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Abstract. We prove several identities on homogeneous groups that im-
ply the Hardy and Rellich inequalities for Bessel pairs. These equalities give

a straightforward understanding of some of the Hardy and Rellich inequalities
as well as the absence of nontrivial optimizers and the existence/nonexistence
of “virtual”extremizers.

1. Introduction.

The well-known Hardy inequality:∫
RN

|∇u|2dx ≥
(
N − 2

2

)2 ∫
RN

|u|2

|x|2
dx (1.1)

has been investigated intensively and extensively in the literature due to its applications

and its important roles in several contexts of mathematics. We refer the interested reader

to, for instance, [1], [7], [13], [21], [22], [30] which now become standard references on

the subject.

Hardy type inequalities have been also studied intensively on homogeneous Carnot

groups. These problems are important in the analysis of sub-Laplacian and p-sub-

Laplacian on homogeneous Carnot groups. In these situations, the Euclidean norm is

usually replaced by the so-called L-gauge N which is a particular quasi-norm obtained

from the fundamental solution of the sub-Laplacian [9]. For instance, the Hardy inequal-

ities and their extensions were established in the case of the Heisenberg group in [11],

[5], [28]. These inequalities were also studied on groups of Heisenberg type by Danielli,

Garofalo and Phuc [6], on polarizable Carnot groups by Goldstein and Kombe [15]: for

all f ∈ C∞
0 (G \ {0}), with Q ≥ 3, 1 < p < Q:∫

G
|∇Gf |pdx ≥

(
Q− p

p

)p ∫
G

|∇GN |p

Np
|f |pdx.

In [36], the authors established the sharp weighted Hardy inequalities on polarizable

Carnot groups: for all f ∈ C∞
0 (G \ {0}), 1 < p < Q, α ∈ R, γ > −1:
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G
Nα|∇GN |γ |∇Gf |pdx ≥

(
Q+ α− p

p

)p ∫
G
Nα |∇GN |p+γ

Np
|f |pdx.

Using a special class of weighted p-sub-Laplacian and the corresponding fundamental

solution, Jin and Shen [19] obtained weighted Hardy type inequalities on general Carnot

groups.

To unify many known results about the weighted Hardy type inequalities on Carnot

groups, in [16], Goldstein, Kombe and Yener set up a constructive approach to derive

Hardy type inequalities with different weights. More exactly, they provide a simple

sufficient condition on a pair of nonnegative weight functions V (x) andW (x) on a Carnot

group so that the following weighted Hardy type inequality holds for any f ∈ C∞
0 (G):∫

G
V (x)|∇Gf |pdx ≥

∫
G
W (x)|f |pdx.

Their results recover and improve most of the Hardy type inequalities that have known

to date.

Pioneered by Ruzhansky and his collaborators, Hardy type and other functional

inequalities were also investigated intensively and extensively in the setting of the ho-

mogeneous groups. For examples, see [31], [32], [33], [34], [35]. Some of the results

in these papers are already new even in the Euclidean space Rn. We recall here that a

homogeneous group G is a simply connected Lie group where its Lie algebra g is equipped

with a family of the following dilations:

Dλ = Exp(A lnλ).

Here A is a diagonalizable positive linear operator on g, and every Dλ is a morphism of g.

The exponential mapping expG : g → G of this group is a global diffeomorphism. Thus,

this implies the dilation structure, and this dilation is denoted by Dλx or λx. We denote

by Q = TrA the homogeneous dimension of G. The Haar measure on a homogeneous

group G is the standard Lebesgue measure for Rn.

Let | · | be a homogeneous quasi-norm on G. We then define the quasi-ball centered

at x ∈ G by

B(x,R) :=
{
y ∈ G :

∣∣x−1y
∣∣ < R

}
.

There is a (unique) positive Borel measure σ on the unit sphere S := {x ∈ G : |x| = 1},
such that for every f ∈ L1(G), we have∫

G
f(x)dx =

∫ ∞

0

∫
S

f(ry)rQ−1dσ(y)dr. (1.2)

Now, we fix a basis {X1, . . . , Xn} of a Lie algebra g such that AXk = νkXk for every

k, so that the matrix A = diag(ν1, . . . , νn). Then each Xk is homogeneous of degree νk
and also Q = ν1 + · · ·+ νn. The decomposition of exp−1

G (x) in the Lie algebra g defines

the vector

e(x) = (e1(x), . . . , en(x))
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by the formula

exp−1
G (x) = e(x) · ∇

where ∇ = (X1, . . . , Xn). Then, by denoting x = ry, y ∈ S, we have

e(x) = e(ry) = (rν1e1(y), . . . , r
νnen(y)) .

We also define

Rf(x) := d

d|x|
f(x).

The operator R is homogeneous of order −1 and plays the role of the radial derivative

on G. We note that the operator R has appeared naturally in the literature. Indeed, one

of the interesting problems is to investigate the functional and geometric inequalities on

general homogeneous groups. However, as mentioned in [32], since these spaces do not

have to be stratified or even graded, the concept of horizontal gradients does not make

sense. Thus, it is logical to work with the full gradient. On the other hand, unless the

homogeneous groups are abelian, the full gradient is not homogeneous. Nevertheless, on

the homogeneous groups, the operator R is homogeneous of order −1 and is analogous

to the radial derivative x/|x| · ∇ on Rn.

For further details on this topic we refer the interested readers to [3], [8], [10] and

the references therein.

In this note, we would like to set up some versions of the two-weight Hardy type

inequalities with exact missing terms on homogeneous groups G. Our results are inspired

by the developments in [16], the events in [12], [14], where Ghoussoub and Moradifam

provided on isotropic Euclidean space the necessary and sufficient criterions on a pair

of positive radial functions so that certain two-weight Hardy inequalities hold true, and

the equalities in [17], [18], [24], [26], [27] that provide simple and straightforward un-

derstandings of the Hardy and Hardy–Rellich inequalities on Euclidean space as well as

the nonexistence of nontrivial optimizers.

Our first main theorem can be stated as follows:

Theorem 1.1. Let 0 < R ≤ ∞, V and W be positive C1-functions on (0, R) such

that
∫ R

0
(1/rQ−1V (r))dr = ∞ and

∫ R

0
rQ−1V (r)dr < ∞. Then if (rQ−1V, rQ−1W ) is a

(1-dimensional) Bessel pair on (0, R), that is, if the ordinary differential equation

y′′(r) +

(
Q− 1

r
+
Vr(r)

V (r)

)
y′(r) +

W (r)

V (r)
y(r) = 0

has a positive solution φV,W ;R on the interval (0, R), then we have∫
B(0,R)

V (|x|)|Ru|2dx =

∫
B(0,R)

W (|x|)|u|2dx+
∫
B(0,R)

V (|x|)
∣∣∣∣R( u

φV,W ;R

)∣∣∣∣2 φ2
V,W ;Rdx

for all u ∈ C∞
0 (B(0, R)).
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In the same spirit, we also show that

Theorem 1.2. Let W be a positive function on (0,∞) and W̃ be the antiderivative

of W (r)rQ−1. Then for all u ∈ C∞
0 (G \ {0}), we have∫

G

4W̃ 2(|x|)
W (|x|)|x|2Q−2

|Ru(x)|2dx−
∫
G
W (|x|)|u|2dx

=

∫
G

4
∣∣W̃ (|x|)

∣∣
W (|x|)|x|2Q−2

∣∣∣∣R(u(x)√∣∣W̃ (|x|)
∣∣ )∣∣∣∣2 dx.

If W̃ (0) = 0, then the above identities hold for any u ∈ C∞
0 (G).

The higher order Hardy inequalities, namely the Rellich inequalities, were also stud-

ied on the stratified Lie groups for arbitrary homogeneous quasinorm in [4]. However,

the best constant was not investigated there. We also refer to [20], [25] for the results on

the sharp Rellich type inequalities for the sub-Laplacian on homogeneous Carnot groups.

In [33], Ruzhansky and Suragan set up several sharp versions of the horizontal weighted

Hardy, Rellich, Caffarelli–Kohn–Nirenberg inequalities on stratified groups. In [32], the

authors provide sharp remainder terms of weighted Rellich inequalities on one of most

general subclasses of nilpotent Lie groups, namely the class of homogeneous groups. They

also studied higher order inequalities of Hardy–Rellich type, all with sharp constants, as

well as several identities including weighted and higher order types. Recently, the author

in [29] derived several interesting equalities for the integrals of higher order derivatives

and the sharp Hardy–Rellich type inequalities for higher order derivatives including both

the subcritical and critical inequalities on the homogeneous groups.

Inspired by the points discussed above, our second purpose of this article is to set

up the Rellich type inequalities using Bessel pairs. More precisely, denote

R2 := R2 +
Q− 1

|x|
R,

we will show that

Theorem 1.3. Let 0 < R ≤ ∞, V and W be positive C1-functions on (0, R)

such that
∫ R

0
(1/rQ−1V (r))dr = ∞, limr→0 r

αV (r) = 0 for some α < Q − 2 and

(rQ−1V, rQ−1W ) is a (1-dimensional) Bessel pair on (0, R). Then∫
B(0,R)

V (|x|)|R2u|2dx

=

∫
B(0,R)

W (|x|)|Ru|2dx+ (Q− 1)

∫
B(0,R)

[
V (|x|)
|x|2

− V ′(|x|)
|x|

]
|Ru|2dx

+

∫
B(0,R)

V (|x|)
∣∣∣∣R( Ru

φV,W ;R

)∣∣∣∣2 φ2
V,W ;Rdx

for all u ∈ C∞
0 (B(0, R)). Here φV,W ;R is the positive solution of
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y′′(r) +

(
Q− 1

r
+
Vr(r)

V (r)

)
y′(r) +

W (r)

V (r)
y(r) = 0

on the interval (0, R).

It is worth noting that in the setting of Euclidean spaces and using ∆ and ∇ instead

of R2 and R, a similar result as our Theorem 1.3 was set up in [12] for radial functions

only. To get the same result for nonradial functions as well, the following condition was

assumed:

W (r)− 2V (r)

r2
+ 2

Vr(r)

r
− Vrr(r) ≥ 0 for 0 ≤ r ≤ R. (1.3)

As discussed in their book [13], this is a sufficient but not necessary condition to make

sure that the best constant is the same for the radial and for the nonradial case. Hence,

our Theorem 1.3 shows that the above assumption can be removed if we use R2 and R
to replace for ∆ and ∇ in the Hardy–Rellich type inequalities.

We also mention here that in [23], the Hardy and Hardy–Rellich type inequalities

with Bessel pairs were investigated on homogeneous groups using the spherical average

of the test function. Our results in this article exploit further and provide the exact

remainders as well as the “virtual” ground states of the Hardy and Hardy–Rellich type

inequalities in [23].

Finally, we note here that in our main results, the homogeneous norm |·| is arbitrary.
Hence, our results are somewhat new even in the setting of anisotropic Euclidean spaces.

2. Some useful lemmata and some consequences of main results.

We list here an important result that will be used to treat the integrations by parts

in the following sections. The proof of this result can be found in [13].

Lemma 2.1. Let R > 0 and assume that φ ∈ C1(0, R) is a positive solution of the

ODE

y′′(r) +

(
Q− 1

r
+
Vr(r)

V (r)

)
y′(r) +

W (r)

V (r)
y(r) = 0

on (0, R) where V , W ≥ 0 on (0, R) such that
∫ R

0
(1/rQ−1V (r))dr = ∞ and∫ R

0
rQ−1V (r)dr < ∞. Setting ψ(x) = u(x)/φ(|x|) for any u ∈ C∞

0 (B(0, R)), we then

have the following properties :

(1)

∫ R

0

V (r)

(
φ′(r)

φ(r)

)2

rQ−1dr <∞ and lim
r→0

V (r)
φ′(r)

φ(r)
rQ−1 = 0.

(2)

∫
B(0,R)

V (|x|)φ′(|x|)2ψ2(x)dx <∞ and

∫
B(0,R)

V (|x|)φ(|x|)2|Rψ|2(x)dx <∞.

(3)

∣∣∣∣ ∫
B(0,R)

V (|x|)φ′(|x|)φ(|x|)ψ(x)(Rψ(x))dx
∣∣∣∣ <∞.
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(4) lim
r→0

∣∣∣∣ ∫
∂B(0,R)

V (|x|)φ′(|x|)φ(|x|)ψ2(x)ds

∣∣∣∣ = 0.

We will also need the following lemma that can be found in [32]:

Lemma 2.2. Define the Euler’s operator E on G by E = |x|R. If f : G\{0} → R is

continuously differentiable, then Ef = υf if and only if f(λx) = λνf(x), ∀λ > 0, x ̸= 0,

i.e., f is positively homogeneous of order υ.

We now provide here some consequences of our main results.

Example 2.1. Assume Q ≥ 3 and 0 ≤ λ ≤ Q − 2. Then (rQ−1−λ, ((Q − λ −
2)/2)2rQ−1−λ−2) is a Bessel pair on (0,∞) with φV,W ;∞(r) = r−(Q−λ−2)/2. Hence, by

Theorem 1.1, we obtain∫
G

|Ru|2

|x|λ
dx =

(Q− λ− 2)2

4

∫
G

|u|2

|x|λ+2
dx+

∫
G

1

|x|Q−2

∣∣∣R(u|x|(Q−λ−2)/2
)∣∣∣2 dx.

Now, noting that

V (|x|)
|x|2

− V ′(|x|)
|x|

=
1 + λ

|x|λ+2
,

we have by Theorem 1.3∫
G

|R2u|2

|x|λ
dx =

(Q− λ− 2)2

4

∫
G

|Ru|2

|x|λ+2
dx+ (Q− 1)(1 + λ)

∫
G

|Ru|2

|x|λ+2
dx

+

∫
G

1

|x|Q−2

∣∣∣R(|x|(Q−λ−2)/2Ru
)∣∣∣2 dx

=
(Q+ λ)2

4

∫
G

|Ru|2

|x|λ+2
dx+

∫
G

1

|x|Q−2

∣∣∣R(|x|(Q−λ−2)/2Ru
)∣∣∣2 dx.

Noting that (rQ−1r−λ−2, ((Q − λ − 4)2/4)rQ−1r−λ−4), 0 ≤ λ ≤ Q − 4, is a Bessel pair

on (0,∞) with φV,W ;∞(r) = r−(Q−λ−4)/2, we obtain by Theorem 1.1:∫
G

|Ru|2

|x|λ+2
dx =

(Q− λ− 4)2

4

∫
G

|u|2

|x|λ+4
dx+

∫
G

1

|x|Q−2

∣∣∣R(u|x|(Q−λ−4)/2
)∣∣∣2 dx.

Thus∫
G

|R2u|2

|x|λ
dx =

(Q+ λ)2

4

(Q− λ− 4)2

4

∫
G

|u|2

|x|λ+4
dx

+
(Q+ λ)2

4

∫
G

1

|x|Q−2

∣∣∣R(u|x|(Q−λ−4)/2
)∣∣∣2 dx+

∫
G

1

|x|Q−2

∣∣∣R(|x|(Q−λ−2)/2Ru
)∣∣∣2 dx.

As a consequence ∫
G

|Ru|2

|x|λ
dx ≥ (Q− λ− 2)2

4

∫
G

|u|2

|x|λ+2
dx (2.1)
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and ∫
G

|R2u|2

|x|λ
dx ≥ (Q+ λ)2

4

(Q− λ− 4)2

4

∫
G

|u|2

|x|λ+4
dx. (2.2)

The equality happens in the (2.1) if and only if R(u|x|(Q−λ−2)/2) = 0. That is Eu =

−((Q−λ−2)/2)u. By Lemma 2.2, u is positively homogeneous of order −(Q−λ−2)/2.

Hence, we can find some function ϕ on S such that u(x) = |x|−(Q−λ−2)/2ϕ(x/|x|).
However, in this situation∫

G

|u|2

|x|λ+2
dx =

∫
S

ϕ2(y)dσ(y)

∫ ∞

0

1

r
dr.

Thus
∫
G |u|2/|x|λ+2dx is finite if and only if u = 0. However, we can say that

|x|−(Q−λ−2)/2ϕ(x/|x|) is the “virtual” optimizer for (2.1). As pointed out by Brezis

and Vázquez in [2], this phenomenon happens due to the lack of a proper function space

setting.

Similarly, the equality occurs in (2.2) if and only if u = 0. But again we can say

that (2.2) receives “virtual” optimizer of the form |x|−(Q−λ−4)/2ϕ(x/|x|).

Example 2.2. (rQ−1−λ, ((Q − λ − 2)/2)2rQ−1−λ−2 + (z20/R
2)rQ−1−λ), z0 is the

first zero of the Bessel function J0, is a Bessel pair on (0, R) with φV,W ;R(r) =

r−(Q−λ−2)/2J0(rz0/R) = r−(Q−λ−2)/2J0;R(r). Then by Theorem 1.1, we get∫
B(0,R)

|Ru|2

|x|λ
dx =

(Q− λ− 2)2

4

∫
B(0,R)

|u|2

|x|λ+2
dx+

z20
R2

∫
B(0,R)

|u|2

|x|λ
dx

+

∫
B(0,R)

1

|x|Q−2
J2
0;R(|x|)

∣∣∣∣R(u|x|(Q−λ−2)/2

J0;R

)∣∣∣∣2 dx.
Also, we can deduce from Theorem 1.3 that∫

B(0,R)

|R2u|2

|x|λ
dx =

(Q− λ− 2)2

4

∫
B(0,R)

|Ru|2

|x|λ+2
dx+

z20
R2

∫
B(0,R)

|Ru|2

|x|λ
dx

+ (Q− 1)(1 + λ)

∫
B(0,R)

|Ru|2

|x|λ+2
dx

+

∫
B(0,R)

1

|x|Q−2

∣∣∣∣R( |x|(Q−λ−2)/2Ru
J0;R(|x|)

)∣∣∣∣2 J2
0;R(|x|)dx

=
(Q+ λ)2

4

∫
B(0,R)

|Ru|2

|x|λ+2
dx+

z20
R2

∫
B(0,R)

|Ru|2

|x|λ
dx

+

∫
B(0,R)

1

|x|Q−2

∣∣∣∣R( |x|(Q−λ−2)/2Ru
J0;R(|x|)

)∣∣∣∣2 J2
0;R(|x|)dx.

By Theorem 1.1 and by noting that (rQ−1r−λ−2, ((Q − λ − 4)2/4)rQ−1r−λ−4 +

(z20/R
2)rQ−1r−λ−2), 0 ≤ λ ≤ Q − 4, is a Bessel pair on (0, R) with φV,W ;R(r) =

r−(Q−λ−4)/2J0;R(r), we have
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B(0,R)

|Ru|2

|x|λ+2
dx =

(Q− λ− 4)2

4

∫
B(0,R)

|u|2

|x|λ+4
dx+

z20
R2

∫
B(0,R)

|u|2

|x|λ+2
dx

+

∫
B(0,R)

1

|x|Q−2
J2
0;R(|x|)

∣∣∣∣R(u|x|(Q−λ−4)/2

J0;R

)∣∣∣∣2 dx.
Hence∫

B(0,R)

|R2u|2

|x|λ
dx =

(Q+ λ)2

4

(Q− λ− 4)2

4

∫
B(0,R)

|u|2

|x|λ+4
dx

+

[
(Q+ λ)2

4

z20
R2

+
(Q− λ− 2)2

4

z20
R2

] ∫
B(0,R)

|u|2

|x|λ+2
dx+

(
z20
R2

)2 ∫
B(0,R)

|u|2

|x|λ
dx

+
(Q+ λ)2

4

∫
B(0,R)

1

|x|Q−2
J2
0;R(|x|)

∣∣∣∣R(u|x|(Q−λ−4)/2

J0;R

)∣∣∣∣2 dx
+
z20
R2

∫
B(0,R)

1

|x|Q−2
J2
0;R(|x|)

∣∣∣∣R(u|x|(Q−λ−2)/2

J0;R

)∣∣∣∣2 dx
+

∫
B(0,R)

1

|x|Q−2

∣∣∣∣R( |x|(Q−λ−2)/2Ru
J0;R

)∣∣∣∣2 J2
0;R(|x|)dx.

By dropping nonnegative terms, we get∫
B(0,R)

|Ru|2

|x|λ
dx ≥ (Q− λ− 2)2

4

∫
B(0,R)

|u|2

|x|λ+2
dx+

z20
R2

∫
B(0,R)

|u|2

|x|λ
dx (2.3)

and ∫
B(0,R)

|R2u|2

|x|λ
dx ≥ (Q+ λ)2

4

(Q− λ− 4)2

4

∫
B(0,R)

|u|2

|x|λ+4
dx

+

[
(Q+ λ)2

4

z20
R2

+
(Q− λ− 2)2

4

z20
R2

] ∫
B(0,R)

|u|2

|x|λ+2
dx

+

(
z20
R2

)2 ∫
B(0,R)

|u|2

|x|λ
dx. (2.4)

There is no nontrivial extremizer for (2.3). But, we again can say that (2.3) has “virtual”

optimizer of the form J0;R(|x|)|x|−(Q−λ−4)/2ϕ(x/|x|). Similarly, (2.4) has no nontrivial

optimizer. It is also interesting that no function can play the role of “virtual” optimizer

for (2.4).

Example 2.3. (rQ−1, ((Q− 2)/2)2(rQ−1/r2(1− (R/r)2−Q)2)) is a Bessel pair on

(0, R) with φV,W ;R(r) = R−(Q−2)/2
√
(R/r)Q−2 − 1. Hence, as a consequence of Theo-

rem 1.1, we receive∫
B(0,R)

|Ru|2dx−
(
Q− 2

2

)2 ∫
B(0,R)

|u|2

|x|2 (1− (R/|x|)2−Q)
2 dx
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=

∫
B(0,R)

∣∣∣∣∣R
(

u√
(R/|x|)Q−2 − 1

)∣∣∣∣∣
2 [(

R

|x|

)Q−2

− 1

]
dx

and ∫
B(0,R)

|Ru|2dx ≥
(
Q− 2

2

)2 ∫
B(0,R)

|u|2

|x|2 (1− (R/|x|)2−Q)
2 dx.

Obviously, ((Q − 2)/2)2 is sharp and is not attainable by nontrivial extremizers.

Also, the “virtual” optimizer of the above Hardy type inequality is of the form√
(|x|/R)2−Q − 1 ϕ(x/|x|).

We note that the book [13] provides various examples and properties about Bessel

pairs. Hence we can deduce as many Hardy and Rellich type inequalities as we can form

Bessel pairs.

Example 2.4. In the critical case, W (r) = 1/rQ, then W̃ (r) = ln r and

4W̃ 2(|x|)/W (|x|)|x|2Q−2 = 4| ln |x||2/|x|Q−2. Hence by Theorem 1.2, we have for

u ∈ C∞
0 (G \ {0}):

4

∫
G

| ln |x||2

|x|Q−2
|Ru(x)|2dx ≥

∫
G

|u|2

|x|Q
dx.

We also note that our results imply a version of the Heisenberg–Pauli–Weyl type

uncertainly principle on homogeneous groups: If (rQ−1V, rQ−1W ) is a (1-dimensional)

Bessel pair on (0,∞), that is, if the ordinary differential equation

y′′(r) +

(
Q− 1

r
+
Vr(r)

V (r)

)
y′(r) +

W (r)

V (r)
y(r) = 0

has a positive solution φV,W ;∞ on the interval (0,∞), then we have(∫
G
|u|2dx

)2

≤
(∫

G
W (|x|)|u|2dx

)(∫
G

1

W (|x|)
|u|2dx

)
=

(∫
G
V (|x|)|Ru|2dx−

∫
G
V (|x|)

∣∣∣∣R( u

φV,W ;∞

)∣∣∣∣2 φ2
V,W ;∞dx

)(∫
G

1

W (|x|)
|u|2dx

)
≤
(∫

G
V (|x|)|Ru|2dx

)(∫
G

1

W (|x|)
|u|2dx

)
.

This covers the classical Heisenberg–Pauli–Weyl uncertainty principle on RN . Indeed, in

this case, we note that Q = N and also (rN−1, ((N − 2)/2)2rN−1r−2) is a Bessel pair on

(0,∞) with φV,W ;∞(r) = r−(N−2)/2. Hence(∫
RN

|u|2dx
)2

≤
(∫

RN

1

|x|2
|u|2dx

)(∫
RN

|x|2|u|2dx
)
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=

(
2

N − 2

)2∫
RN

|Ru|2dx−
∫
RN

∣∣∣∣∣∣
R
(
|x|N−2

2 u
)

|x|N−2
2

∣∣∣∣∣∣
2

dx

(∫
RN

|x|2|u|2dx
)

≤
(

2

N − 2

)2(∫
RN

|Ru|2dx
)(∫

RN

|x|2|u|2dx
)

≤
(

2

N − 2

)2(∫
RN

|∇u|2dx
)(∫

RN

|x|2|u|2dx
)
.

3. Proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let u(x) = φV,W ;R(|x|)ψ(x). By polar coordinate and

(1.2), we have that∫
B(0,R)

W (|x|)|u|2dx =

∫
S

∫ R

0

W (r)|u(ry)|2rQ−1drdσ(y)

=

∫
S

∫ R

0

W (r)(φV,W ;R(r))
2|ψ(ry)|2rQ−1drdσ(y).

Noting that

d

dr

(
V (r)rQ−1 d

dr
φV,W ;R(r)

)
+W (r)rQ−1φV,W ;R(r) = 0,

we get∫
B(0,R)

W (|x|)|u|2dx = −
∫
S

∫ R

0

d

dr

(
V (r)rQ−1 d

dr
φV,W ;R(r)

)
φV,W ;R(r)|ψ(ry)|2drdσ(y).

Using Lemma 2.1 to treat the integrations by parts, we obtain for a.e. y ∈ S:

−
∫ R

0

d

dr

(
V (r)rQ−1 d

dr
φV,W ;R(r)

)
φV,W ;R(r)|ψ(ry)|2dr

=

∫ R

0

V (r)rQ−1 d

dr
φV,W ;R(r)

d

dr
(φV,W ;R(r)|ψ(ry)|2)dr

=

∫ R

0

V (r)rQ−1

(
d

dr
φV,W ;R(r)

)2

|ψ(ry)|2dr

+ 2Re

∫ R

0

V (r)rQ−1 d

dr
φV,W ;R(r)φV,W ;R(r)ψ(ry)

d

dr
ψ(ry)dr.

Hence∫
B(0,R)

W (|x|)|u|2dx

=

∫
S

∫ R

0

V (r)rQ−1

∣∣∣∣ ddrφV,W ;R(r)ψ(ry) + φV,W ;R(r)
d

dr
ψ(ry)

∣∣∣∣2 drdσ(y)
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−
∫
S

∫ R

0

V (r)rQ−1

∣∣∣∣φV,W ;R(r)
d

dr
ψ(ry)

∣∣∣∣2 drdσ(y)
=

∫
B(0,R)

V (|x|)|Ru|2dx−
∫
B(0,R)

V (|x|)φ2
V,W ;R(|x|)

∣∣∣∣R( u

φV,W ;R

)∣∣∣∣2 dx. □

Proof of Theorem 1.2. By using the polar coordinates (r, y) = (|x|, x/|x|) ∈
(0,∞)×S, (1.2) and integrations by parts, we have∫

G
W (|x|)|u|2dx =

∫ ∞

0

W (r)rQ−1

∫
S

|u(ry)|2dσ(y)dr

= −Re

∫ ∞

0

W̃ (r)2

∫
S

u(ry)
d

dr
u(ry)dσ(y)dr

= −2Re

∫ ∞

0

W̃ (r)√
W (r)rQ−1

∫
S

√
W (r)u(ry)

d

dr
u(ry)rQ−1dσ(y)dr

= −2Re

∫
G

√
W (|x|)u(x) W̃ (|x|)√

W (|x|)|x|Q−1
Ru(x)dx.

Hence

2

∫
G
W (|x|)|u|2dx = −4Re

∫
G

√
W (|x|)u(x) W̃ (|x|)√

W (|x|)|x|Q−1
Ru(x)dx

and so∫
G
W (|x|)|u|2dx

= −
∫
G
W (|x|)|u|2dx− 2Re

∫
G

√
W (|x|)u(x)2 W̃ (|x|)√

W (|x|)|x|Q−1
Ru(x)dx

= −
∫
G

∣∣∣∣∣√W (|x|)u(x) + 2
W̃ (|x|)√

W (|x|)|x|Q−1
Ru(x)

∣∣∣∣∣
2

dx+ 4

∫
G

W̃ 2(x)

W (|x|)|x|2Q−2
|Ru(x)|2dx.

We note that∫
G

∣∣∣∣∣√W (|x|)u(x) + 2
W̃ (|x|)√

W (|x|)|x|Q−1
Ru(x)

∣∣∣∣∣
2

dx

=

∫
G

 2
√∣∣W̃ (|x|)

∣∣√
W (|x|)|x|Q−1

W̃ (|x|)∣∣W̃ (|x|)
∣∣
∣∣∣∣∣∣Ru(x)

√∣∣W̃ (|x|)
∣∣+ W (|x|)|x|Q−1

2
√∣∣W̃ (|x|)

∣∣ W̃ (|x|)∣∣W̃ (|x|)
∣∣u(x)

∣∣∣∣∣∣
2

dx

=

∫
G

4
∣∣W̃ (|x|)

∣∣
W (|x|)|x|2Q−2

∣∣∣∣R(u(x)√∣∣W̃ (|x|)
∣∣ )∣∣∣∣2 dx. □
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4. Proof of Theorem 1.3.

Proof of Theorem 1.3. We have∫
B(0,R)

V (|x|)
∣∣∣∣R2u+

Q− 1

|x|
Ru
∣∣∣∣2 dx

=

∫
S

∫ R

0

V (r)

∣∣∣∣ ddr
(
d

dr
u(ry)

)
+
Q− 1

r

d

dr
u(ry)

∣∣∣∣2 rQ−1drdσ(y)

=

∫
S

∫ R

0

V (r)|∂rru(ry)|2rQ−1drdσ(y) + (Q− 1)2
∫
S

∫ R

0

V (r)|∂ru(ry)|2rQ−3drdσ(y)

+ 2(Q− 1)Re

∫
S

∫ R

0

V (r)∂ru(ry)∂rru(ry)r
Q−2drdσ(y).

Using integrations by parts, we get

2Re

∫ R

0

V (r)∂ru(ry)∂rru(ry)r
Q−2dr

= −
∫ R

0

|∂ru(ry)|2
d

dr
[V (r)rQ−2]dr

= −
∫ R

0

|∂ru(ry)|2Vr(r)rQ−2dr − (Q− 2)

∫ R

0

|∂ru(ry)|2V (r)rQ−3dr.

Hence∫
B(0,R)

V (|x|)
∣∣∣∣R2u+

Q− 1

|x|
Ru
∣∣∣∣2 dx

=

∫
S

∫ R

0

V (r)|∂rru(ry)|2rQ−1drdσ(y)

+ (Q− 1)

∫
S

∫ R

0

[
V (r)

r2
− Vr(r)

r

]
|∂ru(ry)|2rQ−1drdσ(y)

=

∫
B(0,R)

V (|x|)
∣∣R2u

∣∣2 dx+ (Q− 1)

∫
B(0,R)

[
V (|x|)
|x|2

− V ′(|x|)
|x|

]
|Ru|2dx.

Noting that by Theorem 1.1∫
B(0,R)

V (|x|)
∣∣R2u

∣∣2 dx
=

∫
B(0,R)

V (|x|)|R(Ru)|2dx

=

∫
B(0,R)

W (|x|)|Ru|2dx+

∫
B(0,R)

V (|x|)
∣∣∣∣R( Ru

φV,W ;R

)∣∣∣∣2 φ2
V,W ;Rdx,

we obtain
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B(0,R)

V (|x|)
∣∣∣∣R2u+

Q− 1

|x|
Ru
∣∣∣∣2 dx−

∫
B(0,R)

W (|x|)|Ru|2dx

− (Q− 1)

∫
B(0,R)

[
V (|x|)
|x|2

− V ′(|x|)
|x|

]
|Ru|2dx

=

∫
B(0,R)

V (|x|)
∣∣∣∣R( Ru

φV,W ;R

)∣∣∣∣2 φ2
V,W ;Rdx. □
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