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Abstract. We study algebro-geometric consequences of the quantised
extremal Kähler metrics, introduced in the previous work of the author. We
prove that the existence of quantised extremal metrics implies weak relative

Chow polystability. As a consequence, we obtain asymptotic weak relative
Chow polystability and relative K-semistability of extremal manifolds by using
quantised extremal metrics; this gives an alternative proof of the results of
Mabuchi and Stoppa–Székelyhidi. In proving them, we further provide an

explicit local density formula for the equivariant Riemann–Roch theorem.

1. Introduction.

Donaldson’s work [7] implies that if an n-dimensional polarised Kähler manifold

(X,L) with discrete automorphism admits a constant scalar curvature Kähler (cscK)

metric, it admits a sequence of Kähler metrics {ωk}k satisfying ρk(ωk) = const, where

ρk(ωk) is the k-th Bergman function of ωk (cf. Definition 2.3). Combined with the

results of Luo [19] and Zhang [42], this further implies that such (X,L) is asymptotically

Chow stable, establishing an important result in Kähler geometry connecting the scalar

curvature and algebro-geometric stability of (X,L) in the sense of Geometric Invariant

Theory (GIT). The reader is referred to the survey [3] for more details on this theory.

When the automorphism group is no longer discrete, a generalisation of Donaldson’s

result was established in [13], widening the scope to include extremal Kähler metrics

(cf. Definition 2.1). This was done by considering the equation

∂̄grad1,0ωk
ρk(ωk) = 0. (1)

This paper studies consequences of the above equation to GIT stability notions in alge-

braic geometry.

Fixing a maximal compact subgroup K of the automorphism group (cf. Remark

2.5), our first application to stability is the following.

Theorem 1.1. Suppose that there exists a K-invariant Fubini–Study metric ωk ∈
c1(L) induced from X ↪→ P(H0(X,Lk)∗) which satisfies ∂̄grad1,0ωk

ρk(ωk) = 0. Then

(X,Lk) is weakly Chow polystable relative to the centre of K.

We shall see in the proof that the converse does not hold in general; the solvability

of (1) is strictly stronger than weak relative Chow polystability (cf. Remark 3.11).
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The main result of [13] is that (1) is solvable for all large enough k, if (X,L) admits

an extremal metric (cf. Theorem 2.11). Combining the main result of [13] and Theorem

1.1, we obtain the following corollary.

Corollary 1.2. If a polarised Kähler manifold (X,L) admits an extremal Kähler

metric, then it is asymptotically weakly Chow polystable relative to the centre of K.

This corollary is also a consequence of the works of Mabuchi [20], [21], [22]. A

stronger version of the above corollary was recently proved by Mabuchi [25] (see also

[33]).

Our second application to stability is the following.

Theorem 1.3. Suppose that there exists an extremal metric ω ∈ c1(L). Then

(X,L) is K-semistable relative to the extremal C∗-action.

Remark 1.4. Recall that the above theorem was first proved by Stoppa and

Székelyhidi [34] by using the lower bound of the Calabi functional, and then by Mabuchi

[24] by using a different method. Dervan [6] recently provided another proof that can be

extended to non-projective Kähler manifolds. The point of the above statement is that

we give another independent, alternative proof by using the equation (1).

The proof (given in Section 4.2) is conceptually similar to the proof of asymptotic

Chow stability implying K-semistability [29], but will further involve the detailed anal-

ysis of the “weight” of relative balanced metrics, in which we make direct use of the

equation (1).

In proving the above Theorem 1.3, we shall prove the following “explicit local density

formula” for the equivariant Riemann–Roch theorem in terms of the Bergman function,

which could be interesting in its own right.

Theorem 1.5. Writing Ak for the generator of the C∗-action on H0(X,Lk) in-

duced from the product test configuration defined by a Hamiltonian vector field v with

Hamiltonian ψ with respect to ωh, we have

1

k
tr (Ak) = −

∫
X

ψρk(ωh)
ωn
h

n!
−
∫
X

1

4πk
(dψ, dρk(ωh))ωh

ωn
h

n!
.

Finally, the recent development in the field [25], [32], [33] means that there are

now nontrivial relationships among several versions of “quantised extremal” metrics,

and implications to relative stability. This will be reviewed in Section 6.

1.1. Organisation of the paper.

After recalling the background in Section 2, we introduce (weak) relative Chow

polystability and prove Theorem 1.1 in Section 3. Theorem 1.3 is proved in Section 4,

where the definition of relative K-semistability is also provided. In Section 5 we shall

prove Theorem 1.5, and the last section Section 6 is devoted to the review of the works

of [13], [25], [32], [33] from the point of view of relative stability.
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2. Background on extremal metrics and quantisation.

We first recall the definition of extremal metrics.

Definition 2.1. A Kähler metric ω is called extremal if the (1, 0)-part of the

gradient of its scalar curvature S(ω) is a holomorphic vector field, i.e.

∂̄grad1,0ω S(ω) = 0. (2)

Writing J for the complex structure on X, we shall call vs := JgradωS(ω) an extremal

vector field.

It is easy to see that vs agrees with the Hamiltonian vector field generated by S(ω),

i.e. ιvsω = −dS(ω). Note that vs generates a periodic action by the well-known theorem

of Futaki and Mabuchi [12].

We now recall the definition of the Fubini–Study metrics and the Bergman function.

We shall write in what follows N = Nk for dimCH
0(X,Lk) and V for

∫
X
c1(L)

n/n!.

Definition 2.2. Let Bk be the space of all positive definite hermitian matrices on

H0(X,Lk), and H(X,L) be the space of all positively curved hermitian metrics on L.

The Hilbert map Hilb : H(X,L) → Bk is defined by

Hilb(h) :=
N

V

∫
X

hk(, )
ωn
h

n!
.

The Fubini–Study map FS : Bk → H(X,L) is defined by the equation

N∑
i=1

|si|2FS(H)k = 1 (3)

where {si} is an H-orthonormal basis for H0(X,Lk). We shall write ωFS(H) or ωH for

the Kähler metric associated to FS(H).

Definition 2.3. Let {si}i be a
∫
X
hk(, )ωn

h/n!-orthonormal basis for H0(X,Lk),

with h ∈ H(X,L). The k-th Bergman function ρk(ωh) ∈ C∞(X,R) of ωh is defined as
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ρk(ωh) =

N∑
i=1

|si|2hk .

We also recall the following result concerning the automorphism group of polarised

Kähler manifolds and its linearisation. This is a well-known consequence of the results

presented in [10], [14], [16], [27]. Let Aut0(X,L) be the connected component of the

group Aut(X,L) which consists of automorphisms of X whose action lift to the total

space of the line bundle L.

Lemma 2.4. By replacing L by a large tensor power if necessary, we have a unique

faithful group representation

θ : Aut0(X,L) → SL(H0(X,Lk))

for all k ∈ N, which satisfies

θ(f) ◦ ι = ι ◦ f (4)

for any f ∈ Aut0(X,L) and the Kodaira embedding ι : X ↪→ P(H0(X,Lk)∗).

In what follows, we shall replace L by a large tensor power so that the above lemma

holds.

Remark 2.5. It is convenient to fix a maximal compact subgroup K of Aut0(X,L)

once and for all. If (X,L) admits an extremal metric ω we shall take K to be the group

of isometry of ω, which is possible by a theorem of Calabi [5]. We shall also write Z for

the centre of K.

We identify H0(X,Lk) with CN by fixing a basis {si}i, to have the isomorphism

P(H0(X,Lk)∗) ∼= PN−1.

Definition 2.6. Defining a standard Euclidean metric on CN which we write as

the identity matrix I, we define the centre of mass associated to the basis s = {si}i as

µ̄X(s) :=

∫
X

hkFS(si, sj)∑
l |sl|2FSk

knωn
FS

n!
∈
√
−1u(N),

where hkFS = hkFS(I).

Remark 2.7. Note that the trace of µ̄X(s) is knV , and that the equation (3)

implies that we in fact have µ̄X(s) =
∫
X
hkFS(si, sj)k

nωn
FS/n!.

Recall also the following proposition, by noting that µ̄X(s) is invertible since it is

positive definite.

Proposition 2.8 ([13, Proposition 4.5]). There exists H ∈ Bk such that

∂̄grad1,0ωH
ρk(ωH) = 0 if and only if there exists a basis {si}i for H0(X,Lk) such that

(µ̄X(s))
−1

generates a holomorphic vector field on PN−1 that preserves the image ι(X)
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of the Kodaira embedding ι : X ↪→ PN−1.

Remark 2.9. Observe that (µ̄X(s))
−1

generating a holomorphic vector field pre-

serving ι(X) is equivalent to µ̄X satisfying the following equation

µ̄X(s) = (cI + ξ)
−1

(5)

for some ξ ∈ θ∗(aut(X,L)), where c ∈ R is a constant so that the trace of both sides are

equal (to knV ). In fact, the proof of [13, Proposition 4.5] further shows that ξ is a real

constant multiple of θ∗(gradωH
ρk(ωH)).

Observe further that when (5) is satisfied, the matrix cI + ξ is positive definite

hermitian since µ̄X is.

When we solve the equation (1) for all large enough k in [13], we prove stronger

results with more detailed information on the above ξ and c. We consider the following

functional.

Definition 2.10. The modified balancing energy ZA is defined on the space Bk of

all positive definite hermitian matrices on H0(X,Lk) as

ZA(H(t)) = I ◦ FS(H(t)) +
knV

N
tr

((
I + CAI +

A

2πk

)−1

logH(t)

)

where

1. {H(t)}t is a geodesic in Bk with respect to the bi-invariant metric on the homoge-

neous space Bk = GL(N,C)/U(N), which is geodesically complete (and hence the

above formula gives a well-defined functional ZA on Bk),

2. I : H(X,L) → R is a functional defined by I(e−ϕth0) := −kn+1
∫
X
ϕt
∑n

i=1(ω0 −√
−1∂∂̄ϕt)

i∧ωn−i
0 , where h0 is an arbitrarily chosen basepoint in H(X,L); we may

choose h0 = FS(H(0)) and e−ϕth0 = FS(H(t)),

3. CA ∈ R is some constant so that the trace of the derivative δZA is zero,

4. A is an element in θ∗(
√
−1z), where z = Lie(Z) (cf. Remark 2.5).

An important property of ZA is that it is geodesically convex on Bk and its critical

point corresponds to the solution to the equation (5) with c = 1 + CA and ξ = A/2πk,

since the linearisation δZA can be written as

δZA(H(t)) = −µ̄X(H(t)) +
V kn

N

(
I + CAI +

A

2πk

)−1

(6)

by recalling [13, Section 5.1].

The main results of [13] that we need can be summarised as follows.

Theorem 2.11 ([13, Theorem 1.4, Corollary 4.15, equation (64)]). Suppose (X,L)

admits an extremal metric ω. Then for all l ∈ N there exists kl ∈ N such that for all
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k ≥ kl there exists a hermitian matrix Hk ∈ Bk and Ak ∈ θ∗(z) such that the following

hold :

1. δZAk(Hk) = 0,

2. ωk := ωHk
satisfies ∂̄grad1,0ωk

ρk(ωk) = 0 and Ak is given by

Ak =
V

N
θ∗(gradωk

ρk(ωk)),

with the operator norm ||Ak||op of Ak being bounded uniformly of k and CAk
=

O(k−1),

3. ωk is K-invariant and ωk → ω in Cl.

3. Relative Chow stability and related concepts.

3.1. Chow stability.

This is a review of the classical theory, and we refer the reader to Section 1.16

of Mumford’s paper [26] and Section 2 of Futaki’s survey [11] for the details on the

materials presented here. Consider a polarised Kähler manifold (X,L) with dimCX = n

and degree dk :=
∫
X
c1(L

k)n, and the Kodaira embedding ι : X ↪→ P(H0(X,Lk)∗).

Writing Vk := H0(X,Lk), observe that n + 1 points H1, . . . , Hn+1 in P(Vk) determines

n+ 1 divisors in P(V ∗
k ), and that

{(H1, . . . , Hn+1) ∈ P(Vk)× · · · × P(Vk) | H1 ∩ · · · ∩Hn+1 ∩ ι(X) ̸= ∅ in P(V ∗
k )}

is a divisor in P(Vk)× · · · × P(Vk). The polynomial ΦX,k ∈ (Symdk(V ∗
k ))

⊗(n+1) defining

this divisor, or the point [ΦX,k] in P((Symdk(V ∗
k ))

⊗(n+1)) is called the Chow form of

X ↪→ P(H0(X,Lk)∗). It is a classical fact [15], [26] that [ΦX,k] corresponds bijectively

to a subvariety in P(H0(X,Lk)∗) of dimension n and degree dk.

Chow stability of (X,L) is nothing but the GIT stability of the point [ΦX,k] ∈
P((Symdk(V ∗

k ))
⊗(n+1)) with respect to the SL(V ∗

k )-action on (Symdk(V ∗
k ))

⊗(n+1). More

precisely, it can be defined as follows.

Definition 3.1. A polarised Kähler manifold (X,L) is said to be:

1. Chow polystable at the level k if the SL(V ∗
k )-orbit of ΦX,k is closed in

(Symdk(V ∗
k ))

⊗(n+1),

2. Chow stable at the level k if it is Chow polystable and ΦX,k has finite isotropy,

3. Chow semistable at the level k if the closure of the SL(V ∗
k )-orbit of ΦX,k does not

contain 0 ∈ (Symdk(V ∗
k ))

⊗(n+1),

4. Chow unstable at the level k if it is not Chow semistable,

5. asymptotically Chow stable (resp. polystable, semistable) if there exists k0 ∈ N such

that it is Chow stable (resp. polystable, semistable) at the level k for all k ≥ k0.
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We recall the following fundamental theorem.

Theorem 3.2 (Luo [19], Zhang [42]). Suppose that Aut0(X,L) is trivial. Then

(X,L) is Chow stable at the level k if and only if there exists H ∈ Bk such that ρk(ωH) =

const. Such a Kähler metric ωH is called a balanced metric.

3.2. Chow polystability relative to a torus.

We now review the version of Chow stability which is “relative” to the automorphism

group G = Aut0(X,L), as introduced by Mabuchi [20]. The reader is referred to the

survey given in Apostolov–Huang [1] for further discussions. Since we have θ as in

Lemma 2.4, choosing a real torus T in K, we can consider the representation θ|T c : T c ↷
H0(X,Lk) where T c is the complexification of T . We then consider a subspace

Vk(χ) := {s ∈ H0(X,Lk) | θ(t) · s = χ(t)s for all t ∈ T c}

of H0(X,Lk), where χ ∈ Hom(T c,C∗) is a character. We then have a decomposition

H0(X,Lk) =

r⊕
ν=1

Vk(χν) (7)

for mutually distinct characters χ1, . . . , χr ∈ Hom(T c,C∗).

We define Gc
T as the centraliser of θ(T c) in SL(H0(X,Lk)), and further define a

quotient group Gc
T⊥ := Gc

T /θ(T
c). Note that Gc

T stands for “elements in SL(H0(X,Lk))

that commute with the T c-action”, and Gc
T⊥ for “subgroup of Gc

T that is orthogonal to

the T c-action”.

Remark 3.3. We provide more down-to-earth descriptions of Gc
T and Gc

T⊥ , fol-

lowing [1, Section 2] and [35, Section 1.3]. Writing LieT c for the Lie algebra of T c and

g for sl(H0(X,Lk)), the centraliser of LieT c in g is

gT := {α ∈ g | [α, β] = 0 for all β ∈ LieT c} ,

where [, ] is the commutator. The connected Lie group corresponding to it can be written

as

Gc
T =

{
diag(A1, . . . , Ar) ∈

r∏
ν=1

GL(Vk(χν))

∣∣∣∣∣
r∏

ν=1

det(Aν) = 1

}
,

in terms of the decomposition (7). Also, using the natural inner product ⟨, ⟩ on

sl(H0(X,Lk)), we can define a Lie algebra

gT⊥ := {α ∈ gT | ⟨α, β⟩ = 0 for all β ∈ LieT c} .

Direct computation shows that the corresponding connected Lie group can be written as

Gc
T⊥ =

{
diag(A1, . . . , Ar) ∈

r∏
ν=1

GL(Vk(χν))

∣∣∣∣∣
r∏

ν=1

det(Aν)
1+log |χν(t)| = 1 for all t ∈ T c

}
.
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Note that, although the definition of gT⊥ depends on the inner product, Gc
T⊥ can be

defined intrinsically as Gc
T /θ(T

c), independently of the choice of inner product.

We now define the relative Chow stability as follows.

Definition 3.4. A polarised Kähler manifold (X,L) is said to be Chow polystable

at the level k relative to T if the Gc
T⊥-orbit of ΦX,k is closed in (Symdk(V ∗

k ))
⊗(n+1).

On the other hand, we can consider an action of a smaller group G̃c
T⊥ :=∏r

ν=1 SL(Vk(χν)); observe G̃c
T⊥ ≤ Gc

T⊥ . This leads to the notion of “weak” relative

Chow polystability as follows (cf. [20], [1]).

Definition 3.5. A polarised Kähler manifold (X,L) is said to be weakly

Chow polystable at the level k relative to T if the G̃c
T⊥-orbit of ΦX,k is closed in

(Symdk(V ∗
k ))

⊗(n+1).

In the case Aut0(X,L) is trivial, Chow stability corresponds to the existence of

balanced metrics, as proved by Luo [19] and Zhang [42] (cf. Theorem 3.2). The notion

of “balanced” metrics in the relative setting was proposed by Mabuchi [20] as follows.

Definition 3.6. A hermitian metric h ∈ H(X,L) is said to be balanced at the level

k relative to T if h is T -invariant and satisfies the following property: writing {sν,i}ν,i for
a Hilb(h)-orthonormal basis for H0(X,Lk), where each {sν,i}i is a Hilb(h)-orthonormal

basis for Vk(χν), there exist positive constants (b1, . . . , br), bν > 0, such that∑
ν,i

bν |sν,i|2hk = 1.

A fundamental theorem is the following.

Theorem 3.7 (Mabuchi [25, Theorem 5.3]). (X,L) is Chow polystable at the level

k relative to T if and only if it admits a hermitian metric balanced relative to T with

each bν satisfying

bν = 1 + log |χν(t)| (8)

for some t ∈ T c, i.e. bν ’s are the eigenvalues of I + ξ for some ξ ∈ θ∗(Lie(T
c)).

Corollary 3.8 (cf. [1, Section 2]). (X,L) is Chow polystable at the level k relative

to T if and only if there exists a T -invariant basis s for H0(X,Lk) such that

µ̄X(s) =
V kn

N
I + ξ

for some ξ ∈ θ∗(
√
−1Lie(T )). In other words, the trace free part of µ̄X(s) generates a

holomorphic automorphism of PN−1 which preserves the image of X under the Kodaira

embedding.

Proof. Suppose that we have a metric balanced at the level k relative to T ,
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satisfying
∑

ν,i bν |sν,i|2hk = 1 with bν ’s satisfying (8). We then see that h can be written

as h = FS(H) with H having s′ = {
√
bνsν,i}ν,i as its orthonormal basis (cf. equation

(3)), and that H is T -invariant (cf. Definition 1 of [1] and the argument that follows; see

also [13, Section 2.3]). Then, the centre of mass µ̄X(s′) with respect to this basis can be

computed as

µ̄X(s′) =
V kn

N
I +

V kn

N
diag(log |χ1(t)|idVk(χ1), . . . , log |χr(t)|idVk(χr))

=
V kn

N
I +

V kn

N
log θ(t),

and we simply define ξ := (V kn/N) log θ(t) ∈ θ∗(
√
−1Lie(T )).

Conversely, writing A = (V kn/N) log θ(t) for some t ∈ T c/T , suppose that we have

a T -invariant basis s′ such that µ̄X(s′) = (V kn/N)I + (V kn/N) log θ(t). Diagonalising

log θ(t), and defining bν ’s as in (8), we see that {
√
b−1
ν s′ν,i}ν,i is a Hilb(h)-orthonormal

basis, when {s′ν,i}ν,i is an H-orthonormal basis. We thus get

1 =
∑
ν,i

|s′ν,i|2hk =
∑
ν,i

bν

∣∣∣√b−1
ν s′ν,i

∣∣∣2
hk

as required, for h = FS(H), which is T -invariant by [13, Section 2.3]. □

We now recall the following “weak” version of the preceding Theorem 3.7.

Theorem 3.9 (Mabuchi [20], [23]; see also the discussion preceding Definition 5 of

[1]). (X,L) is weakly Chow polystable at the level k relative to T if and only if it admits

a hermitian metric balanced relative to T with some bν > 0, not necessarily satisfying

(8).

Corollary 3.10. (X,L) is weakly Chow polystable at the level k relative to T if

and only if there exists a T -invariant basis s such that

µ̄X(s) = diag(b1idVk(χ1), . . . , bridVk(χr))

with respect to the decomposition H0(X,Lk) =
⊕r

ν=1 Vk(χν), for some bν > 0 (not

necessarily satisfying (8)).

In particular, Chow polystability relative to T implies weak Chow polystability

relative to T .

Remark 3.11. It is important to note that the notion of relative Chow stability

comes with certain parameters associated to the automorphism, and this implies that

the weight {bν}ν is a priori not uniquely determined by the assumption that (X,Lk) is

(weakly) relatively Chow stable. On the other hand, when we construct relative balanced

metrics as in [13], [25], [32], [33], the weight {bν}ν is of some specific value; in particu-

lar, construction of relative balanced metrics is in general stronger than proving (weak)

relative Chow stability, in the sense that they provide specific values of the weight {bν}ν .
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Remark 3.12. In fact, Theorems 3.2, 3.7, and 3.9 can be proved by formulating

(relative) Chow stability in terms of test configurations and using explicit formulae of

the modified balancing energy. The details of this may appear elsewhere.

3.3. Proof of Theorem 1.1.

To prove Theorem 1.1, it suffices to establish the following.

Proposition 3.13. If there exists H ∈ Bk such that ωH is K-invariant and satis-

fies ∂̄grad1,0ωH
ρk(ωH) = 0, then FS(H) is balanced at the level k relative to the centre Z

of K for some bν > 0.

Proof. Recalling Remark 2.7, Proposition 2.8, and the equation (5), when we

write {si}i for an H-orthonormal basis, we see that the basis {s′i}i defined by

s′i := k−n/2 (cI + ξ)
1/2
ij sj , (9)

is a
∫
X
hkFS(H)(, )ω

n
H/n!-orthonormal basis, where (cI + ξ)ij is the matrix for cI + ξ

represented with respect to {si}i, which is positive definite by Remark 2.9. Moreover,

by replacing {si}i by an H-unitarily equivalent basis if necessary, we may assume that

ξ is diagonal. For notational convenience, we write {sν,i}ν,i for {si}i (resp. {s′ν,i}ν,i for
{s′i}i) for the rest of the proof, according to the decomposition (7), just to make explicit

which sector Vk(χν) each basis element si belongs to.

Since ωH is assumed to be K-invariant, we have gradωH
ρk(ωH) ∈

√
−1z by [13,

Lemmas 2.25 and 3.4]. Since ξ is a real constant multiple of θ∗(gradωH
ρk(ωH)), as

mentioned in Remark 2.9, we have ξ ∈ θ∗(
√
−1z). Hence we may write

ξij = diag(a1idVk(χ1), . . . , aridVk(χr)),

with respect to the characters χ1, . . . , χr of Zc. Thus we can write

(cI + ξ)ij = diag(b−1
1 idVk(χ1), . . . , b

−1
r idVk(χr))

for some bν > 0, by recalling that cI+ξ is positive definite (cf. Remark 2.9). In particular,

(9) can be re-written as s′i,ν = k−n/2b
−1/2
ν si,ν . This means that we can write∑

ν,i

bν |s′ν,i|2FS(H)k = k−n
∑
ν,i

|sν,i|2FS(H)k = constant (10)

by the equation (3), as required. Observe also that these bν ’s in the above equation are

the eigenvalues of (cI + ξ)−1, and not of cI + ξ, so a priori does not satisfy the equation

(8). □

Remark 3.14. The proof above in fact shows that ωH satisfies ∂̄grad1,0ωH
ρk(ωH) = 0

if and only if it satisfies the equation (10) with bν ’s being the eigenvalues of (cI + ξ)−1

for some ξ ∈ θ∗(
√
−1z); note the difference to the statement in Theorem 3.7.

Remark 3.15. Recalling that Z is contained in any maximal torus in K, we finally
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note that Chow polystability relative to the centre Z is stronger than that relative to

any maximal torus in K.

4. Relative K-semistability from the point of view of quantisation.

4.1. Relative K-semistability.

We first recall the notion of test configurations that are compatible with a torus

action, as defined by Székelyhidi [36].

Definition 4.1. A test configuration for (X,L) of exponent r is a C∗-equivariant

flat family π : X → C together with a C∗-equivariant very ample line bundle L on X
such that π−1(1) ∼= (X,Lr).

(X .L) is said to be compatible with a complex torus T c ≤ Aut0(X,L) if there exists

a torus action on (X ,L) which

1. preserves the fibres of π : X → C,

2. commutes with the defining C∗-action of (X ,L),

3. restricts to the T c-action on π−1(t) ∼= (X,Lr) for all t ̸= 0.

(X ,L) is said to be product if X ∼= X × C, and trivial if X ∼= X × C with trivial

C∗-action on X.

Suppose that we have a test configuration (X ,L). By definition (X ,L) is endowed

with a C∗-action, which we denote by α, for notational convenience that helps later.

There exists an embedding X ↪→ P(H0(X,Lr)∗) by [29, Proposition 3.7] such that the

generator of the C∗-action α is given by Ar ∈ sl(H0(X,Lr)), in the sense that X (with

the C∗-action α) is equal to the flat closure of the C∗-orbit of X ↪→ P(H0(X,Lr)∗))

generated by Ar (with the C∗-action eArt). Moreover, its central fibre X0 := π−1(0) is

equal to the flat limit of this C∗-orbit (cf. [37, Section 6.2]).

Given (X ,L), we can construct a sequence of test configurations (X ,L⊗k) for k ∈ N,
endowed with the C∗-action α (by abuse of notation). As above we can write this as a

flat closure of the C∗-orbit of X ↪→ P(H0(X,Lrk)∗) generated by Ark ∈ sl(H0(X,Lrk)),

say. Since the central fibre X0 is the flat limit of the C∗-action generated by Ark, there

is a natural C∗-action α : C∗ ↷ H0(X0,L⊗k|X0) generated by Ark ∈ sl(H0(X,Lrk)) =

sl(H0(X0,L⊗k|X0
)), by noting the isomorphism H0(X,Lrk)

∼→ H0(X0,L⊗k|X0
).

By Riemann–Roch and equivariant Riemann–Roch, we write

dimH0(X,Lrk) = a0(rk)
n + a1(rk)

n−1 + · · · , (11)

tr(Ark) = b0(rk)
n+1 + b1(rk)

n + · · · . (12)

Observe that a0 is equal to the volume V .

Definition 4.2. The Chow weight of (X ,L) is defined by

Chowr(X ,L) := rb0 −
a0tr(Ar)

dimH0(X,Lr)
.
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Remark 4.3. It is well-known that Chowr(X ,L) > 0 for all nontrivial test config-

urations of exponent r is equivalent to Chow stability of X ↪→ P(H0(X,Lr)∗) as defined

in Definition 3.1 (cf. [26, Proposition 2.11]), although we will not need to use this fact

in what follows.

In what follows, we shall assume that L is very ample, and take r = 1 for notational

convenience; this can be achieved by simply replacing L by a large tensor power.

Definition 4.4. The Donaldson–Futaki invariant DF (X ,L) is defined as

DF (X ,L) = a1b0 − a0b1
a0

.

Remark 4.5. Note that, by using the expansions (11) and (12), we have

DF (X ,L) = lim
k→∞

Chowk(X ,L⊗k). (13)

Let β1, . . . , βd be a basis for the C∗-actions generating T c, with generators

B1,k, . . . , Bd,k ∈ sl(H0(X,Lk)). We define an inner product ⟨α, βi⟩ for i = 1, . . . , d

as the leading coefficient of the following asymptotic expansion

tr (AkBi,k) = ⟨α, βi⟩kn+2 +O(kn+1), (14)

as defined by Székelyhidi [36], by recalling the well-known equivariant Riemann–Roch

theorem.

Then we define the Donaldson–Futaki invariant relative to T c as follows.

Definition 4.6.

DFT c(X ,L) = DF (α)−
d∑

i=1

⟨α, βi⟩
⟨βi, βi⟩

DF (βi) (15)

where DF (α) = DF (X ,L), and DF (βi) stands for the Donaldson–Futaki invariant for

the product test configuration generated by βi.

Remark 4.7. Writing ᾱ for the projection of α orthogonal to T c with respect to

⟨, ⟩ defined in (14), we have DFT c(X ,L) = DF (ᾱ).

Following [36], we define relative K-semistability.

Definition 4.8. (X,L) is said to be K-semistable relative to T c ≤ Aut0(X,L) if

DFT c(X ,L) ≥ 0 for all test configurations (X ,L) compatible with T c.

When we consider relativeK-polystability there is a subtlety concerning the triviality

of test configurations, as noted in [17]. However the result we will aim for in this paper

is about relative K-semistability, and hence we will not be concerned with this subtlety

here.
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4.2. Proof of Theorem 1.3.

We consider the case when we take T c to be the torus generated by the extremal

vector field. We write χ for the C∗-action generated by the extremal vector field, with

the scaling given by DF (χ) = ⟨χ, χ⟩. Then the definition (15) of the relative Donaldson–

Futaki invariant implies DFχ(X ,L) = DF (α)− ⟨α, χ⟩.
We can write χ explicitly in terms of the scalar curvature S(ω) of the extremal

metric ω as follows. Write vs for the Hamiltonian vector field defined by S(ω), where we

use ιvsω = −dS(ω) for the sign convention for the Hamiltonian vector field. Recall also

the faithful group representation θ : Aut0(X,L) ↪→ SL(H0(X,Lk)) as in Lemma 2.4.

Write Bχ,k ∈ sl(H0(X,Lk)) for the generator of χ which we may assume is hermitian

(cf. [9]). Thus the generator of the C∗-action on H0(X,Lk) defined by the product test

configuration generated by vs is a constant multiple of θ∗(Jvs) =
√
−1θ∗(vs), where J is

the complex structure of X. Note that we have

DF

(
θ∗(Jvs)

2π

)
=

1

4π

∫
X

(S(ω)− S̄)2
ωn

n!
, (16)

which will be proved in Section 5 (cf. Corollary 5.2), together with an explicit density

formula for the equivariant Riemann–Roch theorem (Theorem 5.1). Thus we look for

a constant C such that Bχ,k = (C/2π)θ∗(Jvs). C can be determined by the scaling

DF (χ) = ⟨χ, χ⟩. Now (16) implies

DF (χ) = DF

(
C
θ∗(Jvs)

2π

)
=

C

4π

∫
X

(S(ω)− S̄)2
ωn

n!
,

and on the other hand we have

⟨χ, χ⟩ = lim
k→∞

C2

kn+2
tr

((
θ∗(Jvs)

2π

)2
)

= C2

∫
X

(S(ω)− S̄)2
ωn

n!
,

by equivariant Riemann–Roch [37, Proposition 7.16]. Thus DF (χ) = ⟨χ, χ⟩ implies

C = 1/4π, and hence we get

Bχ,k =
θ∗(Jvs)

8π2
.

Suppose that we have a C∗-action β generating a test configuration (Xβ ,Lβ), and

let B ∈ sl(H0(X,L)) be its generator. Writing Bk ∈ sl(H0(X,Lk)) for the generator of

the C∗-action β : C∗ ↷ H0(X,Lk), we have

⟨β, χ⟩ = lim
k→∞

k−n−2tr

(
Bk

(
θ∗(Jvs)

8π2

))
=

1

8π2
lim
k→∞

k−n−2tr (Bkθ∗(Jvs)) . (17)

Since the modified balancing energy ZA with A := θ∗
(
(V/N)gradωk

ρk(ωk)
)
(cf. Def-
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inition 2.10 and (6)) is a geodesically convex function which admits a critical point (by

Theorem 2.11), we have

lim
t→∞

d

dt
ZA(H(t))

= lim
t→∞

tr(Bkµ̄X(H(t)))− knV

N
tr

(
Bk

(
I + CAI +

A

2πk

)−1
)
> 0,

for all geodesics
{
H(t) = e−BktH0

}
⊂ Bk, where Bk ∈ sl(H0(X,Lk)) is hermitian and

commutes with χ. By recalling Definition 4.2 and noting that Bk is trace-free, we get

lim
t→∞

tr(Bkµ̄X(H(t))) = knChowk(Xβ ,L⊗k
β )

from [9, Proposition 3]. Recalling also (13), we get

lim
k→∞

lim
t→∞

k−n d

dt
ZA(H(t))

= DF (Xβ ,Lβ)− lim
k→∞

V

N
tr

(
Bk

(
I + CAI +

A

2πk

)−1
)

≥ 0. (18)

We evaluate the second term of the above inequality, and show that it is equal to

the correction term ⟨β, χ⟩ in the relative Donaldson Futaki invariant DFχ(Xβ ,Lβ).

Now the well-known expansion of the Bergman function [2], [4], [18], [30], [38],

[40], [41] and ωk → ω (as k → ∞, cf. Theorem 2.11) implies

V

N
gradωk

ρk(ωk) = gradω

(
1 +

1

4πk
(S(ω)− S̄) +O(k−2)

)
=

1

4πk
gradωS(ω) +O(k−2)

= − 1

4πk
Jvs +O(k−2).

Hence, recalling A := θ∗
(
(V/N)gradωk

ρk(ωk)
)
, we have

A

2πk
= −θ∗(Jvs)

8π2k2
+ higher order terms in k−1.

By further noting that ||A||op is bounded uniformly of k and CA = O(k−1) (cf. The-

orem 2.11), and also recalling tr(Bk) = 0, we get

lim
k→∞

V

N
tr

(
Bk

(
I + CAI +

A

2πk

)−1
)

= lim
k→∞

V

N
tr

(
Bk

(
I − CAI −

A

2πk
+ higher order terms in k−1

))
= lim

k→∞

V

N
tr

(
Bk

(
I − CAI −

A

2πk

))
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= lim
k→∞

V

N
tr

(
Bk

1

8π2k2
θ∗(Jvs)

)
= lim

k→∞

1

kn+2

1

8π2
tr (Bkθ∗(Jvs))

= ⟨β, χ⟩,

by (17).

Thus, (18) can be written as

lim
k→∞

lim
t→∞

k−n d

dt
ZA(H(t)) = DF (Xβ ,Lβ)− ⟨β, χ⟩ ≥ 0.

Since this inequality holds for any C∗-action β that commutes with χ, we finally get

DFχ(Xβ ,Lβ) = DF (Xβ ,Lβ)− ⟨β, χ⟩ ≥ 0,

for any test configuration (Xβ ,Lβ), as required. This completes the proof of Theorem

1.3.

5. Explicit formula for the local equivariant Riemann–Roch theorem.

When the test configuration is product, it is well-known that the equivariant

Riemann–Roch theorem admits a differential-geometric formula, such that the coeffi-

cients in the expansion (12) can be computed from curvature quantities. We shall prove

in this section an explicit formula for the local density function for this, which reduces

the expansion (12) to the one of the Bergman function.

Let v ∈ Lie(K) be a real holomorphic Hamiltonian vector field, satisfying

ιvωh = −dψ

where ωh is a K-invariant Kähler metric (see Remark 5.4 for the normalisation of the

Hamiltonian). Writing ρ̄k(ωh) := (V/N)ρk(ωh) for the re-scaled Bergman function of

ωh, we state the main result of this section as follows.

Theorem 5.1. Recalling θ in Lemma 2.4, we have

V

kN
tr

(
θ∗(Jv)

2π

)
= −

∫
X

ψρ̄k(ωh)
ωn
h

n!
−
∫
X

1

4πk
(dψ, dρ̄k(ωh))ωh

ωn
h

n!
.

By using the asymptotic expansion for the Bergman function and recalling Definition

4.4, we obtain the following result.

Corollary 5.2. The Donaldson–Futaki invariant for the product test configura-

tion generated by θ∗(Jv)/2π admits a differential-geometric formula as follows.

DF

(
θ∗(Jv)

2π

)
=

1

4π

∫
X

ψ(S(ωh)− S̄)
ωn
h

n!
. (19)

The connection between the algebraically defined Donaldson–Futaki invariant and
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the analytically defined Futaki invariant (on the right hand side) is a well-known theorem

in Kähler geometry [8], but the above formula explicitly specifies the generator of the

test configuration, including the sign and the scaling, in terms of the vector field v. By

choosing v to be the extremal vector field vs, we get the formula (16).

Remark 5.3. Székelyhidi [37, Section 7.3] introduced the S1-equivariant Bergman

kernel BS1

hk as a local density function for tr
(
θ∗(v)/2π

√
−1
)
(cf. (25)). The proof of

Theorem 5.1 is based on the following explicit formula for BS1

hk as

BS1

hk = k

(
ψρ̄(ωh) +

1

4πk
(dψ, dρ̄k(ωh))ωh

)
. (20)

This formula enables us to obtain the full asymptotic expansion of BS1

hk in terms of the

one of ρ̄k(ωh), complementing the result given in [37, Proposition 7.12], which identifies

the first two coefficients of the asymptotic expansion.

Proof. Suppose that we take H ′ := Hilb(h), which is K-invariant if ωh is, by

[13, Lemma 2.25]. Then, writing A := θ∗(Jv), the Hamiltonian ψ′ for v with respect to

ωFS(H′) can be written as

ψ′ = − 1

2πk

∑
i,j

Aijh
k
FS(H′)(s

′
i, s

′
j) (21)

where {s′i}i is an H ′-orthonormal basis, by [13, Lemma 4.3]. Writing ρ̄k(ωh) :=

(V/N)ρk(ωh) for the re-scaled Bergman function, we have the well-known formula of

Rawnsley [28]

hkFS(H′) = ρ̄(ωh)
−1hk, (22)

which implies

ιvωH′ = ιv

(
ωh +

√
−1

2πk
∂∂̄ log ρ̄k(ωh)

)
= −d

(
ψ +

1

4πk
(dψ, d log ρ̄k(ωh))ωh

)
where (, )ωh

is the pointwise inner product on 1-forms defined by ωh, by recalling [13,

Lemma 3.3]. In particular, this implies

ψ′ = ψ +
1

4πk

(
dψ,

dρ̄k(ωh)

ρ̄k(ωh)

)
ωh

(23)

up to an additive constant (cf. Remark 5.4). Recalling (21) and (22) we have

− 1

2πk

∑
i,j

Aijh
k(s′i, s

′
j) = ψρ̄k(ωh) +

1

4πk
(dψ, dρ̄k(ωh))ωh

. (24)
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Now our scaling and sign convention implies that the S1-equivariant Bergman kernel BS1

hk

of Székelyhidi can be written as

BS1

hk = − 1

2π

∑
i,j

Aijh
k(s′i, s

′
j), (25)

whereby establishing (20). Integrating both sides of the equation (24), we thus get

V

kN
tr

(
θ∗(Jv)

2π

)
= −

∫
X

ψρ̄k(ωh)
ωn
h

n!
−
∫
X

1

4πk
(dψ, dρ̄k(ωh))ωh

ωn
h

n!
,

as claimed. □

Remark 5.4. Hamiltonian functions are well-defined only up to a constant, but

the Hamiltonian ψ in the statement of Theorem 5.1 is the one that is uniquely determined

by (21) and (23).

On the other hand, recall that the ambiguity in Hamiltonian has precisely to do

with the linearisation of the Hamiltonian vector v; changing ψ 7→ ψ+ c, c ∈ R, is exactly
the same as changing

θ∗(Jv)

2π
7→ θ∗(Jv)

2π
− ckI

which leaves the test configuration unchanged.

6. Related results.

Recent development in the field [13], [25], [32], [33] has provided several notions

of “quantised” or “relatively balanced” metrics adapted to the extremal metrics. There

are subtle, yet nontrivial differences among them; the reader is referred to [13, Section

6] for the review.

In this paper we shall be concerned with stability results that they imply. An

important result in this direction is the following.

Theorem 6.1 (Mabuchi [25], Seyyedali [33]). The existence of extremal metrics

in c1(L) implies asymptotic Chow polystability of (X,L) relative to any maximal torus

in K.

Mabuchi [25] in fact proved a stronger result of (X,L) being asymptotically Chow

polystable relative to the centre Z of K.

Recalling Corollary 3.8, this amounts to showing, for all large enough k, the exis-

tence of basis sk for H0(X,Lk) such that µ̄X(sk) ∈ θ∗(aut(X,L)), which we shall also

abbreviate as µ̄X ∈ aut(X,L).

The notion of σ-balanced metric was introduced by Sano in [31], where a Kähler

metric ωh is said to be σ-balanced if there exists σ ∈ Aut0(X,L) such that ωFS(Hilb(h)) =

σ∗ωh. Sano–Tipler [32] further proved the existence of σ-balanced metrics for all large

enough k, assuming the existence of extremal metrics on (X,L).
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Thus we have three notions of “quantised” or “relatively balanced” metrics in the

literature, each of which exists for all large enough k when (X,L) admits an extremal

metric:

1. ∂̄grad1,0ω ρk(ω) = 0,

2. µ̄X ∈ aut(X,L),

3. ωFS(Hilb(h)) = σ∗ωh.

As discussed in [13, Section 6], equivalence of these three notions is a subtle open problem.

On the other hand, after the appearance of the preprint version of this paper, Tipler [39]

provided a proof for the equivalence between the second and the third.

In fact, an argument that is almost identical to the proof of Proposition 3.13 shows

that the existence of σ-balanced metrics implies that (X,L) is weakly Chow polystable

relative to a torus in K. Thus, the relationship of the above notions and stability prop-

erties can be summarised as follows.

∂̄grad1,0ωk
ρk(ωk) = 0

Thm 1.1
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II

II
II

II
II

II
II

II
II

II
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II
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When we assume that (X,L) admits an extremal metric, we have three theorems

establishing the existence of “quantised extremal” or “relatively balanced” metrics, as

presented below (where “A-” stands for “Asymptotic”).

(X,L) has an extemal metric.
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Equivalence of three “quantised” or “relatively balanced” metrics would be desirable,

partly because it would simplify the implications to various stability notions as in the

diagram above.

Finally, we remark that the relative K-stability of extremal manifolds was proved by

Stoppa–Székelyhidi [34] by using the lower bound of the Calabi functional and a blowup

argument.
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