; Im wa 0g

and we call them the fundamental semi-annuli. Let Ac denote the collection of
all of the fundamental semi-annuli.

Note the following two facts:
. The vertices of fundamental semi-annuli on the interval ð�y; acÞ are the
images of the grand orbit of 0. In particular, all of the ramified points
(critical values) of Fc are on the interval ð�y; 0�.

. All components of Ic VK�
c are mapped univalently onto the interval

½ac;yÞ.
For the boundary of Acðm;GÞ, we call the edge on the interval ð�y; acÞ (resp.
½ac;yÞ) the critical edge (resp. degenerating edge). We call the edges shared by
Acðm� 1;GÞ or Acðmþ 1;GÞ the circular edges.

By the facts above, F�1
c : C � ð�y; 0� ! K�

c is a multi-valued function
with univalent branches. Such a branch Cc : C � ð�y; 0� ! K�

c determines a
unique angle y A Q=Z of the form k=2n such that Ccð½ac;yÞÞU gcðyÞ ¼ IcðyÞ.
Thus for Acðm;þÞ A Ac, Cc also determines a unique simply connected set T ¼
Tcðy;m;þÞHK�

c such that T is the closure of CcðAcðm;þÞ � ð�y; 0�Þ. We call
such a T a tile, and the triple ðy;m;þÞ the address of the tile T. We also define
Tcðy;m;�Þ in the same way. We denote the collection of all possible T by
Tc , and call it the tessellation of K�

c . Now it is clear that Kc is the closure of
6fT A Tcg.

For each T A Tc , Fc maps T to an A A Ac homeomorphically. For the
boundary of T, critical (resp. degenerating, circular) edges are defined by the
boundary arcs corresponding to the critical (resp. degenerating, circular) edges
of A.

Now we give relations among tiles:

Proposition 2.1. For T ¼ Tcðy;m;þÞ A Tc , we have the following properties:
(1) fcðTÞ ¼ Tcð2y;mþ 1;þÞ. Moreover, f �1

c ðTÞ ¼ Tcðy=2;m� 1;þÞUTcðy=2 þ
1=2;m� 1;þÞ.

(2) T shares the circular edges with Tcðy;m� 1;þÞ and Tcðy;mþ 1;þÞ.
(3) T shares the degenerating edge with Tcðy;m;�Þ.
(4) T shares the critical edge with Tcðyþ 2m;m;�Þ.
The similar holds if we replace T by Tcðy;m;�Þ. In particular, Tcðy;m;�Þ shares
the critical edge with Tcðy� 2m;m;þÞ.

Proof. The first three properties come from the definition of tiles. One can
easily check property (4) in the case of y ¼ 0. For general y of the form k=2n A
Q=Z, suppose that T ¼ Tcðy;m;þÞ shares the critical edge with T 0 A Tc . Then
T 0 is the form Tcðy 0;m;�Þ since Fc maps T and T 0 to Acðm;þÞ and Acðm;�Þ
respectively. Now f n sends T univalently to Tcð0;mþ n;þÞ which shares
the critical edge with Tcð2mþn;mþ n;�Þ. Thus f nðT 0Þ ¼ Tcð2mþn;mþ n;�Þ.
Note that f nðT UT 0Þ joins Icð0Þ and Icð2mþnÞ. By pulling it back by a suitable
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univalent branch of f n, T UT 0 must join IcðyÞ and Icðyþ 2mÞ. This implies
y 0 ¼ yþ 2m. 9

2.2. Tiles of K�
1=4

Next we make the tessellation T1=4 for K�
1=4 in the same way as above.

Now a1=4 ¼ 1=2 is the parabolic fixed point and K�
1=4 is its parabolic basin. On

an attracting petal of a1=4, there exists a Fatou coordinate F1=4 which analytically

conjugates the action of f1=4 to w 7! wþ 1. Moreover, we can uniquely extend
this Fatou coordinate to F1=4 : K

�
1=4 ! C such that

. F1=4ð f1=4ðzÞÞ ¼ F1=4ðzÞ þ 1;

. F1=4ð0Þ ¼ 0; and

. F1=4 is infinitely branched covering whose branch points are
6

nb0
f �n
1=4ðf0gÞ.

(See [3] again.)
For m A Z, set

A1=4ðm;þÞ :¼ fw A C : maRe wamþ 1; Im wb 0g
A1=4ðm;�Þ :¼ fw A C : maRe wamþ 1; Im wa 0g

and we call them the fundamental semi-cylinders. Let A1=4 denote the collection
of all of the fundamental semi-cylinders.

Note the following two facts, and compare with the case of c A ð0; 1=4Þ:
. The vertices of fundamental semi-cylinders on the real axis ð�y;yÞ are
the images of the grand orbit of 0. In particular, all of the ramified points
(critical values) of F1=4 are on the interval ð�y; 0�.

. All components of I1=4 are outside of the domain of F1=4.
For the boundary of A1=4ðm;GÞ, we call the edge on the real axis the critical
edge. We also call the edges shared by A1=4ðm� 1;GÞ or A1=4ðmþ 1;GÞ the
circular edges. Note that A1=4ðm;GÞ has no edges corresponding to degenerating
edges of fundamental semi-annuli.

Figure 1. The tessellations of z2 þ 0:2 and z2 þ 1=4
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Now F�1
1=4 : C � ð�y; 0� ! K�

1=4 is a multi-valued function with univalent

branches. Such a branch C1=4 : C � ð�y; 0� ! K�
1=4 determines a unique angle

y A Q=Z of the form k=2n such that I1=4ðyÞ A I1=4 is the limit of C1=4ðtÞ as t tends
to þy along the real axis. Thus for A1=4ðm;þÞ A A1=4, C1=4 maps the interior of
A1=4ðm;þÞ to a simply connected subset of K�

1=4. Since C1=4 extends contin-

uously to the boundary of A1=4ðm;þÞ, we denote its image by T ¼ T1=4ðy;m;þÞH
K�

1=4. We also define T1=4ðy;m;�Þ in the same way. We denote the collection
of all possible T by T1=4, and call it the tessellation of K�

1=4. Now it is also clear
that K1=4 is the closure of 6fT A T1=4g.

For each T A T1=4, Fc maps T to an A A A1=4 homeomorphically. For the
boundary of T, critical (resp. circular) edges are defined by the boundary edges
corresponding to the critical (resp. circular) edges of A. Note that T1=4ðy;m;GÞ
does not contain the point I1=4ðyÞ A J1=4, and has no edges corresponding to
degenerating edges.

The relations among tiles are given in the same way as Proposition 2.1:

Proposition 2.2. For T ¼ T1=4ðy;m;þÞ A T1=4, we have the following
properties:

(1) f1=4ðTÞ ¼ T1=4ð2y;mþ 1;þÞ. Moreover, f �1
1=4ðTÞ ¼ T1=4ðy=2;m� 1;þÞU

T1=4ðy=2þ 1=2;m� 1;þÞ.
(2) T shares the circular edges with T1=4ðy;mG 1;þÞ.
(3) For any n A Z, T shares a point I1=4ðyÞ A I1=4 with T1=4ðy; n;þÞ and

T1=4ðy; n;�Þ.
(4) T shares the critical edge with T1=4ðyþ 2m;m;�Þ.

The similar holds if we replace T by T1=4ðy;m;�Þ.

3. Construction of the semiconjugacy

Here we construct a semiconjugacy which pinches Ic to I1=4:

Theorem 3.1. For c A ð0; 1=4Þ, there exists a semiconjugacy Hc : C ! C
from fc to f1=4 such that

. Hc maps C �Ic to C �I1=4 homeomorphically and is a topological con-
jugacy between fc j ðC �IcÞ and f1=4 j ðC �I1=4Þ;

. For each y ¼ k=2n A Q=Z, Hc maps an arc IcðyÞ onto a point I1=4ðyÞ.

Proof. The rest of this section is devoted to the proof of this theorem. Let
us fix c A ð0; 1=4Þ.

Conjugation on tiles. First we make a homeomorphism between Acð0;þÞ�
½ac;yÞ (a tile minus its degenerating edge) and A1=4ð0;þÞ. Take w A Acð0;þÞ�
½ac;yÞ, and set reit :¼ w� ac with ðac � 1 ¼Þlcac a ra ac and 0 < ta p. Now
set

hcðwÞ :¼ ðac � rÞ þ i tan
p� t

2
A A1=4ð0;þÞ:
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Then hc is a homeomorphism between Acð0;þÞ � ½ac;yÞ and A1=4ð0;þÞ which
preserves the action of ScðwÞ ¼ lcwþ 1 on the (outer) circular edge of Acð0;þÞ�
½ac;yÞ to that of S1=4ðwÞ ¼ wþ 1 on the (left) circular edge of A1=4ð0;þÞ.

By using this property, for any m A Z, we can extend hc to Acðm;þÞ�
½ac;yÞ by

hc : Acðm;þÞ � ½ac;yÞ ! A1=4ðm;þÞ
w 7! hcðS�m

c ðwÞÞ þm:

Then hc gives a homeomorphism between Acðm;þÞ � ½ac;yÞ and A1=4ðm;þÞ.
Similarly, we define hc on Acðm;�Þ � ½ac;yÞ. Then we obtain a homeomor-
phism hc : C � ½ac;yÞ ! C , moreover, hc is a topological conjugacy between
Sc j ðC � ½ac;yÞÞ and S1=4.

Next, let us take y of the form k=2n A Q=Z, and take m A Z. We define
a map between Tcðy;m;þÞ � IcðyÞ (a tile minus its degenerating edge) and
T1=4ðy;m;þÞ as follows: There is a unique branch Cy

1=4 of F�1
1=4 which maps

the interior of A1=4ðm;þÞ to the interior of T1=4ðy;m;þÞ. It is clear that Cy
1=4

extends continuously to the boundary of A1=4ðm;þÞ. For z A Tcðy;m;þÞ � IcðyÞ,
set

Hc : Tcðm;þÞ � IcðyÞ ! T1=4ðy;m;þÞ

z 7! Cy
1=4 � hc �FcðzÞ:

This definition gives a homeomorphism Hc : K
�
c �Ic ! K�

1=4, moreover, by the
definition and the combinatorics of tiles, Hc is a topological conjugacy between
fc j ðK�

c �IcÞ and f1=4jK�
1=4.

Continuous extension. For y A Q=Z of the form k=2n, set HcðIcðyÞÞ :¼
I1=4ðyÞ ¼ g1=4ðyÞ. Then Hc : K

�
c UIc ! K�

1=4 UI1=4 is a semiconjugacy which

pinches the arcs in Ic to the points in I1=4. Now we claim that we can con-
tinuously extend this Hc to Hc : Kc ! K1=4. Fix a point z A Jc. Since Jc is a

Jordan curve, there exists an angle y A R=Z such that z ¼ gcðyÞ. Let zn A K�
c UIc

be a sequence converging to z. We show that wn :¼ HcðznÞ A K�
1=4 UI1=4 con-

verges to g1=4ðyÞ.

Figure 2. hc : Acð0;þÞ ! A1=4ð0;þÞ
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Take a small interval of angle ½t; t 0� containing y, where t and t 0 are of the
forms ð2k � 1Þ=2m and ð2k þ 1Þ=2m respectively with the same k and mg 0.
Then gcðtÞ and gcðt 0Þ bound a small piece of Jc, and the piece, say J 0

c , is a Jordan
arc containing z. Take an open arc CHK�

c such that C only passes though
tiles of angles in ½t; t 0� and C V Jc ¼ fgcðtÞ; gcðt 0Þg. (See Remark 2 below.) Let
V denote the small open set with qV ¼ C U J 0

c . By the definition of Hc,
HcðVÞV J1=4 ¼: J 0

1=4 is a piece of J1=4 which is a small Jordan arc with endpoints

g1=4ðtÞ and g1=4ðt 0Þ.
Since zn A V U J 0

c for all ng 0, wn A HcðVÞU J 0
1=4 for all ng 0. If there

exists a subsequence fnigH fng such that wni converges to a point in K�
1=4, then

zni ! z A K�
c by the definition of Hc. This contradicts z A Jc. Thus wn accu-

mulates on J 0
1=4. Since t and t 0 are arbitrarily close to y, wn must converges to

g1=4ðyÞ.

Extension to a global semiconjugacy. Finally we define Hc outside the Julia
set by

Hc : C � Kc ! C � K1=4

z 7! f�1
1=4 � fcðzÞ;

which gives a topological conjugacy on the domain, and continuously extends to
the conjugacy Hc : C �K�

c ! C �K�
1=4. Then Hc inside and outside Jc are con-

tinuously glued along Jc. Now Hc : C ! C is a desired semiconjugacy. 9

Remark. There are other possible choices of the conjugacy hc :
C � ½ac;yÞ ! C with better regularity. For example, for w ¼ ac þ reit with
r > 0 and 0 < t < 2p, one may also use

hcðwÞ ¼
log r� log ac

log lc
þ i tan

p� t

2
:

Remark 2. The arc C in the proof above exists. First, take tiles T ¼
Tcðt;�m;þÞ and T 0 ¼ Tcðt 0;�m;�Þ. By Proposition 2.1, T and T 0 share the
critical edges with T1 ¼ Tcðk=2m�1;�m;�Þ and T 0

1 ¼ Tcðk=2m�1;�m;þÞ respec-
tively, and then T1 and T 0

1 share the degenerating edges. Now we can join gcðtÞ
and gcðt 0Þ by an arc via IcðtÞ, T, T1, T 0

1, T 0, and Icðt 0Þ.

4. Degeneration of the regular leaf spaces

Finally we investigate the structure of R1=4, the regular leaf space of f1=4,
and the degeneration of the invariant leaf corresponding to b̂bc.

We begin with some notation and preliminary remarks. For c A ð0; 1=4�, let
us set ÎIc :¼ p�1

c ðIcÞ. Now we take a sequence of angles ŷy :¼ ðy0; y�1; . . .Þ such
that y0 is of the form k=2m and y�n ¼ 2y�n�1. Since Ic contains no critical

orbit, ŷy corresponds bijectively to a connected component of ÎIc which consists of
the backward orbits fz�ngyn¼0 satisfying z�n A Icðy�nÞ. We denote such a com-

ponent ÎIcðŷyÞ. Note that ÎIcðŷyÞ is an arc if c A ð0; 1=4Þ, or a point if c ¼ 1=4.

tomoki kawahira174



Note also that for 0̂0 ¼ ð0; 0; . . .Þ, ÎIcð0̂0Þ is the component corresponding to the
backward orbits which are always in the interval Icð0Þ ¼ ½ac; bc�. Thus ÎIcð0̂0Þ
contains âac, one of the two irregular points of Nc .

For c A ð0; 1=4�, the set

Lc :¼ fẑz ¼ ðz0; z�1; . . .Þ A Rc : z�n ! bcg
is invariant under the action of f̂fc and is a leaf isomorphic to C . (We will con-
struct the isomorphism later.) Note that ÎI1=4ð0̂0Þ ¼ b̂b1=4 ¼ âa1=4 does not belong to

L1=4. On the other hand, for c A ð0; 1=4Þ, ÎIcð0̂0Þ � fâacg is a subset of Lc.
Now the main result is:

Theorem 4.1. For c A ð0; 1=4Þ, there exists a semiconjugacy ĤHc : Nc ! N1=4

from f̂fc to f̂f1=4 with the following properties:

(1) ĤHc :Nc� ÎIc !N1=4� ÎI1=4 is a topological conjugacy between f̂fc j ðNc � ÎIcÞ and

f̂f1=4 j ðN1=4 � ÎI1=4Þ.
(2) For ŷy as above, ĤHc maps the arc ÎIcðŷyÞ to the point ÎI1=4ðŷyÞ.
(3) ĤH�1

c ðL1=4 U fâa1=4gÞ ¼ Lc U fâacg.
(4) For a leaf L in Rc � Lc, ĤHcðLÞ is a leaf in R1=4 � L1=4.

(5) For a leaf L in R1=4 � L1=4, ĤH�1
c ðLÞ is a leaf in Rc � Lc.

Proof. For ẑz ¼ ðz0; z�1; . . .Þ A Nc , set

ĤHcðẑzÞ :¼ ðHcðz0Þ;Hcðz�1Þ; . . .Þ A N1=4:

Since Hc is a semiconjugacy from fc to f1=4, one can easily check that ĤHc

is surjective, continuous, and satisfies ĤHc � f̂fc ¼ f̂f1=4 � ĤHc. Thus ĤHc is a semi-
conjugacy from f̂fc to f̂f1=4 on their respective natural extensions. In particular,
since Hc : C �Ic ! C �I1=4 is a topological conjugacy, corresponding lift to
the natural extensions ĤHc : Nc � ÎIc ! N1=4 � ÎIc is also a topological conjugacy.
Thus we obtain property (1).

Property (2) comes from the definition of ĤHc above and the one-to-one
correspondence

ÎIcðŷyÞ $ ŷy $ ÎI1=4ðŷyÞ:
Let us show property (3). Take ẑz ¼ fz�ng A Lc. Then z�n ! bc implies

Hcðz�nÞ ! HcðbcÞ ¼ b1=4 ¼ a1=4 and thus ĤHcðLcÞHL1=4 U fâa1=4g. Since ĤHcðâacÞ ¼
âa1=4, we have ĤHcðLc U fâacgÞHL1=4 U fâa1=4g. On the other hand, we claim that for

ŵw ¼ fw�ng A L1=4 and ẑz ¼ fz�ng A ĤH�1
c ðŵwÞ, w�n ! b1=4 implies z�n ! bc, and thus

ĤH�1
c ðL1=4ÞHLc. Take a subsequence z�ni converging to a point z. Note that

z must be in the Julia set, since otherwise one can show that ẑz ¼ âa or ŷy and it
contradicts to ĤHcðẑzÞ ¼ ŵw A R1=4. By continuity of Hc, Hcðz�niÞ ¼ w�ni ! HcðzÞ
and this implies z A H�1

c ðb1=4Þ ¼ Icð0Þ ¼ ½ac; bc�. Since z A Jc, z ¼ bc and we con-

clude the claim. Since ĤH�1
c ðâa1=4Þ ¼ ĤH�1

c ðÎI1=4ð0̂0ÞÞ ¼ ÎIcð0̂0ÞHLc U fâacg, we have

ĤH�1
c ðL1=4 U fâa1=4gÞ ¼ ĤH�1

c ðL1=4ÞU ĤH�1
c ðâa1=4ÞHLc U fâacg:

Now one can easily check property (3).
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To show properties (4) and (5), for � A fc; 1=4g and ŷy as above, we define

open arcs h�½ŷy� : ð1; 2Þ ! R� � ÎI� by

h�½ŷy�ðrÞ :¼ ðf�1
� ðre2piy0Þ; f�1

� ðr1=2e2piy�1Þ; f�1
� ðr1=4e2piy�2Þ; . . .Þ:

Note that the points

ẑz�½ŷy� ¼ ðg�ðy0Þ; g�ðy�1Þ; . . .Þ A ÎI�

are accessible by h�½ŷy�ðrÞ by letting r tend to 1. Thus for each � A fc; 1=4g, ẑz�½ŷy�
and h�½ŷy� are in the same leaf of R�, except when � ¼ 1=4 and ŷy ¼ 0̂0, that is,
ẑz�½ŷy� ¼ âa1=4.

We show property (5) first. Take a leaf L0L1=4 from R1=4. By property

(1), ĤH�1
c ðL� ÎI1=4Þ is homeomorphic to L� ÎI1=4, which is path connected. Now

any connected component of ĤH�1
c ðLV ÎI1=4ÞH ÎIc is an arc and has an endpoint

of the form ẑzc½ŷy�, which is accessible by hc½ŷy�. Since ĤHcðẑzc½ŷy�Þ ¼ ẑz1=4½ŷy� A L is

accessible by h1=4½ŷy�, we have h1=4½ŷy�HL� ÎI1=4 and thus hc½ŷy�H ĤH�1
c ðL� ÎI1=4Þ.

Then we conclude that any component of ĤH�1
c ðLV ÎI1=4Þ is attached to an arc in

ĤH�1
c ðL� ÎI1=4Þ, and thus ĤH�1

c ðLÞ is path connected.

Since ĤH�1
c ðŷyÞ ¼ ŷy, ĤH�1

c ðâa1=4Þ ¼ ÎIcð0̂0Þ, and LHR1=4 ¼ N1=4 � fŷy; âa1=4g
(Proposition 1.2), we have

ĤH�1
c ðLÞHNc � fŷygU ÎIcð0̂0ÞHRc

and thus there is a leaf L 0 of Rc which contains ĤH�1
c ðLÞ. By property (3)

and L0L1=4, L
0 is not Lc. Now LH ĤHcðL 0ÞHR1=4 � L1=4 and ĤHcðL 0Þ is path

connected by the continuity of ĤHc. Thus ĤHcðL 0Þ is contained by a leaf in

R1=4 � L1=4, which must be L. This implies ĤHcðL 0Þ ¼ L and we have

L 0 H ĤH�1
c ðĤHcðL 0ÞÞ ¼ ĤH�1

c ðLÞHL 0:

Thus ĤH�1
c ðLÞ is L 0, a leaf in Rc � Lc.

Property (4) comes from property (5). Take a leaf L 0 from Rc � Lc. Since
ĤHcðL 0Þ contains no irregular point and is path connected, there is a leaf L0L1=4

of R1=4 containing ĤHcðL 0Þ. Then L 0 H ĤH�1
c ðLÞ. By property (5), ĤH�1

c ðLÞ is a

leaf0Lc, which must be L 0. Thus L 0 ¼ ĤH�1
c ðLÞ and this implies ĤHcðL 0Þ is L, a

leaf in R1=4 � L1=4. 9

Dynamics on the invariant leaves. Let us describe property (3) in further
detail. Now the semiconjugacy ĤHc maps Lc U fâacg onto L1=4 U fâa1=4g. Within
Rc and R1=4, we observe this as following.

For c A ð0; 1=4Þ, Lc compactly contains all but one component of

p�1
c ðÎIcÞVLc. The exception is ÎIcð0̂0Þ � fâacg. Since ÎIcð0̂0Þ (resp. âa1=4) is invariant

under the action of f̂fc (resp. f̂f1=4) and ĤH�1
c ðâa1=4Þ ¼ ÎIcð0̂0Þ, the map

ĤHc : Lc � ÎIcð0̂0Þ ! L1=4

is a semiconjugacy from f̂fc j ðLc � ÎIcð0̂0ÞÞ to f̂f1=4jL1=4.
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Let us describe this semiconjugacy more precisely. For c A ð0; 1=4Þ (resp.
c ¼ 1=4), take a linearizing (resp. Fatou) coordinate Fþ

c on a neighborhood (resp.
repelling petal) Pc of bc such that the action of fc is conjugate to Sþ

c ðwÞ ¼
l 0
cwþ 1. (Recall that l 0

1=4 ¼ 1.) In particular, we may assume that Pc contains

z ¼ 1 and Fþ
c ð1Þ ¼ 0. Then for any ẑz ¼ ðz0; z�1; . . .Þ A Lc, there exists an N

such that z�n A Pc for nbN. By [1, §4], the isomorphism between Lc and C is
given by:

F̂Fþ
c ðẑzÞ :¼ ðSþ

c ÞNðFþ
c ðz�NÞÞ:

One can easily check that F̂Fþ
c ðẑzÞ does not depend on the choice of N. Then the

isomorphism F̂Fþ
c : Lc ! C has the following properties:

. F̂Fþ
c ð f̂fcðẑzÞÞ ¼ l 0

cF̂F
þ
c ðẑzÞ þ 1;

. ðF̂Fþ
c Þ

�1ð0Þ is the backward orbit of z ¼ 1 along the interval ðbc; 1�;
. if c A ð0; 1=4Þ, bc :¼ F̂Fþ

c ð b̂bcÞ ¼ 1=ð1� l 0
cÞ tends to �y as c ! 1=4; and

. if c A ð0; 1=4Þ, F̂Fþ
c ðÎIcð0̂0Þ � fâacgÞ ¼ ð�y; bc�.

Now let us consider the map

F̂Fþ
1=4 � ĤHc � ðF̂Fþ

c Þ
�1 : C � ð�y; bc� ! C

for c A ð0; 1=4Þ, which is a semiconjugacy from Sþ
c j ðC � ð�y; bc�Þ to Sþ

1=4. The

slit ð�y; bc� is just like pinched and pushed away to ‘‘infinity’’. Topologically
the same thing happens on the invariant leaves. By ĤHc, a slit ÎIcð0̂0ÞVLc is
pinched, and pushed away to b̂b1=4. As a result, p�1

1=4ðJ1=4ÞVL1=4 is split into two
components. (See Figure 3)

Notes.
1. For c A ð0; 1=4�, Rc has the structure of Riemann surface lamination.

More precisely, each point of Rc has a neighborhood homeomorphic to
D� T , where D is a topological disk and T is a Cantor set, and each t A T ,
D� ftg corresponds to a topological disk on a leaf of Rc. (See [1, §2].) For

Figure 3. Lc for c ¼ 0:2 and L1=4
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c A ð0; 1=4Þ, ĤHc preserves the Cantor set direction of such neighborhoods, and
the holonomies of fibers of pc and p1=4.

2. The hyperbolic 3-lamination of fc is constructed by adding ‘‘height’’ to the
leaves of Rc to obtain leaves isomorphic to H 3. Though the actual con-
struction in [1] is very complicated, we may hope that the pinching ĤHc will
naturally extend to this hyperbolic 3-lamination and describe the degeneration
as c tends to 1=4.

3. For a quadratic polynomial with an attracting cycle, we can consider its
degeneration to a parabolic cycle with multiple petals. To investigate the
associated degeneration of the regular leaf spaces, the method developed in
this paper would be useful. Make a semiconjugation between the maps, and
lift it to their natural extensions. Then the lifted semiconjugation would give
us essential information about the degeneration (or bifurcation) of the regular
leaf spaces.
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